cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

arm_gicv3_dist.c (30808B)


      1/*
      2 * ARM GICv3 emulation: Distributor
      3 *
      4 * Copyright (c) 2015 Huawei.
      5 * Copyright (c) 2016 Linaro Limited.
      6 * Written by Shlomo Pongratz, Peter Maydell
      7 *
      8 * This code is licensed under the GPL, version 2 or (at your option)
      9 * any later version.
     10 */
     11
     12#include "qemu/osdep.h"
     13#include "qemu/log.h"
     14#include "trace.h"
     15#include "gicv3_internal.h"
     16
     17/* The GICD_NSACR registers contain a two bit field for each interrupt which
     18 * allows the guest to give NonSecure code access to registers controlling
     19 * Secure interrupts:
     20 *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
     21 *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
     22 *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
     23 *        and w/o to CLRSPI_NSR
     24 *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
     25 *
     26 * Given a (multiple-of-32) interrupt number, these mask functions return
     27 * a mask word where each bit is 1 if the NSACR settings permit access
     28 * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
     29 * word for this set of interrupts to give an overall mask.
     30 */
     31
     32typedef uint32_t maskfn(GICv3State *s, int irq);
     33
     34static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
     35{
     36    /* Return a mask where each bit is set if the NSACR field is >= 1 */
     37    uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
     38
     39    raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
     40    raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
     41    return half_unshuffle64(raw_nsacr);
     42}
     43
     44static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
     45{
     46    /* Return a mask where each bit is set if the NSACR field is >= 2 */
     47    uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
     48
     49    raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
     50    raw_nsacr = raw_nsacr >> 1;
     51    return half_unshuffle64(raw_nsacr);
     52}
     53
     54/* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
     55 * but it would be implemented using:
     56 *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
     57 */
     58
     59static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
     60                                     maskfn *maskfn, int irq)
     61{
     62    /* Return a 32-bit mask which should be applied for this set of 32
     63     * interrupts; each bit is 1 if access is permitted by the
     64     * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
     65     */
     66    uint32_t mask;
     67
     68    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
     69        /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
     70         * unless the NSACR bits permit access.
     71         */
     72        mask = *gic_bmp_ptr32(s->group, irq);
     73        if (maskfn) {
     74            mask |= maskfn(s, irq);
     75        }
     76        return mask;
     77    }
     78    return 0xFFFFFFFFU;
     79}
     80
     81static int gicd_ns_access(GICv3State *s, int irq)
     82{
     83    /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
     84     * specified interrupt.
     85     */
     86    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
     87        return 0;
     88    }
     89    return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
     90}
     91
     92static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
     93                                      uint32_t *bmp,
     94                                      maskfn *maskfn,
     95                                      int offset, uint32_t val)
     96{
     97    /* Helper routine to implement writing to a "set-bitmap" register
     98     * (GICD_ISENABLER, GICD_ISPENDR, etc).
     99     * Semantics implemented here:
    100     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
    101     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
    102     * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
    103     * offset should be the offset in bytes of the register from the start
    104     * of its group.
    105     */
    106    int irq = offset * 8;
    107
    108    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    109        return;
    110    }
    111    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    112    *gic_bmp_ptr32(bmp, irq) |= val;
    113    gicv3_update(s, irq, 32);
    114}
    115
    116static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
    117                                        uint32_t *bmp,
    118                                        maskfn *maskfn,
    119                                        int offset, uint32_t val)
    120{
    121    /* Helper routine to implement writing to a "clear-bitmap" register
    122     * (GICD_ICENABLER, GICD_ICPENDR, etc).
    123     * Semantics implemented here:
    124     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
    125     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
    126     * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
    127     * offset should be the offset in bytes of the register from the start
    128     * of its group.
