cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

armv7m_nvic.c (93326B)


      1/*
      2 * ARM Nested Vectored Interrupt Controller
      3 *
      4 * Copyright (c) 2006-2007 CodeSourcery.
      5 * Written by Paul Brook
      6 *
      7 * This code is licensed under the GPL.
      8 *
      9 * The ARMv7M System controller is fairly tightly tied in with the
     10 * NVIC.  Much of that is also implemented here.
     11 */
     12
     13#include "qemu/osdep.h"
     14#include "qapi/error.h"
     15#include "hw/sysbus.h"
     16#include "migration/vmstate.h"
     17#include "qemu/timer.h"
     18#include "hw/intc/armv7m_nvic.h"
     19#include "hw/irq.h"
     20#include "hw/qdev-properties.h"
     21#include "sysemu/runstate.h"
     22#include "target/arm/cpu.h"
     23#include "exec/exec-all.h"
     24#include "exec/memop.h"
     25#include "qemu/log.h"
     26#include "qemu/module.h"
     27#include "trace.h"
     28
     29/* IRQ number counting:
     30 *
     31 * the num-irq property counts the number of external IRQ lines
     32 *
     33 * NVICState::num_irq counts the total number of exceptions
     34 * (external IRQs, the 15 internal exceptions including reset,
     35 * and one for the unused exception number 0).
     36 *
     37 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
     38 *
     39 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
     40 *
     41 * Iterating through all exceptions should typically be done with
     42 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
     43 *
     44 * The external qemu_irq lines are the NVIC's external IRQ lines,
     45 * so line 0 is exception 16.
     46 *
     47 * In the terminology of the architecture manual, "interrupts" are
     48 * a subcategory of exception referring to the external interrupts
     49 * (which are exception numbers NVIC_FIRST_IRQ and upward).
     50 * For historical reasons QEMU tends to use "interrupt" and
     51 * "exception" more or less interchangeably.
     52 */
     53#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
     54#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
     55
     56/* Effective running priority of the CPU when no exception is active
     57 * (higher than the highest possible priority value)
     58 */
     59#define NVIC_NOEXC_PRIO 0x100
     60/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
     61#define NVIC_NS_PRIO_LIMIT 0x80
     62
     63static const uint8_t nvic_id[] = {
     64    0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
     65};
     66
     67static void signal_sysresetreq(NVICState *s)
     68{
     69    if (qemu_irq_is_connected(s->sysresetreq)) {
     70        qemu_irq_pulse(s->sysresetreq);
     71    } else {
     72        /*
     73         * Default behaviour if the SoC doesn't need to wire up
     74         * SYSRESETREQ (eg to a system reset controller of some kind):
     75         * perform a system reset via the usual QEMU API.
     76         */
     77        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
     78    }
     79}
     80
     81static int nvic_pending_prio(NVICState *s)
     82{
     83    /* return the group priority of the current pending interrupt,
     84     * or NVIC_NOEXC_PRIO if no interrupt is pending
     85     */
     86    return s->vectpending_prio;
     87}
     88
     89/* Return the value of the ISCR RETTOBASE bit:
     90 * 1 if there is exactly one active exception
     91 * 0 if there is more than one active exception
     92 * UNKNOWN if there are no active exceptions (we choose 1,
     93 * which matches the choice Cortex-M3 is documented as making).
     94 *
     95 * NB: some versions of the documentation talk about this
     96 * counting "active exceptions other than the one shown by IPSR";
     97 * this is only different in the obscure corner case where guest
     98 * code has manually deactivated an exception and is about
     99 * to fail an exception-return integrity check. The definition
    100 * above is the one from the v8M ARM ARM and is also in line
    101 * with the behaviour documented for the Cortex-M3.
    102 */
    103static bool nvic_rettobase(NVICState *s)
    104{
    105    int irq, nhand = 0;
    106    bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
    107
    108    for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
    109        if (s->vectors[irq].active ||
    110            (check_sec && irq < NVIC_INTERNAL_VECTORS &&
    111             s->sec_vectors[irq].active)) {
    112            nhand++;
    113            if (nhand == 2) {
    114                return 0;
    115            }
    116        }
    117    }
    118
    119    return 1;
    120}
    121
    122/* Return the value of the ISCR ISRPENDING bit:
    123 * 1 if an external interrupt is pending
    124 * 0 if no external interrupt is pending
    125 */
    126static bool nvic_isrpending(NVICState *s)
    127{
    128    int irq;
    129
    130    /*
    131     * We can shortcut if the highest priority pending interrupt
    132     * happens to be external; if not we need to check the whole
    133     * vectors[] array.
    134     */
    135    if (s->vectpending > NVIC_FIRST_IRQ) {
    136        return true;
    137    }
    138
    139    for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
    140        if (s->vectors[irq].pending) {
    141            return true;
    142        }
    143    }
    144    return false;
    145}
    146
    147static bool exc_is_banked(int exc)
    148{
    149    /* Return true if this is one of the limited set of exceptions which
    150     * are banked (and thus have state in sec_vectors[])
    151     */
    152    return exc == ARMV7M_EXCP_HARD ||
    153        exc == ARMV7M_EXCP_MEM ||
    154        exc == ARMV7M_EXCP_USAGE ||
    155        exc == ARMV7M_EXCP_SVC ||
    156        exc == ARMV7M_EXCP_PENDSV ||
    157        exc == ARMV7M_EXCP_SYSTICK;
    158}
    159
    160/* Return a mask word which clears the subpriority bits from
    161 * a priority value for an M-profile exception, leaving only
    162 * the group priority.
    163 */
    164static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
    165{
    166    return ~0U << (s->prigroup[secure] + 1);
    167}
    168
    169static bool exc_targets_secure(NVICState *s, int exc)
    170{
    171    /* Return true if this non-banked exception targets Secure state. */
    172    if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
    173        return false;
    174    }
    175
    176    if (exc >= NVIC_FIRST_IRQ) {
    177        return !s->itns[exc];
    178    }
    179
    180    /* Function shouldn't be called for banked exceptions. */
    181    assert(!exc_is_banked(exc));
    182
    183    switch (exc) {
    184    case ARMV7M_EXCP_NMI:
    185    case ARMV7M_EXCP_BUS:
    186        return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
    187    case ARMV7M_EXCP_SECURE:
    188        return true;
    189    case ARMV7M_EXCP_DEBUG:
    190        /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
    191        return false;
    192    default:
    193        /* reset, and reserved (unused) low exception numbers.
    194         * We'll get called by code that loops through all the exception
    195         * numbers, but it doesn't matter what we return here as these
    196         * non-existent exceptions will never be pended or active.
    197         */
    198        return true;
    199    }
    200}
    201
    202static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
    203{
    204    /* Return the group priority for this exception, given its raw
    205     * (group-and-subgroup) priority value and whether it is targeting
    206     * secure state or not.
    207     */
    208    if (rawprio < 0) {
    209        return rawprio;
    210    }
    211    rawprio &= nvic_gprio_mask(s, targets_secure);
    212    /* AIRCR.PRIS causes us to squash all NS priorities into the
    213     * lower half of the total range
    214     */
    215    if (!targets_secure &&
    216        (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
    217        rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
    218    }
    219    return rawprio;
    220}
    221
    222/* Recompute vectpending and exception_prio for a CPU which implements
    223 * the Security extension
    224 */
    225static void nvic_recompute_state_secure(NVICState *s)
    226{
    227    int i, bank;
    228    int pend_prio = NVIC_NOEXC_PRIO;
    229    int active_prio = NVIC_NOEXC_PRIO;
    230    int pend_irq = 0;
    231    bool pending_is_s_banked = false;
    232    int pend_subprio = 0;
    233
    234    /* R_CQRV: precedence is by:
    235     *  - lowest group priority; if both the same then
    236     *  - lowest subpriority; if both the same then
    237     *  - lowest exception number; if both the same (ie banked) then
    238     *  - secure exception takes precedence
    239     * Compare pseudocode RawExecutionPriority.
    240     * Annoyingly, now we have two prigroup values (for S and NS)
    241     * we can't do the loop comparison on raw priority values.
    242     */
    243    for (i = 1; i < s->num_irq; i++) {
    244        for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
    245            VecInfo *vec;
    246            int prio, subprio;
    247            bool targets_secure;
    248
    249            if (bank == M_REG_S) {
    250                if (!exc_is_banked(i)) {
    251                    continue;
    252                }
    253                vec = &s->sec_vectors[i];
    254                targets_secure = true;
    255            } else {
    256                vec = &s->vectors[i];
    257                targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
    258            }
    259
    260            prio = exc_group_prio(s, vec->prio, targets_secure);
    261            subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
    262            if (vec->enabled && vec->pending &&
    263                ((prio < pend_prio) ||
    264                 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
    265                pend_prio = prio;
    266                pend_subprio = subprio;
    267                pend_irq = i;
    268                pending_is_s_banked = (bank == M_REG_S);
    269            }
    270            if (vec->active && prio < active_prio) {
    271                active_prio = prio;
    272            }
    273        }
    274    }
    275
    276    s->vectpending_is_s_banked = pending_is_s_banked;
    277    s->vectpending = pend_irq;
    278    s->vectpending_prio = pend_prio;
    279    s->exception_prio = active_prio;
    280
    281    trace_nvic_recompute_state_secure(s->vectpending,
    282                                      s->vectpending_is_s_banked,
    283                                      s->vectpending_prio,
    284                                      s->exception_prio);
    285}
    286
    287/* Recompute vectpending and exception_prio */
    288static void nvic_recompute_state(NVICState *s)
    289{
    290    int i;
    291    int pend_prio = NVIC_NOEXC_PRIO;
    292    int active_prio = NVIC_NOEXC_PRIO;
    293    int pend_irq = 0;
    294
    295    /* In theory we could write one function that handled both
    296     * the "security extension present" and "not present"; however
    297     * the security related changes significantly complicate the
    298     * recomputation just by themselves and mixing both cases together
    299     * would be even worse, so we retain a separate non-secure-only
    300     * version for CPUs which don't implement the security extension.