    129     */
    130    int irq = offset * 8;
    131
    132    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    133        return;
    134    }
    135    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    136    *gic_bmp_ptr32(bmp, irq) &= ~val;
    137    gicv3_update(s, irq, 32);
    138}
    139
    140static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
    141                                     uint32_t *bmp,
    142                                     maskfn *maskfn,
    143                                     int offset)
    144{
    145    /* Helper routine to implement reading a "set/clear-bitmap" register
    146     * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
    147     * Semantics implemented here:
    148     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
    149     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
    150     * offset should be the offset in bytes of the register from the start
    151     * of its group.
    152     */
    153    int irq = offset * 8;
    154    uint32_t val;
    155
    156    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    157        return 0;
    158    }
    159    val = *gic_bmp_ptr32(bmp, irq);
    160    if (bmp == s->pending) {
    161        /* The PENDING register is a special case -- for level triggered
    162         * interrupts, the PENDING state is the logical OR of the state of
    163         * the PENDING latch with the input line level.
    164         */
    165        uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
    166        uint32_t level = *gic_bmp_ptr32(s->level, irq);
    167        val |= (~edge & level);
    168    }
    169    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    170    return val;
    171}
    172
    173static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
    174{
    175    /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
    176     * honouring security state (these are RAZ/WI for Group 0 or Secure
    177     * Group 1 interrupts).
    178     */
    179    uint32_t prio;
    180
    181    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    182        return 0;
    183    }
    184
    185    prio = s->gicd_ipriority[irq];
    186
    187    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    188        if (!gicv3_gicd_group_test(s, irq)) {
    189            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
    190            return 0;
    191        }
    192        /* NS view of the interrupt priority */
    193        prio = (prio << 1) & 0xff;
    194    }
    195    return prio;
    196}
    197
    198static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
    199                                  uint8_t value)
    200{
    201    /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
    202     * honouring security state (these are RAZ/WI for Group 0 or Secure
    203     * Group 1 interrupts).
    204     */
    205    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    206        return;
    207    }
    208
    209    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    210        if (!gicv3_gicd_group_test(s, irq)) {
    211            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
    212            return;
    213        }
    214        /* NS view of the interrupt priority */
    215        value = 0x80 | (value >> 1);
    216    }
    217    s->gicd_ipriority[irq] = value;
    218}
    219
    220static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
    221{
    222    /* Read the value of GICD_IROUTER<n> for the specified interrupt,
    223     * honouring security state.
    224     */
    225    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    226        return 0;
    227    }
    228
    229    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    230        /* RAZ/WI for NS accesses to secure interrupts */
    231        if (!gicv3_gicd_group_test(s, irq)) {
    232            if (gicd_ns_access(s, irq) != 3) {
    233                return 0;
    234            }
    235        }
    236    }
    237
    238    return s->gicd_irouter[irq];
    239}
    240
    241static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
    242                               uint64_t val)
    243{
    244    /* Write the value of GICD_IROUTER<n> for the specified interrupt,
    245     * honouring security state.
    246     */
    247    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    248        return;
    249    }
    250
    251    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    252        /* RAZ/WI for NS accesses to secure interrupts */
    253        if (!gicv3_gicd_group_test(s, irq)) {
    254            if (gicd_ns_access(s, irq) != 3) {
    255                return;
    256            }
    257        }
    258    }
    259
    260    s->gicd_irouter[irq] = val;
    261    gicv3_cache_target_cpustate(s, irq);
    262    gicv3_update(s, irq, 1);
    263}
    264
    265/**
    266 * gicd_readb
    267 * gicd_readw
    268 * gicd_readl
    269 * gicd_readq
    270 * gicd_writeb
    271 * gicd_writew
    272 * gicd_writel
    273 * gicd_writeq
    274 *
    275 * Return %true if the operation succeeded, %false otherwise.