    301     */
    302    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
    303        nvic_recompute_state_secure(s);
    304        return;
    305    }
    306
    307    for (i = 1; i < s->num_irq; i++) {
    308        VecInfo *vec = &s->vectors[i];
    309
    310        if (vec->enabled && vec->pending && vec->prio < pend_prio) {
    311            pend_prio = vec->prio;
    312            pend_irq = i;
    313        }
    314        if (vec->active && vec->prio < active_prio) {
    315            active_prio = vec->prio;
    316        }
    317    }
    318
    319    if (active_prio > 0) {
    320        active_prio &= nvic_gprio_mask(s, false);
    321    }
    322
    323    if (pend_prio > 0) {
    324        pend_prio &= nvic_gprio_mask(s, false);
    325    }
    326
    327    s->vectpending = pend_irq;
    328    s->vectpending_prio = pend_prio;
    329    s->exception_prio = active_prio;
    330
    331    trace_nvic_recompute_state(s->vectpending,
    332                               s->vectpending_prio,
    333                               s->exception_prio);
    334}
    335
    336/* Return the current execution priority of the CPU
    337 * (equivalent to the pseudocode ExecutionPriority function).
    338 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
    339 */
    340static inline int nvic_exec_prio(NVICState *s)
    341{
    342    CPUARMState *env = &s->cpu->env;
    343    int running = NVIC_NOEXC_PRIO;
    344
    345    if (env->v7m.basepri[M_REG_NS] > 0) {
    346        running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
    347    }
    348
    349    if (env->v7m.basepri[M_REG_S] > 0) {
    350        int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
    351        if (running > basepri) {
    352            running = basepri;
    353        }
    354    }
    355
    356    if (env->v7m.primask[M_REG_NS]) {
    357        if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
    358            if (running > NVIC_NS_PRIO_LIMIT) {
    359                running = NVIC_NS_PRIO_LIMIT;
    360            }
    361        } else {
    362            running = 0;
    363        }
    364    }
    365
    366    if (env->v7m.primask[M_REG_S]) {
    367        running = 0;
    368    }
    369
    370    if (env->v7m.faultmask[M_REG_NS]) {
    371        if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
    372            running = -1;
    373        } else {
    374            if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
    375                if (running > NVIC_NS_PRIO_LIMIT) {
    376                    running = NVIC_NS_PRIO_LIMIT;
    377                }
    378            } else {
    379                running = 0;
    380            }
    381        }
    382    }
    383
    384    if (env->v7m.faultmask[M_REG_S]) {
    385        running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
    386    }
    387
    388    /* consider priority of active handler */
    389    return MIN(running, s->exception_prio);
    390}
    391
    392bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
    393{
    394    /* Return true if the requested execution priority is negative
    395     * for the specified security state, ie that security state
    396     * has an active NMI or HardFault or has set its FAULTMASK.
    397     * Note that this is not the same as whether the execution
    398     * priority is actually negative (for instance AIRCR.PRIS may
    399     * mean we don't allow FAULTMASK_NS to actually make the execution
    400     * priority negative). Compare pseudocode IsReqExcPriNeg().
    401     */
    402    NVICState *s = opaque;
    403
    404    if (s->cpu->env.v7m.faultmask[secure]) {
    405        return true;
    406    }
    407
    408    if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
    409        s->vectors[ARMV7M_EXCP_HARD].active) {
    410        return true;
    411    }
    412
    413    if (s->vectors[ARMV7M_EXCP_NMI].active &&
    414        exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
    415        return true;
    416    }
    417
    418    return false;
    419}
    420
    421bool armv7m_nvic_can_take_pending_exception(void *opaque)
    422{
    423    NVICState *s = opaque;
    424
    425    return nvic_exec_prio(s) > nvic_pending_prio(s);
    426}
    427
    428int armv7m_nvic_raw_execution_priority(void *opaque)
    429{
    430    NVICState *s = opaque;
    431
    432    return s->exception_prio;
    433}
    434
    435/* caller must call nvic_irq_update() after this.
    436 * secure indicates the bank to use for banked exceptions (we assert if
    437 * we are passed secure=true for a non-banked exception).
    438 */
    439static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
    440{
    441    assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
    442    assert(irq < s->num_irq);
    443
    444    prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
    445
    446    if (secure) {
    447        assert(exc_is_banked(irq));
    448        s->sec_vectors[irq].prio = prio;
    449    } else {
    450        s->vectors[irq].prio = prio;
    451    }
    452
    453    trace_nvic_set_prio(irq, secure, prio);
    454}
    455
    456/* Return the current raw priority register value.
    457 * secure indicates the bank to use for banked exceptions (we assert if
    458 * we are passed secure=true for a non-banked exception).
    459 */
    460static int get_prio(NVICState *s, unsigned irq, bool secure)
    461{
    462    assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
    463    assert(irq < s->num_irq);
    464
    465    if (secure) {
    466        assert(exc_is_banked(irq));
    467        return s->sec_vectors[irq].prio;
    468    } else {
    469        return s->vectors[irq].prio;
    470    }
    471}
    472
    473/* Recompute state and assert irq line accordingly.
    474 * Must be called after changes to:
    475 *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
    476 *  prigroup
    477 */
    478static void nvic_irq_update(NVICState *s)
    479{
    480    int lvl;
    481    int pend_prio;
    482
    483    nvic_recompute_state(s);
    484    pend_prio = nvic_pending_prio(s);
    485
    486    /* Raise NVIC output if this IRQ would be taken, except that we
    487     * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
    488     * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
    489     * to those CPU registers don't cause us to recalculate the NVIC
    490     * pending info.
    491     */
    492    lvl = (pend_prio < s->exception_prio);
    493    trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
    494    qemu_set_irq(s->excpout, lvl);
    495}
    496
    497/**
    498 * armv7m_nvic_clear_pending: mark the specified exception as not pending
    499 * @opaque: the NVIC
    500 * @irq: the exception number to mark as not pending
    501 * @secure: false for non-banked exceptions or for the nonsecure
    502 * version of a banked exception, true for the secure version of a banked
    503 * exception.
    504 *
    505 * Marks the specified exception as not pending. Note that we will assert()
    506 * if @secure is true and @irq does not specify one of the fixed set
    507 * of architecturally banked exceptions.
    508 */
    509static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
    510{
    511    NVICState *s = (NVICState *)opaque;
    512    VecInfo *vec;
    513
    514    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
    515
    516    if (secure) {
    517        assert(exc_is_banked(irq));
    518        vec = &s->sec_vectors[irq];
    519    } else {
    520        vec = &s->vectors[irq];
    521    }
    522    trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
    523    if (vec->pending) {
    524        vec->pending = 0;
    525        nvic_irq_update(s);
    526    }
    527}
    528
    529static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
    530                                       bool derived)
    531{
    532    /* Pend an exception, including possibly escalating it to HardFault.
    533     *
    534     * This function handles both "normal" pending of interrupts and
    535     * exceptions, and also derived exceptions (ones which occur as
    536     * a result of trying to take some other exception).
    537     *
    538     * If derived == true, the caller guarantees that we are part way through
    539     * trying to take an exception (but have not yet called
    540     * armv7m_nvic_acknowledge_irq() to make it active), and so:
    541     *  - s->vectpending is the "original exception" we were trying to take
    542     *  - irq is the "derived exception"
    543     *  - nvic_exec_prio(s) gives the priority before exception entry
    544     * Here we handle the prioritization logic which the pseudocode puts
    545     * in the DerivedLateArrival() function.
    546     */
    547
    548    NVICState *s = (NVICState *)opaque;
    549    bool banked = exc_is_banked(irq);
    550    VecInfo *vec;
    551    bool targets_secure;
    552
    553    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
    554    assert(!secure || banked);
    555
    556    vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
    557
    558    targets_secure = banked ? secure : exc_targets_secure(s, irq);
    559
    560    trace_nvic_set_pending(irq, secure, targets_secure,
    561                           derived, vec->enabled, vec->prio);
    562
    563    if (derived) {
    564        /* Derived exceptions are always synchronous. */
    565        assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
    566
    567        if (irq == ARMV7M_EXCP_DEBUG &&
    568            exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
    569            /* DebugMonitorFault, but its priority is lower than the
    570             * preempted exception priority: just ignore it.
    571             */
    572            return;
    573        }
    574
    575        if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
    576            /* If this is a terminal exception (one which means we cannot
    577             * take the original exception, like a failure to read its
    578             * vector table entry), then we must take the derived exception.