    276 */
    277
    278static bool gicd_readb(GICv3State *s, hwaddr offset,
    279                       uint64_t *data, MemTxAttrs attrs)
    280{
    281    /* Most GICv3 distributor registers do not support byte accesses. */
    282    switch (offset) {
    283    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    284    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    285    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
    286        /* This GIC implementation always has affinity routing enabled,
    287         * so these registers are all RAZ/WI.
    288         */
    289        return true;
    290    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    291        *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
    292        return true;
    293    default:
    294        return false;
    295    }
    296}
    297
    298static bool gicd_writeb(GICv3State *s, hwaddr offset,
    299                        uint64_t value, MemTxAttrs attrs)
    300{
    301    /* Most GICv3 distributor registers do not support byte accesses. */
    302    switch (offset) {
    303    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    304    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    305    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
    306        /* This GIC implementation always has affinity routing enabled,
    307         * so these registers are all RAZ/WI.
    308         */
    309        return true;
    310    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    311    {
    312        int irq = offset - GICD_IPRIORITYR;
    313
    314        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    315            return true;
    316        }
    317        gicd_write_ipriorityr(s, attrs, irq, value);
    318        gicv3_update(s, irq, 1);
    319        return true;
    320    }
    321    default:
    322        return false;
    323    }
    324}
    325
    326static bool gicd_readw(GICv3State *s, hwaddr offset,
    327                       uint64_t *data, MemTxAttrs attrs)
    328{
    329    /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
    330     * support 16 bit accesses, and those registers are all part of the
    331     * optional message-based SPI feature which this GIC does not currently
    332     * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
    333     * reserved.
    334     */
    335    return false;
    336}
    337
    338static bool gicd_writew(GICv3State *s, hwaddr offset,
    339                        uint64_t value, MemTxAttrs attrs)
    340{
    341    /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
    342     * support 16 bit accesses, and those registers are all part of the
    343     * optional message-based SPI feature which this GIC does not currently
    344     * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
    345     * reserved.
    346     */
    347    return false;
    348}
    349
    350static bool gicd_readl(GICv3State *s, hwaddr offset,
    351                       uint64_t *data, MemTxAttrs attrs)
    352{
    353    /* Almost all GICv3 distributor registers are 32-bit.
    354     * Note that WO registers must return an UNKNOWN value on reads,
    355     * not an abort.
    356     */
    357
    358    switch (offset) {
    359    case GICD_CTLR:
    360        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    361            /* The NS view of the GICD_CTLR sees only certain bits:
    362             * + bit [31] (RWP) is an alias of the Secure bit [31]
    363             * + bit [4] (ARE_NS) is an alias of Secure bit [5]
    364             * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
    365             *   NS affinity routing is enabled, otherwise RES0
    366             * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
    367             *   NS affinity routing is not enabled, otherwise RES0
    368             * Since for QEMU affinity routing is always enabled
    369             * for both S and NS this means that bits [4] and [5] are
    370             * both always 1, and we can simply make the NS view
    371             * be bits 31, 4 and 1 of the S view.
    372             */
    373            *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
    374                                    GICD_CTLR_EN_GRP1NS |
    375                                    GICD_CTLR_RWP);
    376        } else {
    377            *data = s->gicd_ctlr;
    378        }
    379        return true;
    380    case GICD_TYPER:
    381    {
    382        /* For this implementation:
    383         * No1N == 1 (1-of-N SPI interrupts not supported)
    384         * A3V == 1 (non-zero values of Affinity level 3 supported)
    385         * IDbits == 0xf (we support 16-bit interrupt identifiers)
    386         * DVIS == 0 (Direct virtual LPI injection not supported)
    387         * LPIS == 1 (LPIs are supported if affinity routing is enabled)
    388         * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated
    389         *                      by GICD_TYPER.IDbits)
    390         * MBIS == 0 (message-based SPIs not supported)
    391         * SecurityExtn == 1 if security extns supported
    392         * CPUNumber == 0 since for us ARE is always 1
    393         * ITLinesNumber == (num external irqs / 32) - 1
    394         */
    395        int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;
    396        /*
    397         * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
    398         * "security extensions not supported" always implies DS == 1,
    399         * so we only need to check the DS bit.