    579             * If the derived exception can't take priority over the
    580             * original exception, then we go into Lockup.
    581             *
    582             * For QEMU, we rely on the fact that a derived exception is
    583             * terminal if and only if it's reported to us as HardFault,
    584             * which saves having to have an extra argument is_terminal
    585             * that we'd only use in one place.
    586             */
    587            cpu_abort(&s->cpu->parent_obj,
    588                      "Lockup: can't take terminal derived exception "
    589                      "(original exception priority %d)\n",
    590                      s->vectpending_prio);
    591        }
    592        /* We now continue with the same code as for a normal pending
    593         * exception, which will cause us to pend the derived exception.
    594         * We'll then take either the original or the derived exception
    595         * based on which is higher priority by the usual mechanism
    596         * for selecting the highest priority pending interrupt.
    597         */
    598    }
    599
    600    if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
    601        /* If a synchronous exception is pending then it may be
    602         * escalated to HardFault if:
    603         *  * it is equal or lower priority to current execution
    604         *  * it is disabled
    605         * (ie we need to take it immediately but we can't do so).
    606         * Asynchronous exceptions (and interrupts) simply remain pending.
    607         *
    608         * For QEMU, we don't have any imprecise (asynchronous) faults,
    609         * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
    610         * synchronous.
    611         * Debug exceptions are awkward because only Debug exceptions
    612         * resulting from the BKPT instruction should be escalated,
    613         * but we don't currently implement any Debug exceptions other
    614         * than those that result from BKPT, so we treat all debug exceptions
    615         * as needing escalation.
    616         *
    617         * This all means we can identify whether to escalate based only on
    618         * the exception number and don't (yet) need the caller to explicitly
    619         * tell us whether this exception is synchronous or not.
    620         */
    621        int running = nvic_exec_prio(s);
    622        bool escalate = false;
    623
    624        if (exc_group_prio(s, vec->prio, secure) >= running) {
    625            trace_nvic_escalate_prio(irq, vec->prio, running);
    626            escalate = true;
    627        } else if (!vec->enabled) {
    628            trace_nvic_escalate_disabled(irq);
    629            escalate = true;
    630        }
    631
    632        if (escalate) {
    633
    634            /* We need to escalate this exception to a synchronous HardFault.
    635             * If BFHFNMINS is set then we escalate to the banked HF for
    636             * the target security state of the original exception; otherwise
    637             * we take a Secure HardFault.
    638             */
    639            irq = ARMV7M_EXCP_HARD;
    640            if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
    641                (targets_secure ||
    642                 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
    643                vec = &s->sec_vectors[irq];
    644            } else {
    645                vec = &s->vectors[irq];
    646            }
    647            if (running <= vec->prio) {
    648                /* We want to escalate to HardFault but we can't take the
    649                 * synchronous HardFault at this point either. This is a
    650                 * Lockup condition due to a guest bug. We don't model
    651                 * Lockup, so report via cpu_abort() instead.
    652                 */
    653                cpu_abort(&s->cpu->parent_obj,
    654                          "Lockup: can't escalate %d to HardFault "
    655                          "(current priority %d)\n", irq, running);
    656            }
    657
    658            /* HF may be banked but there is only one shared HFSR */
    659            s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
    660        }
    661    }
    662
    663    if (!vec->pending) {
    664        vec->pending = 1;
    665        nvic_irq_update(s);
    666    }
    667}
    668
    669void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
    670{
    671    do_armv7m_nvic_set_pending(opaque, irq, secure, false);
    672}
    673
    674void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
    675{
    676    do_armv7m_nvic_set_pending(opaque, irq, secure, true);
    677}
    678
    679void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
    680{
    681    /*
    682     * Pend an exception during lazy FP stacking. This differs
    683     * from the usual exception pending because the logic for
    684     * whether we should escalate depends on the saved context
    685     * in the FPCCR register, not on the current state of the CPU/NVIC.
    686     */
    687    NVICState *s = (NVICState *)opaque;
    688    bool banked = exc_is_banked(irq);
    689    VecInfo *vec;
    690    bool targets_secure;
    691    bool escalate = false;
    692    /*
    693     * We will only look at bits in fpccr if this is a banked exception
    694     * (in which case 'secure' tells us whether it is the S or NS version).
    695     * All the bits for the non-banked exceptions are in fpccr_s.
    696     */
    697    uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
    698    uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
    699
    700    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
    701    assert(!secure || banked);
    702
    703    vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
    704
    705    targets_secure = banked ? secure : exc_targets_secure(s, irq);
    706
    707    switch (irq) {
    708    case ARMV7M_EXCP_DEBUG:
    709        if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
    710            /* Ignore DebugMonitor exception */
    711            return;
    712        }
    713        break;
    714    case ARMV7M_EXCP_MEM:
    715        escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
    716        break;
    717    case ARMV7M_EXCP_USAGE:
    718        escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
    719        break;
    720    case ARMV7M_EXCP_BUS:
    721        escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
    722        break;
    723    case ARMV7M_EXCP_SECURE:
    724        escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
    725        break;
    726    default:
    727        g_assert_not_reached();
    728    }
    729
    730    if (escalate) {
    731        /*
    732         * Escalate to HardFault: faults that initially targeted Secure
    733         * continue to do so, even if HF normally targets NonSecure.
    734         */
    735        irq = ARMV7M_EXCP_HARD;
    736        if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
    737            (targets_secure ||
    738             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
    739            vec = &s->sec_vectors[irq];
    740        } else {
    741            vec = &s->vectors[irq];
    742        }
    743    }
    744
    745    if (!vec->enabled ||
    746        nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
    747        if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
    748            /*
    749             * We want to escalate to HardFault but the context the
    750             * FP state belongs to prevents the exception pre-empting.
    751             */
    752            cpu_abort(&s->cpu->parent_obj,
    753                      "Lockup: can't escalate to HardFault during "
    754                      "lazy FP register stacking\n");
    755        }
    756    }
    757
    758    if (escalate) {
    759        s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
    760    }
    761    if (!vec->pending) {
    762        vec->pending = 1;
    763        /*
    764         * We do not call nvic_irq_update(), because we know our caller
    765         * is going to handle causing us to take the exception by
    766         * raising EXCP_LAZYFP, so raising the IRQ line would be
    767         * pointless extra work. We just need to recompute the
    768         * priorities so that armv7m_nvic_can_take_pending_exception()
    769         * returns the right answer.
    770         */
    771        nvic_recompute_state(s);
    772    }
    773}
    774
    775/* Make pending IRQ active.  */
    776void armv7m_nvic_acknowledge_irq(void *opaque)
    777{
    778    NVICState *s = (NVICState *)opaque;
    779    CPUARMState *env = &s->cpu->env;
    780    const int pending = s->vectpending;
    781    const int running = nvic_exec_prio(s);
    782    VecInfo *vec;
    783
    784    assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
    785
    786    if (s->vectpending_is_s_banked) {
    787        vec = &s->sec_vectors[pending];
    788    } else {
    789        vec = &s->vectors[pending];
    790    }
    791
    792    assert(vec->enabled);
    793    assert(vec->pending);
    794
    795    assert(s->vectpending_prio < running);
    796
    797    trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
    798
    799    vec->active = 1;
    800    vec->pending = 0;
    801
    802    write_v7m_exception(env, s->vectpending);
    803
    804    nvic_irq_update(s);
    805}
    806
    807static bool vectpending_targets_secure(NVICState *s)
    808{
    809    /* Return true if s->vectpending targets Secure state */
    810    if (s->vectpending_is_s_banked) {
    811        return true;
    812    }
    813    return !exc_is_banked(s->vectpending) &&
    814        exc_targets_secure(s, s->vectpending);
    815}
    816
    817void armv7m_nvic_get_pending_irq_info(void *opaque,
    818                                      int *pirq, bool *ptargets_secure)
    819{
    820    NVICState *s = (NVICState *)opaque;
    821    const int pending = s->vectpending;
    822    bool targets_secure;
    823
    824    assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
    825
    826    targets_secure = vectpending_targets_secure(s);
    827
    828    trace_nvic_get_pending_irq_info(pending, targets_secure);
    829
    830    *ptargets_secure = targets_secure;
    831    *pirq = pending;
    832}
    833
    834int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
    835{
    836    NVICState *s = (NVICState *)opaque;
    837    VecInfo *vec = NULL;
    838    int ret = 0;
    839
    840    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
    841
    842    trace_nvic_complete_irq(irq, secure);
    843
    844    if (secure && exc_is_banked(irq)) {
    845        vec = &s->sec_vectors[irq];
    846    } else {
    847        vec = &s->vectors[irq];
    848    }
    849
    850    /*
    851     * Identify illegal exception return cases. We can't immediately
    852     * return at this point because we still need to deactivate
    853     * (either this exception or NMI/HardFault) first.
    854     */
    855    if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
    856        /*
    857         * Return from a configurable exception targeting the opposite
    858         * security state from the one we're trying to complete it for.
    859         * Clear vec because it's not really the VecInfo for this
    860         * (irq, secstate) so we mustn't deactivate it.