    400         */
    401        bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
    402
    403        *data = (1 << 25) | (1 << 24) | (sec_extn << 10) |
    404            (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) |
    405            (0xf << 19) | itlinesnumber;
    406        return true;
    407    }
    408    case GICD_IIDR:
    409        /* We claim to be an ARM r0p0 with a zero ProductID.
    410         * This is the same as an r0p0 GIC-500.
    411         */
    412        *data = gicv3_iidr();
    413        return true;
    414    case GICD_STATUSR:
    415        /* RAZ/WI for us (this is an optional register and our implementation
    416         * does not track RO/WO/reserved violations to report them to the guest)
    417         */
    418        *data = 0;
    419        return true;
    420    case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
    421    {
    422        int irq;
    423
    424        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    425            *data = 0;
    426            return true;
    427        }
    428        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
    429        irq = (offset - GICD_IGROUPR) * 8;
    430        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    431            *data = 0;
    432            return true;
    433        }
    434        *data = *gic_bmp_ptr32(s->group, irq);
    435        return true;
    436    }
    437    case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
    438        *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
    439                                     offset - GICD_ISENABLER);
    440        return true;
    441    case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
    442        *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
    443                                     offset - GICD_ICENABLER);
    444        return true;
    445    case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
    446        *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
    447                                     offset - GICD_ISPENDR);
    448        return true;
    449    case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
    450        *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
    451                                     offset - GICD_ICPENDR);
    452        return true;
    453    case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
    454        *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
    455                                     offset - GICD_ISACTIVER);
    456        return true;
    457    case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
    458        *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
    459                                     offset - GICD_ICACTIVER);
    460        return true;
    461    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    462    {
    463        int i, irq = offset - GICD_IPRIORITYR;
    464        uint32_t value = 0;
    465
    466        for (i = irq + 3; i >= irq; i--) {
    467            value <<= 8;
    468            value |= gicd_read_ipriorityr(s, attrs, i);
    469        }
    470        *data = value;
    471        return true;
    472    }
    473    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
    474        /* RAZ/WI since affinity routing is always enabled */
    475        *data = 0;
    476        return true;
    477    case GICD_ICFGR ... GICD_ICFGR + 0xff:
    478    {
    479        /* Here only the even bits are used; odd bits are RES0 */
    480        int irq = (offset - GICD_ICFGR) * 4;
    481        uint32_t value = 0;
    482
    483        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    484            *data = 0;
    485            return true;
    486        }
    487
    488        /* Since our edge_trigger bitmap is one bit per irq, we only need
    489         * half of the 32-bit word, which we can then spread out
    490         * into the odd bits.