    861         */
    862        ret = -1;
    863        vec = NULL;
    864    } else if (!vec->active) {
    865        /* Return from an inactive interrupt */
    866        ret = -1;
    867    } else {
    868        /* Legal return, we will return the RETTOBASE bit value to the caller */
    869        ret = nvic_rettobase(s);
    870    }
    871
    872    /*
    873     * For negative priorities, v8M will forcibly deactivate the appropriate
    874     * NMI or HardFault regardless of what interrupt we're being asked to
    875     * deactivate (compare the DeActivate() pseudocode). This is a guard
    876     * against software returning from NMI or HardFault with a corrupted
    877     * IPSR and leaving the CPU in a negative-priority state.
    878     * v7M does not do this, but simply deactivates the requested interrupt.
    879     */
    880    if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
    881        switch (armv7m_nvic_raw_execution_priority(s)) {
    882        case -1:
    883            if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
    884                vec = &s->vectors[ARMV7M_EXCP_HARD];
    885            } else {
    886                vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
    887            }
    888            break;
    889        case -2:
    890            vec = &s->vectors[ARMV7M_EXCP_NMI];
    891            break;
    892        case -3:
    893            vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
    894            break;
    895        default:
    896            break;
    897        }
    898    }
    899
    900    if (!vec) {
    901        return ret;
    902    }
    903
    904    vec->active = 0;
    905    if (vec->level) {
    906        /* Re-pend the exception if it's still held high; only
    907         * happens for extenal IRQs
    908         */
    909        assert(irq >= NVIC_FIRST_IRQ);
    910        vec->pending = 1;
    911    }
    912
    913    nvic_irq_update(s);
    914
    915    return ret;
    916}
    917
    918bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
    919{
    920    /*
    921     * Return whether an exception is "ready", i.e. it is enabled and is
    922     * configured at a priority which would allow it to interrupt the
    923     * current execution priority.
    924     *
    925     * irq and secure have the same semantics as for armv7m_nvic_set_pending():
    926     * for non-banked exceptions secure is always false; for banked exceptions
    927     * it indicates which of the exceptions is required.
    928     */
    929    NVICState *s = (NVICState *)opaque;
    930    bool banked = exc_is_banked(irq);
    931    VecInfo *vec;
    932    int running = nvic_exec_prio(s);
    933
    934    assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
    935    assert(!secure || banked);
    936
    937    /*
    938     * HardFault is an odd special case: we always check against -1,
    939     * even if we're secure and HardFault has priority -3; we never
    940     * need to check for enabled state.
    941     */
    942    if (irq == ARMV7M_EXCP_HARD) {
    943        return running > -1;
    944    }
    945
    946    vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
    947
    948    return vec->enabled &&
    949        exc_group_prio(s, vec->prio, secure) < running;
    950}
    951
    952/* callback when external interrupt line is changed */
    953static void set_irq_level(void *opaque, int n, int level)
    954{
    955    NVICState *s = opaque;
    956    VecInfo *vec;
    957
    958    n += NVIC_FIRST_IRQ;
    959
    960    assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
    961
    962    trace_nvic_set_irq_level(n, level);
    963
    964    /* The pending status of an external interrupt is
    965     * latched on rising edge and exception handler return.
    966     *
    967     * Pulsing the IRQ will always run the handler
    968     * once, and the handler will re-run until the
    969     * level is low when the handler completes.
    970     */
    971    vec = &s->vectors[n];
    972    if (level != vec->level) {
    973        vec->level = level;
    974        if (level) {
    975            armv7m_nvic_set_pending(s, n, false);
    976        }
    977    }
    978}
    979
    980/* callback when external NMI line is changed */
    981static void nvic_nmi_trigger(void *opaque, int n, int level)
    982{
    983    NVICState *s = opaque;
    984
    985    trace_nvic_set_nmi_level(level);
    986
    987    /*
    988     * The architecture doesn't specify whether NMI should share
    989     * the normal-interrupt behaviour of being resampled on
    990     * exception handler return. We choose not to, so just
    991     * set NMI pending here and don't track the current level.
    992     */
    993    if (level) {
    994        armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
    995    }
    996}
    997
    998static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
    999{
   1000    ARMCPU *cpu = s->cpu;
   1001    uint32_t val;
   1002
   1003    switch (offset) {
   1004    case 4: /* Interrupt Control Type.  */
   1005        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1006            goto bad_offset;
   1007        }
   1008        return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
   1009    case 0xc: /* CPPWR */
   1010        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1011            goto bad_offset;
   1012        }
   1013        /* We make the IMPDEF choice that nothing can ever go into a
   1014         * non-retentive power state, which allows us to RAZ/WI this.
   1015         */
   1016        return 0;
   1017    case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
   1018    {
   1019        int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
   1020        int i;
   1021
   1022        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1023            goto bad_offset;
   1024        }
   1025        if (!attrs.secure) {
   1026            return 0;
   1027        }
   1028        val = 0;
   1029        for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
   1030            if (s->itns[startvec + i]) {
   1031                val |= (1 << i);
   1032            }
   1033        }
   1034        return val;
   1035    }
   1036    case 0xcfc:
   1037        if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
   1038            goto bad_offset;
   1039        }
   1040        return cpu->revidr;
   1041    case 0xd00: /* CPUID Base.  */
   1042        return cpu->midr;
   1043    case 0xd04: /* Interrupt Control State (ICSR) */
   1044        /* VECTACTIVE */
   1045        val = cpu->env.v7m.exception;
   1046        /* VECTPENDING */
   1047        if (s->vectpending) {
   1048            /*
   1049             * From v8.1M VECTPENDING must read as 1 if accessed as
   1050             * NonSecure and the highest priority pending and enabled
   1051             * exception targets Secure.
   1052             */
   1053            int vp = s->vectpending;
   1054            if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) &&
   1055                vectpending_targets_secure(s)) {
   1056                vp = 1;
   1057            }
   1058            val |= (vp & 0x1ff) << 12;
   1059        }
   1060        /* ISRPENDING - set if any external IRQ is pending */
   1061        if (nvic_isrpending(s)) {
   1062            val |= (1 << 22);
   1063        }
   1064        /* RETTOBASE - set if only one handler is active */
   1065        if (nvic_rettobase(s)) {
   1066            val |= (1 << 11);
   1067        }
   1068        if (attrs.secure) {
   1069            /* PENDSTSET */
   1070            if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
   1071                val |= (1 << 26);
   1072            }
   1073            /* PENDSVSET */
   1074            if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
   1075                val |= (1 << 28);
   1076            }
   1077        } else {
   1078            /* PENDSTSET */
   1079            if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
   1080                val |= (1 << 26);
   1081            }
   1082            /* PENDSVSET */
   1083            if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
   1084                val |= (1 << 28);
   1085            }
   1086        }
   1087        /* NMIPENDSET */
   1088        if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
   1089            && s->vectors[ARMV7M_EXCP_NMI].pending) {
   1090            val |= (1 << 31);
   1091        }
   1092        /* ISRPREEMPT: RES0 when halting debug not implemented */
   1093        /* STTNS: RES0 for the Main Extension */
   1094        return val;
   1095    case 0xd08: /* Vector Table Offset.  */
   1096        return cpu->env.v7m.vecbase[attrs.secure];
   1097    case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
   1098        val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
   1099        if (attrs.secure) {
   1100            /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
   1101            val |= cpu->env.v7m.aircr;
   1102        } else {
   1103            if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1104                /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
   1105                 * security isn't supported then BFHFNMINS is RAO (and
   1106                 * the bit in env.v7m.aircr is always set).
   1107                 */
   1108                val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
   1109            }
   1110        }
   1111        return val;
   1112    case 0xd10: /* System Control.  */
   1113        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1114            goto bad_offset;
   1115        }
   1116        return cpu->env.v7m.scr[attrs.secure];
   1117    case 0xd14: /* Configuration Control.  */
   1118        /*
   1119         * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
   1120         * and TRD (stored in the S copy of the register)
   1121         */
   1122        val = cpu->env.v7m.ccr[attrs.secure];
   1123        val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
   1124        /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */
   1125        if (!attrs.secure) {
   1126            if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   1127                val &= ~R_V7M_CCR_BFHFNMIGN_MASK;
   1128            }
   1129        }
   1130        return val;
   1131    case 0xd24: /* System Handler Control and State (SHCSR) */
   1132        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1133            goto bad_offset;
   1134        }
   1135        val = 0;
   1136        if (attrs.secure) {
   1137            if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
   1138                val |= (1 << 0);
   1139            }
   1140            if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
   1141                val |= (1 << 2);
   1142            }
   1143            if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
   1144                val |= (1 << 3);
   1145            }
   1146            if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
   1147                val |= (1 << 7);
   1148            }
   1149            if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
   1150                val |= (1 << 10);
   1151            }
   1152            if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
   1153                val |= (1 << 11);
   1154            }
   1155            if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
   1156                val |= (1 << 12);
   1157            }
   1158            if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
   1159                val |= (1 << 13);
   1160            }
   1161            if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
   1162                val |= (1 << 15);
   1163            }
   1164            if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
   1165                val |= (1 << 16);
   1166            }
   1167            if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
   1168                val |= (1 << 18);
   1169            }
   1170            if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
   1171                val |= (1 << 21);
   1172            }
   1173            /* SecureFault is not banked but is always RAZ/WI to NS */
   1174            if (s->vectors[ARMV7M_EXCP_SECURE].active) {
   1175                val |= (1 << 4);
   1176            }
   1177            if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
   1178                val |= (1 << 19);
   1179            }
   1180            if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
   1181                val |= (1 << 20);
   1182            }
   1183        } else {
   1184            if (s->vectors[ARMV7M_EXCP_MEM].active) {
   1185                val |= (1 << 0);
   1186            }
   1187            if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1188                /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
   1189                if (s->vectors[ARMV7M_EXCP_HARD].active) {
   1190                    val |= (1 << 2);
   1191                }
   1192                if (s->vectors[ARMV7M_EXCP_HARD].pending) {
   1193                    val |= (1 << 21);
   1194                }
   1195            }
   1196            if (s->vectors[ARMV7M_EXCP_USAGE].active) {
   1197                val |= (1 << 3);
   1198            }
   1199            if (s->vectors[ARMV7M_EXCP_SVC].active) {
   1200                val |= (1 << 7);
   1201            }
   1202            if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
   1203                val |= (1 << 10);
   1204            }
   1205            if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
   1206                val |= (1 << 11);
   1207            }
   1208            if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
   1209                val |= (1 << 12);
   1210            }
   1211            if (s->vectors[ARMV7M_EXCP_MEM].pending) {
   1212                val |= (1 << 13);
   1213            }
   1214            if (s->vectors[ARMV7M_EXCP_SVC].pending) {
   1215                val |= (1 << 15);
   1216            }
   1217            if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
   1218                val |= (1 << 16);
   1219            }
   1220            if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
   1221                val |= (1 << 18);
   1222            }
   1223        }
   1224        if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   1225            if (s->vectors[ARMV7M_EXCP_BUS].active) {
   1226                val |= (1 << 1);
   1227            }
   1228            if (s->vectors[ARMV7M_EXCP_BUS].pending) {
   1229                val |= (1 << 14);
   1230            }
   1231            if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
   1232                val |= (1 << 17);
   1233            }
   1234            if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
   1235                s->vectors[ARMV7M_EXCP_NMI].active) {
   1236                /* NMIACT is not present in v7M */
   1237                val |= (1 << 5);
   1238            }
   1239        }
   1240
   1241        /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
   1242        if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
   1243            val |= (1 << 8);
   1244        }
   1245        return val;
   1246    case 0xd2c: /* Hard Fault Status.  */
   1247        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1248            goto bad_offset;
   1249        }
   1250        return cpu->env.v7m.hfsr;
   1251    case 0xd30: /* Debug Fault Status.  */
   1252        return cpu->env.v7m.dfsr;
   1253    case 0xd34: /* MMFAR MemManage Fault Address */
   1254        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1255            goto bad_offset;
   1256        }
   1257        return cpu->env.v7m.mmfar[attrs.secure];
   1258    case 0xd38: /* Bus Fault Address.  */
   1259        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1260            goto bad_offset;
   1261        }
   1262        if (!attrs.secure &&
   1263            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   1264            return 0;
   1265        }
   1266        return cpu->env.v7m.bfar;
   1267    case 0xd3c: /* Aux Fault Status.  */
   1268        /* TODO: Implement fault status registers.  */
   1269        qemu_log_mask(LOG_UNIMP,
   1270                      "Aux Fault status registers unimplemented\n");
   1271        return 0;
   1272    case 0xd40: /* PFR0.  */
   1273        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1274            goto bad_offset;
   1275        }
   1276        return cpu->isar.id_pfr0;
   1277    case 0xd44: /* PFR1.  */
   1278        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1279            goto bad_offset;
   1280        }
   1281        return cpu->isar.id_pfr1;
   1282    case 0xd48: /* DFR0.  */
   1283        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1284            goto bad_offset;
   1285        }
   1286        return cpu->isar.id_dfr0;
   1287    case 0xd4c: /* AFR0.  */
   1288        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1289            goto bad_offset;
   1290        }
   1291        return cpu->id_afr0;
   1292    case 0xd50: /* MMFR0.  */
   1293        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1294            goto bad_offset;
   1295        }
   1296        return cpu->isar.id_mmfr0;
   1297    case 0xd54: /* MMFR1.  */
   1298        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1299            goto bad_offset;
   1300        }
   1301        return cpu->isar.id_mmfr1;
   1302    case 0xd58: /* MMFR2.  */
   1303        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1304            goto bad_offset;
   1305        }
   1306        return cpu->isar.id_mmfr2;
   1307    case 0xd5c: /* MMFR3.  */
   1308        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1309            goto bad_offset;
   1310        }
   1311        return cpu->isar.id_mmfr3;
   1312    case 0xd60: /* ISAR0.  */
   1313        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1314            goto bad_offset;
   1315        }
   1316        return cpu->isar.id_isar0;
   1317    case 0xd64: /* ISAR1.  */
   1318        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1319            goto bad_offset;
   1320        }
   1321        return cpu->isar.id_isar1;
   1322    case 0xd68: /* ISAR2.  */
   1323        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1324            goto bad_offset;
   1325        }
   1326        return cpu->isar.id_isar2;
   1327    case 0xd6c: /* ISAR3.  */
   1328        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1329            goto bad_offset;
   1330        }
   1331        return cpu->isar.id_isar3;
   1332    case 0xd70: /* ISAR4.  */
   1333        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1334            goto bad_offset;
   1335        }
   1336        return cpu->isar.id_isar4;
   1337    case 0xd74: /* ISAR5.  */
   1338        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1339            goto bad_offset;
   1340        }
   1341        return cpu->isar.id_isar5;
   1342    case 0xd78: /* CLIDR */
   1343        return cpu->clidr;
   1344    case 0xd7c: /* CTR */
   1345        return cpu->ctr;
   1346    case 0xd80: /* CSSIDR */
   1347    {
   1348        int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
   1349        return cpu->ccsidr[idx];
   1350    }
   1351    case 0xd84: /* CSSELR */
   1352        return cpu->env.v7m.csselr[attrs.secure];
   1353    case 0xd88: /* CPACR */
   1354        if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1355            return 0;
   1356        }
   1357        return cpu->env.v7m.cpacr[attrs.secure];
   1358    case 0xd8c: /* NSACR */
   1359        if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1360            return 0;
   1361        }
   1362        return cpu->env.v7m.nsacr;
   1363    /* TODO: Implement debug registers.  */
   1364    case 0xd90: /* MPU_TYPE */
   1365        /* Unified MPU; if the MPU is not present this value is zero */
   1366        return cpu->pmsav7_dregion << 8;
   1367    case 0xd94: /* MPU_CTRL */
   1368        return cpu->env.v7m.mpu_ctrl[attrs.secure];
   1369    case 0xd98: /* MPU_RNR */
   1370        return cpu->env.pmsav7.rnr[attrs.secure];
   1371    case 0xd9c: /* MPU_RBAR */
   1372    case 0xda4: /* MPU_RBAR_A1 */
   1373    case 0xdac: /* MPU_RBAR_A2 */
   1374    case 0xdb4: /* MPU_RBAR_A3 */
   1375    {
   1376        int region = cpu->env.pmsav7.rnr[attrs.secure];
   1377
   1378        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1379            /* PMSAv8M handling of the aliases is different from v7M:
   1380             * aliases A1, A2, A3 override the low two bits of the region
   1381             * number in MPU_RNR, and there is no 'region' field in the
   1382             * RBAR register.
   1383             */
   1384            int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
   1385            if (aliasno) {
   1386                region = deposit32(region, 0, 2, aliasno);
   1387            }
   1388            if (region >= cpu->pmsav7_dregion) {
   1389                return 0;
   1390            }
   1391            return cpu->env.pmsav8.rbar[attrs.secure][region];
   1392        }
   1393
   1394        if (region >= cpu->pmsav7_dregion) {
   1395            return 0;
   1396        }
   1397        return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
   1398    }
   1399    case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
   1400    case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
   1401    case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
   1402    case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
   1403    {
   1404        int region = cpu->env.pmsav7.rnr[attrs.secure];
   1405
   1406        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1407            /* PMSAv8M handling of the aliases is different from v7M:
   1408             * aliases A1, A2, A3 override the low two bits of the region
   1409             * number in MPU_RNR.