    491         */
    492        value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
    493        value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
    494        value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
    495        value = half_shuffle32(value) << 1;
    496        *data = value;
    497        return true;
    498    }
    499    case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
    500    {
    501        int irq;
    502
    503        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    504            /* RAZ/WI if security disabled, or if
    505             * security enabled and this is an NS access
    506             */
    507            *data = 0;
    508            return true;
    509        }
    510        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
    511        irq = (offset - GICD_IGRPMODR) * 8;
    512        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    513            *data = 0;
    514            return true;
    515        }
    516        *data = *gic_bmp_ptr32(s->grpmod, irq);
    517        return true;
    518    }
    519    case GICD_NSACR ... GICD_NSACR + 0xff:
    520    {
    521        /* Two bits per interrupt */
    522        int irq = (offset - GICD_NSACR) * 4;
    523
    524        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    525            *data = 0;
    526            return true;
    527        }
    528
    529        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    530            /* RAZ/WI if security disabled, or if
    531             * security enabled and this is an NS access
    532             */
    533            *data = 0;
    534            return true;
    535        }
    536
    537        *data = s->gicd_nsacr[irq / 16];
    538        return true;
    539    }
    540    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    541    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    542        /* RAZ/WI since affinity routing is always enabled */
    543        *data = 0;
    544        return true;
    545    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    546    {
    547        uint64_t r;
    548        int irq = (offset - GICD_IROUTER) / 8;
    549
    550        r = gicd_read_irouter(s, attrs, irq);
    551        if (offset & 7) {
    552            *data = r >> 32;
    553        } else {
    554            *data = (uint32_t)r;
    555        }
    556        return true;
    557    }
    558    case GICD_IDREGS ... GICD_IDREGS + 0x2f:
    559        /* ID registers */
    560        *data = gicv3_idreg(offset - GICD_IDREGS);
    561        return true;
    562    case GICD_SGIR:
    563        /* WO registers, return unknown value */
    564        qemu_log_mask(LOG_GUEST_ERROR,
    565                      "%s: invalid guest read from WO register at offset "
    566                      TARGET_FMT_plx "\n", __func__, offset);
    567        *data = 0;
    568        return true;
    569    default:
    570        return false;
    571    }
    572}
    573
    574static bool gicd_writel(GICv3State *s, hwaddr offset,
    575                        uint64_t value, MemTxAttrs attrs)
    576{
    577    /* Almost all GICv3 distributor registers are 32-bit. Note that
    578     * RO registers must ignore writes, not abort.
    579     */
    580
    581    switch (offset) {
    582    case GICD_CTLR:
    583    {
    584        uint32_t mask;
    585        /* GICv3 5.3.20 */
    586        if (s->gicd_ctlr & GICD_CTLR_DS) {
    587            /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
    588             * ARE is RAO/WI (affinity routing always on), and only
    589             * bits 0 and 1 (group enables) are writable.
    590             */
    591            mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
    592        } else {
    593            if (attrs.secure) {
    594                /* for secure access:
    595                 * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
    596                 * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
    597                 *
    598                 * We can only modify bits[2:0] (the group enables).
    599                 */
    600                mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
    601            } else {
    602                /* For non secure access ARE_NS is RAO/WI and EnableGrp1
    603                 * is RES0. The only writable bit is [1] (EnableGrp1A), which
    604                 * is an alias of the Secure bit [1].
    605                 */
    606                mask = GICD_CTLR_EN_GRP1NS;
    607            }
    608        }
    609        s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
    610        if (value & mask & GICD_CTLR_DS) {
    611            /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
    612             * Note that this is a one-way transition because if DS is set
    613             * then it's not writeable, so it can only go back to 0 with a
    614             * hardware reset.
    615             */
    616            s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
    617        }
    618        gicv3_full_update(s);
    619        return true;
    620    }
    621    case GICD_STATUSR:
    622        /* RAZ/WI for our implementation */
    623        return true;
    624    case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
    625    {
    626        int irq;
    627
    628        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
    629            return true;
    630        }
    631        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
    632        irq = (offset - GICD_IGROUPR) * 8;
    633        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    634            return true;
    635        }
    636        *gic_bmp_ptr32(s->group, irq) = value;
    637        gicv3_update(s, irq, 32);
    638        return true;
    639    }
    640    case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
    641        gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
    642                                  offset - GICD_ISENABLER, value);
    643        return true;
    644    case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
    645        gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
    646                                    offset - GICD_ICENABLER, value);
    647        return true;
    648    case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
    649        gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
    650                                  offset - GICD_ISPENDR, value);
    651        return true;
    652    case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
    653        gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
    654                                    offset - GICD_ICPENDR, value);
    655        return true;
    656    case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
    657        gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
    658                                  offset - GICD_ISACTIVER, value);
    659        return true;
    660    case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
    661        gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
    662                                    offset - GICD_ICACTIVER, value);
    663        return true;
    664    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    665    {
    666        int i, irq = offset - GICD_IPRIORITYR;
    667
    668        if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
    669            return true;
    670        }
    671
    672        for (i = irq; i < irq + 4; i++, value >>= 8) {
    673            gicd_write_ipriorityr(s, attrs, i, value);
    674        }
    675        gicv3_update(s, irq, 4);
    676        return true;
    677    }
    678    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
    679        /* RAZ/WI since affinity routing is always enabled */
    680        return true;
    681    case GICD_ICFGR ... GICD_ICFGR + 0xff:
    682    {
    683        /* Here only the odd bits are used; even bits are RES0 */
    684        int irq = (offset - GICD_ICFGR) * 4;
    685        uint32_t mask, oldval;
    686
    687        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    688            return true;
    689        }
    690
    691        /* Since our edge_trigger bitmap is one bit per irq, our input
    692         * 32-bits will compress down into 16 bits which we need
    693         * to write into the bitmap.