   1410             */
   1411            int aliasno = (offset - 0xda0) / 8; /* 0..3 */
   1412            if (aliasno) {
   1413                region = deposit32(region, 0, 2, aliasno);
   1414            }
   1415            if (region >= cpu->pmsav7_dregion) {
   1416                return 0;
   1417            }
   1418            return cpu->env.pmsav8.rlar[attrs.secure][region];
   1419        }
   1420
   1421        if (region >= cpu->pmsav7_dregion) {
   1422            return 0;
   1423        }
   1424        return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
   1425            (cpu->env.pmsav7.drsr[region] & 0xffff);
   1426    }
   1427    case 0xdc0: /* MPU_MAIR0 */
   1428        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1429            goto bad_offset;
   1430        }
   1431        return cpu->env.pmsav8.mair0[attrs.secure];
   1432    case 0xdc4: /* MPU_MAIR1 */
   1433        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1434            goto bad_offset;
   1435        }
   1436        return cpu->env.pmsav8.mair1[attrs.secure];
   1437    case 0xdd0: /* SAU_CTRL */
   1438        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1439            goto bad_offset;
   1440        }
   1441        if (!attrs.secure) {
   1442            return 0;
   1443        }
   1444        return cpu->env.sau.ctrl;
   1445    case 0xdd4: /* SAU_TYPE */
   1446        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1447            goto bad_offset;
   1448        }
   1449        if (!attrs.secure) {
   1450            return 0;
   1451        }
   1452        return cpu->sau_sregion;
   1453    case 0xdd8: /* SAU_RNR */
   1454        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1455            goto bad_offset;
   1456        }
   1457        if (!attrs.secure) {
   1458            return 0;
   1459        }
   1460        return cpu->env.sau.rnr;
   1461    case 0xddc: /* SAU_RBAR */
   1462    {
   1463        int region = cpu->env.sau.rnr;
   1464
   1465        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1466            goto bad_offset;
   1467        }
   1468        if (!attrs.secure) {
   1469            return 0;
   1470        }
   1471        if (region >= cpu->sau_sregion) {
   1472            return 0;
   1473        }
   1474        return cpu->env.sau.rbar[region];
   1475    }
   1476    case 0xde0: /* SAU_RLAR */
   1477    {
   1478        int region = cpu->env.sau.rnr;
   1479
   1480        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1481            goto bad_offset;
   1482        }
   1483        if (!attrs.secure) {
   1484            return 0;
   1485        }
   1486        if (region >= cpu->sau_sregion) {
   1487            return 0;
   1488        }
   1489        return cpu->env.sau.rlar[region];
   1490    }
   1491    case 0xde4: /* SFSR */
   1492        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1493            goto bad_offset;
   1494        }
   1495        if (!attrs.secure) {
   1496            return 0;
   1497        }
   1498        return cpu->env.v7m.sfsr;
   1499    case 0xde8: /* SFAR */
   1500        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1501            goto bad_offset;
   1502        }
   1503        if (!attrs.secure) {
   1504            return 0;
   1505        }
   1506        return cpu->env.v7m.sfar;
   1507    case 0xf04: /* RFSR */
   1508        if (!cpu_isar_feature(aa32_ras, cpu)) {
   1509            goto bad_offset;
   1510        }
   1511        /* We provide minimal-RAS only: RFSR is RAZ/WI */
   1512        return 0;
   1513    case 0xf34: /* FPCCR */
   1514        if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1515            return 0;
   1516        }
   1517        if (attrs.secure) {
   1518            return cpu->env.v7m.fpccr[M_REG_S];
   1519        } else {
   1520            /*
   1521             * NS can read LSPEN, CLRONRET and MONRDY. It can read
   1522             * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
   1523             * other non-banked bits RAZ.
   1524             * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
   1525             */
   1526            uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
   1527            uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
   1528                R_V7M_FPCCR_CLRONRET_MASK |
   1529                R_V7M_FPCCR_MONRDY_MASK;
   1530
   1531            if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
   1532                mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
   1533            }
   1534
   1535            value &= mask;
   1536
   1537            value |= cpu->env.v7m.fpccr[M_REG_NS];
   1538            return value;
   1539        }
   1540    case 0xf38: /* FPCAR */
   1541        if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1542            return 0;
   1543        }
   1544        return cpu->env.v7m.fpcar[attrs.secure];
   1545    case 0xf3c: /* FPDSCR */
   1546        if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1547            return 0;
   1548        }
   1549        return cpu->env.v7m.fpdscr[attrs.secure];
   1550    case 0xf40: /* MVFR0 */
   1551        return cpu->isar.mvfr0;
   1552    case 0xf44: /* MVFR1 */
   1553        return cpu->isar.mvfr1;
   1554    case 0xf48: /* MVFR2 */
   1555        return cpu->isar.mvfr2;
   1556    default:
   1557    bad_offset:
   1558        qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
   1559        return 0;
   1560    }
   1561}
   1562
   1563static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
   1564                        MemTxAttrs attrs)
   1565{
   1566    ARMCPU *cpu = s->cpu;
   1567
   1568    switch (offset) {
   1569    case 0xc: /* CPPWR */
   1570        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1571            goto bad_offset;
   1572        }
   1573        /* Make the IMPDEF choice to RAZ/WI this. */
   1574        break;
   1575    case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
   1576    {
   1577        int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
   1578        int i;
   1579
   1580        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1581            goto bad_offset;
   1582        }
   1583        if (!attrs.secure) {
   1584            break;
   1585        }
   1586        for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
   1587            s->itns[startvec + i] = (value >> i) & 1;
   1588        }
   1589        nvic_irq_update(s);
   1590        break;
   1591    }
   1592    case 0xd04: /* Interrupt Control State (ICSR) */
   1593        if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
   1594            if (value & (1 << 31)) {
   1595                armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
   1596            } else if (value & (1 << 30) &&
   1597                       arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1598                /* PENDNMICLR didn't exist in v7M */
   1599                armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
   1600            }
   1601        }
   1602        if (value & (1 << 28)) {
   1603            armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
   1604        } else if (value & (1 << 27)) {
   1605            armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
   1606        }
   1607        if (value & (1 << 26)) {
   1608            armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
   1609        } else if (value & (1 << 25)) {
   1610            armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
   1611        }
   1612        break;
   1613    case 0xd08: /* Vector Table Offset.  */
   1614        cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
   1615        break;
   1616    case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
   1617        if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
   1618            if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
   1619                if (attrs.secure ||
   1620                    !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
   1621                    signal_sysresetreq(s);
   1622                }
   1623            }
   1624            if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
   1625                qemu_log_mask(LOG_GUEST_ERROR,
   1626                              "Setting VECTCLRACTIVE when not in DEBUG mode "
   1627                              "is UNPREDICTABLE\n");
   1628            }
   1629            if (value & R_V7M_AIRCR_VECTRESET_MASK) {
   1630                /* NB: this bit is RES0 in v8M */
   1631                qemu_log_mask(LOG_GUEST_ERROR,
   1632                              "Setting VECTRESET when not in DEBUG mode "
   1633                              "is UNPREDICTABLE\n");
   1634            }
   1635            if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1636                s->prigroup[attrs.secure] =
   1637                    extract32(value,
   1638                              R_V7M_AIRCR_PRIGROUP_SHIFT,
   1639                              R_V7M_AIRCR_PRIGROUP_LENGTH);
   1640            }
   1641            /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
   1642            if (attrs.secure) {
   1643                /* These bits are only writable by secure */
   1644                cpu->env.v7m.aircr = value &
   1645                    (R_V7M_AIRCR_SYSRESETREQS_MASK |
   1646                     R_V7M_AIRCR_BFHFNMINS_MASK |
   1647                     R_V7M_AIRCR_PRIS_MASK);
   1648                /* BFHFNMINS changes the priority of Secure HardFault, and
   1649                 * allows a pending Non-secure HardFault to preempt (which
   1650                 * we implement by marking it enabled).
   1651                 */
   1652                if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
   1653                    s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
   1654                    s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
   1655                } else {
   1656                    s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
   1657                    s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
   1658                }
   1659            }
   1660            nvic_irq_update(s);
   1661        }
   1662        break;
   1663    case 0xd10: /* System Control.  */
   1664        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1665            goto bad_offset;
   1666        }
   1667        /* We don't implement deep-sleep so these bits are RAZ/WI.
   1668         * The other bits in the register are banked.
   1669         * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
   1670         * is architecturally permitted.
   1671         */
   1672        value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
   1673        cpu->env.v7m.scr[attrs.secure] = value;
   1674        break;
   1675    case 0xd14: /* Configuration Control.  */
   1676    {
   1677        uint32_t mask;
   1678
   1679        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1680            goto bad_offset;
   1681        }
   1682
   1683        /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
   1684        mask = R_V7M_CCR_STKALIGN_MASK |
   1685            R_V7M_CCR_BFHFNMIGN_MASK |
   1686            R_V7M_CCR_DIV_0_TRP_MASK |
   1687            R_V7M_CCR_UNALIGN_TRP_MASK |
   1688            R_V7M_CCR_USERSETMPEND_MASK |
   1689            R_V7M_CCR_NONBASETHRDENA_MASK;
   1690        if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
   1691            /* TRD is always RAZ/WI from NS */
   1692            mask |= R_V7M_CCR_TRD_MASK;
   1693        }
   1694        value &= mask;
   1695
   1696        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1697            /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
   1698            value |= R_V7M_CCR_NONBASETHRDENA_MASK
   1699                | R_V7M_CCR_STKALIGN_MASK;
   1700        }
   1701        if (attrs.secure) {
   1702            /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
   1703            cpu->env.v7m.ccr[M_REG_NS] =
   1704                (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
   1705                | (value & R_V7M_CCR_BFHFNMIGN_MASK);
   1706            value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
   1707        } else {
   1708            /*
   1709             * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so
   1710             * preserve the state currently in the NS element of the array
   1711             */
   1712            if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   1713                value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
   1714                value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
   1715            }
   1716        }
   1717
   1718        cpu->env.v7m.ccr[attrs.secure] = value;
   1719        break;
   1720    }
   1721    case 0xd24: /* System Handler Control and State (SHCSR) */
   1722        if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1723            goto bad_offset;
   1724        }
   1725        if (attrs.secure) {
   1726            s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
   1727            /* Secure HardFault active bit cannot be written */
   1728            s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
   1729            s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
   1730            s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
   1731                (value & (1 << 10)) != 0;
   1732            s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
   1733                (value & (1 << 11)) != 0;
   1734            s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
   1735                (value & (1 << 12)) != 0;
   1736            s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
   1737            s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
   1738            s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
   1739            s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
   1740            s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
   1741                (value & (1 << 18)) != 0;
   1742            s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
   1743            /* SecureFault not banked, but RAZ/WI to NS */
   1744            s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
   1745            s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
   1746            s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
   1747        } else {
   1748            s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
   1749            if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1750                /* HARDFAULTPENDED is not present in v7M */
   1751                s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
   1752            }
   1753            s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
   1754            s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
   1755            s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
   1756            s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
   1757            s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
   1758            s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
   1759            s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
   1760            s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
   1761            s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
   1762        }
   1763        if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   1764            s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
   1765            s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
   1766            s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
   1767        }
   1768        /* NMIACT can only be written if the write is of a zero, with
   1769         * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
   1770         */
   1771        if (!attrs.secure && cpu->env.v7m.secure &&
   1772            (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
   1773            (value & (1 << 5)) == 0) {
   1774            s->vectors[ARMV7M_EXCP_NMI].active = 0;
   1775        }
   1776        /* HARDFAULTACT can only be written if the write is of a zero
   1777         * to the non-secure HardFault state by the CPU in secure state.
   1778         * The only case where we can be targeting the non-secure HF state
   1779         * when in secure state is if this is a write via the NS alias
   1780         * and BFHFNMINS is 1.
   1781         */
   1782        if (!attrs.secure && cpu->env.v7m.secure &&
   1783            (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
   1784            (value & (1 << 2)) == 0) {
   1785            s->vectors[ARMV7M_EXCP_HARD].active = 0;
   1786        }
   1787
   1788        /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
   1789        s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
   1790        nvic_irq_update(s);
   1791        break;
   1792    case 0xd2c: /* Hard Fault Status.  */
   1793        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1794            goto bad_offset;
   1795        }
   1796        cpu->env.v7m.hfsr &= ~value; /* W1C */
   1797        break;
   1798    case 0xd30: /* Debug Fault Status.  */
   1799        cpu->env.v7m.dfsr &= ~value; /* W1C */
   1800        break;
   1801    case 0xd34: /* Mem Manage Address.  */
   1802        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1803            goto bad_offset;
   1804        }
   1805        cpu->env.v7m.mmfar[attrs.secure] = value;
   1806        return;
   1807    case 0xd38: /* Bus Fault Address.  */
   1808        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   1809            goto bad_offset;
   1810        }
   1811        if (!attrs.secure &&
   1812            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   1813            return;
   1814        }
   1815        cpu->env.v7m.bfar = value;
   1816        return;
   1817    case 0xd3c: /* Aux Fault Status.  */
   1818        qemu_log_mask(LOG_UNIMP,
   1819                      "NVIC: Aux fault status registers unimplemented\n");
   1820        break;
   1821    case 0xd84: /* CSSELR */
   1822        if (!arm_v7m_csselr_razwi(cpu)) {
   1823            cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
   1824        }
   1825        break;
   1826    case 0xd88: /* CPACR */
   1827        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1828            /* We implement only the Floating Point extension's CP10/CP11 */
   1829            cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
   1830        }
   1831        break;
   1832    case 0xd8c: /* NSACR */
   1833        if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1834            /* We implement only the Floating Point extension's CP10/CP11 */
   1835            cpu->env.v7m.nsacr = value & (3 << 10);
   1836        }
   1837        break;
   1838    case 0xd90: /* MPU_TYPE */
   1839        return; /* RO */
   1840    case 0xd94: /* MPU_CTRL */
   1841        if ((value &
   1842             (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
   1843            == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
   1844            qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
   1845                          "UNPREDICTABLE\n");
   1846        }
   1847        cpu->env.v7m.mpu_ctrl[attrs.secure]
   1848            = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
   1849                       R_V7M_MPU_CTRL_HFNMIENA_MASK |
   1850                       R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
   1851        tlb_flush(CPU(cpu));
   1852        break;
   1853    case 0xd98: /* MPU_RNR */
   1854        if (value >= cpu->pmsav7_dregion) {
   1855            qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
   1856                          PRIu32 "/%" PRIu32 "\n",
   1857                          value, cpu->pmsav7_dregion);
   1858        } else {
   1859            cpu->env.pmsav7.rnr[attrs.secure] = value;
   1860        }
   1861        break;
   1862    case 0xd9c: /* MPU_RBAR */
   1863    case 0xda4: /* MPU_RBAR_A1 */
   1864    case 0xdac: /* MPU_RBAR_A2 */
   1865    case 0xdb4: /* MPU_RBAR_A3 */
   1866    {
   1867        int region;
   1868
   1869        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1870            /* PMSAv8M handling of the aliases is different from v7M:
   1871             * aliases A1, A2, A3 override the low two bits of the region
   1872             * number in MPU_RNR, and there is no 'region' field in the
   1873             * RBAR register.
   1874             */
   1875            int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
   1876
   1877            region = cpu->env.pmsav7.rnr[attrs.secure];
   1878            if (aliasno) {
   1879                region = deposit32(region, 0, 2, aliasno);
   1880            }
   1881            if (region >= cpu->pmsav7_dregion) {
   1882                return;
   1883            }
   1884            cpu->env.pmsav8.rbar[attrs.secure][region] = value;
   1885            tlb_flush(CPU(cpu));
   1886            return;
   1887        }
   1888
   1889        if (value & (1 << 4)) {
   1890            /* VALID bit means use the region number specified in this
   1891             * value and also update MPU_RNR.REGION with that value.
   1892             */
   1893            region = extract32(value, 0, 4);
   1894            if (region >= cpu->pmsav7_dregion) {
   1895                qemu_log_mask(LOG_GUEST_ERROR,
   1896                              "MPU region out of range %u/%" PRIu32 "\n",
   1897                              region, cpu->pmsav7_dregion);
   1898                return;
   1899            }
   1900            cpu->env.pmsav7.rnr[attrs.secure] = region;
   1901        } else {
   1902            region = cpu->env.pmsav7.rnr[attrs.secure];
   1903        }
   1904
   1905        if (region >= cpu->pmsav7_dregion) {
   1906            return;
   1907        }
   1908
   1909        cpu->env.pmsav7.drbar[region] = value & ~0x1f;
   1910        tlb_flush(CPU(cpu));
   1911        break;
   1912    }
   1913    case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
   1914    case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
   1915    case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
   1916    case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
   1917    {
   1918        int region = cpu->env.pmsav7.rnr[attrs.secure];
   1919
   1920        if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1921            /* PMSAv8M handling of the aliases is different from v7M:
   1922             * aliases A1, A2, A3 override the low two bits of the region
   1923             * number in MPU_RNR.
   1924             */
   1925            int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
   1926
   1927            region = cpu->env.pmsav7.rnr[attrs.secure];
   1928            if (aliasno) {
   1929                region = deposit32(region, 0, 2, aliasno);
   1930            }
   1931            if (region >= cpu->pmsav7_dregion) {
   1932                return;
   1933            }
   1934            cpu->env.pmsav8.rlar[attrs.secure][region] = value;
   1935            tlb_flush(CPU(cpu));
   1936            return;
   1937        }
   1938
   1939        if (region >= cpu->pmsav7_dregion) {
   1940            return;
   1941        }
   1942
   1943        cpu->env.pmsav7.drsr[region] = value & 0xff3f;
   1944        cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
   1945        tlb_flush(CPU(cpu));
   1946        break;
   1947    }
   1948    case 0xdc0: /* MPU_MAIR0 */
   1949        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1950            goto bad_offset;
   1951        }
   1952        if (cpu->pmsav7_dregion) {
   1953            /* Register is RES0 if no MPU regions are implemented */
   1954            cpu->env.pmsav8.mair0[attrs.secure] = value;
   1955        }
   1956        /* We don't need to do anything else because memory attributes
   1957         * only affect cacheability, and we don't implement caching.
   1958         */
   1959        break;
   1960    case 0xdc4: /* MPU_MAIR1 */
   1961        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1962            goto bad_offset;
   1963        }
   1964        if (cpu->pmsav7_dregion) {
   1965            /* Register is RES0 if no MPU regions are implemented */
   1966            cpu->env.pmsav8.mair1[attrs.secure] = value;
   1967        }
   1968        /* We don't need to do anything else because memory attributes
   1969         * only affect cacheability, and we don't implement caching.