    694         */
    695        value = half_unshuffle32(value >> 1);
    696        mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
    697        if (irq & 0x1f) {
    698            value <<= 16;
    699            mask &= 0xffff0000U;
    700        } else {
    701            mask &= 0xffff;
    702        }
    703        oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
    704        value = (oldval & ~mask) | (value & mask);
    705        *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
    706        return true;
    707    }
    708    case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
    709    {
    710        int irq;
    711
    712        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    713            /* RAZ/WI if security disabled, or if
    714             * security enabled and this is an NS access
    715             */
    716            return true;
    717        }
    718        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
    719        irq = (offset - GICD_IGRPMODR) * 8;
    720        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    721            return true;
    722        }
    723        *gic_bmp_ptr32(s->grpmod, irq) = value;
    724        gicv3_update(s, irq, 32);
    725        return true;
    726    }
    727    case GICD_NSACR ... GICD_NSACR + 0xff:
    728    {
    729        /* Two bits per interrupt */
    730        int irq = (offset - GICD_NSACR) * 4;
    731
    732        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    733            return true;
    734        }
    735
    736        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
    737            /* RAZ/WI if security disabled, or if
    738             * security enabled and this is an NS access
    739             */
    740            return true;
    741        }
    742
    743        s->gicd_nsacr[irq / 16] = value;
    744        /* No update required as this only affects access permission checks */
    745        return true;
    746    }
    747    case GICD_SGIR:
    748        /* RES0 if affinity routing is enabled */
    749        return true;
    750    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    751    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    752        /* RAZ/WI since affinity routing is always enabled */
    753        return true;
    754    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    755    {
    756        uint64_t r;
    757        int irq = (offset - GICD_IROUTER) / 8;
    758
    759        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
    760            return true;
    761        }
    762
    763        /* Write half of the 64-bit register */
    764        r = gicd_read_irouter(s, attrs, irq);
    765        r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
    766        gicd_write_irouter(s, attrs, irq, r);
    767        return true;
    768    }
    769    case GICD_IDREGS ... GICD_IDREGS + 0x2f:
    770    case GICD_TYPER:
    771    case GICD_IIDR:
    772        /* RO registers, ignore the write */
    773        qemu_log_mask(LOG_GUEST_ERROR,
    774                      "%s: invalid guest write to RO register at offset "
    775                      TARGET_FMT_plx "\n", __func__, offset);
    776        return true;
    777    default:
    778        return false;
    779    }
    780}
    781
    782static bool gicd_writeq(GICv3State *s, hwaddr offset,
    783                        uint64_t value, MemTxAttrs attrs)
    784{
    785    /* Our only 64-bit registers are GICD_IROUTER<n> */
    786    int irq;
    787
    788    switch (offset) {
    789    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    790        irq = (offset - GICD_IROUTER) / 8;
    791        gicd_write_irouter(s, attrs, irq, value);
    792        return true;
    793    default:
    794        return false;
    795    }
    796}
    797
    798static bool gicd_readq(GICv3State *s, hwaddr offset,
    799                       uint64_t *data, MemTxAttrs attrs)
    800{
    801    /* Our only 64-bit registers are GICD_IROUTER<n> */
    802    int irq;
    803
    804    switch (offset) {
    805    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    806        irq = (offset - GICD_IROUTER) / 8;
    807        *data = gicd_read_irouter(s, attrs, irq);
    808        return true;
    809    default:
    810        return false;
    811    }
    812}
    813
    814MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
    815                            unsigned size, MemTxAttrs attrs)
    816{
    817    GICv3State *s = (GICv3State *)opaque;
    818    bool r;
    819
    820    switch (size) {
    821    case 1:
    822        r = gicd_readb(s, offset, data, attrs);
    823        break;
    824    case 2:
    825        r = gicd_readw(s, offset, data, attrs);
    826        break;
    827    case 4:
    828        r = gicd_readl(s, offset, data, attrs);
    829        break;
    830    case 8:
    831        r = gicd_readq(s, offset, data, attrs);
    832        break;
    833    default:
    834        r = false;
    835        break;
    836    }
    837
    838    if (!r) {
    839        qemu_log_mask(LOG_GUEST_ERROR,
    840                      "%s: invalid guest read at offset " TARGET_FMT_plx
    841                      "size %u\n", __func__, offset, size);
    842        trace_gicv3_dist_badread(offset, size, attrs.secure);
    843        /* The spec requires that reserved registers are RAZ/WI;
    844         * so use MEMTX_ERROR returns from leaf functions as a way to
    845         * trigger the guest-error logging but don't return it to
    846         * the caller, or we'll cause a spurious guest data abort.
    847         */
    848        *data = 0;
    849    } else {
    850        trace_gicv3_dist_read(offset, *data, size, attrs.secure);
    851    }
    852    return MEMTX_OK;
    853}
    854
    855MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
    856                             unsigned size, MemTxAttrs attrs)
    857{
    858    GICv3State *s = (GICv3State *)opaque;
    859    bool r;
    860
    861    switch (size) {
    862    case 1:
    863        r = gicd_writeb(s, offset, data, attrs);
    864        break;
    865    case 2:
    866        r = gicd_writew(s, offset, data, attrs);
    867        break;
    868    case 4:
    869        r = gicd_writel(s, offset, data, attrs);
    870        break;
    871    case 8:
    872        r = gicd_writeq(s, offset, data, attrs);
    873        break;
    874    default:
    875        r = false;
    876        break;
    877    }
    878
    879    if (!r) {
    880        qemu_log_mask(LOG_GUEST_ERROR,
    881                      "%s: invalid guest write at offset " TARGET_FMT_plx
    882                      "size %u\n", __func__, offset, size);
    883        trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
    884        /* The spec requires that reserved registers are RAZ/WI;
    885         * so use MEMTX_ERROR returns from leaf functions as a way to
    886         * trigger the guest-error logging but don't return it to
    887         * the caller, or we'll cause a spurious guest data abort.
    888         */
    889    } else {
    890        trace_gicv3_dist_write(offset, data, size, attrs.secure);
    891    }
    892    return MEMTX_OK;
    893}
    894
    895void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
    896{
    897    /* Update distributor state for a change in an external SPI input line */
    898    if (level == gicv3_gicd_level_test(s, irq)) {
    899        return;
    900    }
    901
    902    trace_gicv3_dist_set_irq(irq, level);
    903
    904    gicv3_gicd_level_replace(s, irq, level);
    905
    906    if (level) {
    907        /* 0->1 edges latch the pending bit for edge-triggered interrupts */
    908        if (gicv3_gicd_edge_trigger_test(s, irq)) {
    909            gicv3_gicd_pending_set(s, irq);
    910        }
    911    }
    912
    913    gicv3_update(s, irq, 1);
    914}