   1970         */
   1971        break;
   1972    case 0xdd0: /* SAU_CTRL */
   1973        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1974            goto bad_offset;
   1975        }
   1976        if (!attrs.secure) {
   1977            return;
   1978        }
   1979        cpu->env.sau.ctrl = value & 3;
   1980        break;
   1981    case 0xdd4: /* SAU_TYPE */
   1982        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1983            goto bad_offset;
   1984        }
   1985        break;
   1986    case 0xdd8: /* SAU_RNR */
   1987        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   1988            goto bad_offset;
   1989        }
   1990        if (!attrs.secure) {
   1991            return;
   1992        }
   1993        if (value >= cpu->sau_sregion) {
   1994            qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
   1995                          PRIu32 "/%" PRIu32 "\n",
   1996                          value, cpu->sau_sregion);
   1997        } else {
   1998            cpu->env.sau.rnr = value;
   1999        }
   2000        break;
   2001    case 0xddc: /* SAU_RBAR */
   2002    {
   2003        int region = cpu->env.sau.rnr;
   2004
   2005        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   2006            goto bad_offset;
   2007        }
   2008        if (!attrs.secure) {
   2009            return;
   2010        }
   2011        if (region >= cpu->sau_sregion) {
   2012            return;
   2013        }
   2014        cpu->env.sau.rbar[region] = value & ~0x1f;
   2015        tlb_flush(CPU(cpu));
   2016        break;
   2017    }
   2018    case 0xde0: /* SAU_RLAR */
   2019    {
   2020        int region = cpu->env.sau.rnr;
   2021
   2022        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   2023            goto bad_offset;
   2024        }
   2025        if (!attrs.secure) {
   2026            return;
   2027        }
   2028        if (region >= cpu->sau_sregion) {
   2029            return;
   2030        }
   2031        cpu->env.sau.rlar[region] = value & ~0x1c;
   2032        tlb_flush(CPU(cpu));
   2033        break;
   2034    }
   2035    case 0xde4: /* SFSR */
   2036        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   2037            goto bad_offset;
   2038        }
   2039        if (!attrs.secure) {
   2040            return;
   2041        }
   2042        cpu->env.v7m.sfsr &= ~value; /* W1C */
   2043        break;
   2044    case 0xde8: /* SFAR */
   2045        if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   2046            goto bad_offset;
   2047        }
   2048        if (!attrs.secure) {
   2049            return;
   2050        }
   2051        cpu->env.v7m.sfsr = value;
   2052        break;
   2053    case 0xf00: /* Software Triggered Interrupt Register */
   2054    {
   2055        int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
   2056
   2057        if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
   2058            goto bad_offset;
   2059        }
   2060
   2061        if (excnum < s->num_irq) {
   2062            armv7m_nvic_set_pending(s, excnum, false);
   2063        }
   2064        break;
   2065    }
   2066    case 0xf04: /* RFSR */
   2067        if (!cpu_isar_feature(aa32_ras, cpu)) {
   2068            goto bad_offset;
   2069        }
   2070        /* We provide minimal-RAS only: RFSR is RAZ/WI */
   2071        break;
   2072    case 0xf34: /* FPCCR */
   2073        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
   2074            /* Not all bits here are banked. */
   2075            uint32_t fpccr_s;
   2076
   2077            if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
   2078                /* Don't allow setting of bits not present in v7M */
   2079                value &= (R_V7M_FPCCR_LSPACT_MASK |
   2080                          R_V7M_FPCCR_USER_MASK |
   2081                          R_V7M_FPCCR_THREAD_MASK |
   2082                          R_V7M_FPCCR_HFRDY_MASK |
   2083                          R_V7M_FPCCR_MMRDY_MASK |
   2084                          R_V7M_FPCCR_BFRDY_MASK |
   2085                          R_V7M_FPCCR_MONRDY_MASK |
   2086                          R_V7M_FPCCR_LSPEN_MASK |
   2087                          R_V7M_FPCCR_ASPEN_MASK);
   2088            }
   2089            value &= ~R_V7M_FPCCR_RES0_MASK;
   2090
   2091            if (!attrs.secure) {
   2092                /* Some non-banked bits are configurably writable by NS */
   2093                fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
   2094                if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
   2095                    uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
   2096                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
   2097                }
   2098                if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
   2099                    uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
   2100                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
   2101                }
   2102                if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   2103                    uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
   2104                    uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
   2105                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
   2106                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
   2107                }
   2108                /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
   2109                {
   2110                    uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
   2111                    fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
   2112                }
   2113
   2114                /*
   2115                 * All other non-banked bits are RAZ/WI from NS; write
   2116                 * just the banked bits to fpccr[M_REG_NS].
   2117                 */
   2118                value &= R_V7M_FPCCR_BANKED_MASK;
   2119                cpu->env.v7m.fpccr[M_REG_NS] = value;
   2120            } else {
   2121                fpccr_s = value;
   2122            }
   2123            cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
   2124        }
   2125        break;
   2126    case 0xf38: /* FPCAR */
   2127        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
   2128            value &= ~7;
   2129            cpu->env.v7m.fpcar[attrs.secure] = value;
   2130        }
   2131        break;
   2132    case 0xf3c: /* FPDSCR */
   2133        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
   2134            uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
   2135            if (cpu_isar_feature(any_fp16, cpu)) {
   2136                mask |= FPCR_FZ16;
   2137            }
   2138            value &= mask;
   2139            if (cpu_isar_feature(aa32_lob, cpu)) {
   2140                value |= 4 << FPCR_LTPSIZE_SHIFT;
   2141            }
   2142            cpu->env.v7m.fpdscr[attrs.secure] = value;
   2143        }
   2144        break;
   2145    case 0xf50: /* ICIALLU */
   2146    case 0xf58: /* ICIMVAU */
   2147    case 0xf5c: /* DCIMVAC */
   2148    case 0xf60: /* DCISW */
   2149    case 0xf64: /* DCCMVAU */
   2150    case 0xf68: /* DCCMVAC */
   2151    case 0xf6c: /* DCCSW */
   2152    case 0xf70: /* DCCIMVAC */
   2153    case 0xf74: /* DCCISW */
   2154    case 0xf78: /* BPIALL */
   2155        /* Cache and branch predictor maintenance: for QEMU these always NOP */
   2156        break;
   2157    default:
   2158    bad_offset:
   2159        qemu_log_mask(LOG_GUEST_ERROR,
   2160                      "NVIC: Bad write offset 0x%x\n", offset);
   2161    }
   2162}
   2163
   2164static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
   2165{
   2166    /* Return true if unprivileged access to this register is permitted. */
   2167    switch (offset) {
   2168    case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
   2169        /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
   2170         * controls access even though the CPU is in Secure state (I_QDKX).
   2171         */
   2172        return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
   2173    default:
   2174        /* All other user accesses cause a BusFault unconditionally */
   2175        return false;
   2176    }
   2177}
   2178
   2179static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
   2180{
   2181    /* Behaviour for the SHPR register field for this exception:
   2182     * return M_REG_NS to use the nonsecure vector (including for
   2183     * non-banked exceptions), M_REG_S for the secure version of
   2184     * a banked exception, and -1 if this field should RAZ/WI.
   2185     */
   2186    switch (exc) {
   2187    case ARMV7M_EXCP_MEM:
   2188    case ARMV7M_EXCP_USAGE:
   2189    case ARMV7M_EXCP_SVC:
   2190    case ARMV7M_EXCP_PENDSV:
   2191    case ARMV7M_EXCP_SYSTICK:
   2192        /* Banked exceptions */
   2193        return attrs.secure;
   2194    case ARMV7M_EXCP_BUS:
   2195        /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
   2196        if (!attrs.secure &&
   2197            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   2198            return -1;
   2199        }
   2200        return M_REG_NS;
   2201    case ARMV7M_EXCP_SECURE:
   2202        /* Not banked, RAZ/WI from nonsecure */
   2203        if (!attrs.secure) {
   2204            return -1;
   2205        }
   2206        return M_REG_NS;
   2207    case ARMV7M_EXCP_DEBUG:
   2208        /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
   2209        return M_REG_NS;
   2210    case 8 ... 10:
   2211    case 13:
   2212        /* RES0 */
   2213        return -1;
   2214    default:
   2215        /* Not reachable due to decode of SHPR register addresses */
   2216        g_assert_not_reached();
   2217    }
   2218}
   2219
   2220static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
   2221                                    uint64_t *data, unsigned size,
   2222                                    MemTxAttrs attrs)
   2223{
   2224    NVICState *s = (NVICState *)opaque;
   2225    uint32_t offset = addr;
   2226    unsigned i, startvec, end;
   2227    uint32_t val;
   2228
   2229    if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
   2230        /* Generate BusFault for unprivileged accesses */
   2231        return MEMTX_ERROR;
   2232    }
   2233
   2234    switch (offset) {
   2235    /* reads of set and clear both return the status */
   2236    case 0x100 ... 0x13f: /* NVIC Set enable */
   2237        offset += 0x80;
   2238        /* fall through */
   2239    case 0x180 ... 0x1bf: /* NVIC Clear enable */
   2240        val = 0;
   2241        startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
   2242
   2243        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
   2244            if (s->vectors[startvec + i].enabled &&
   2245                (attrs.secure || s->itns[startvec + i])) {
   2246                val |= (1 << i);
   2247            }
   2248        }
   2249        break;
   2250    case 0x200 ... 0x23f: /* NVIC Set pend */
   2251        offset += 0x80;
   2252        /* fall through */
   2253    case 0x280 ... 0x2bf: /* NVIC Clear pend */
   2254        val = 0;
   2255        startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
   2256        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
   2257            if (s->vectors[startvec + i].pending &&
   2258                (attrs.secure || s->itns[startvec + i])) {
   2259                val |= (1 << i);
   2260            }
   2261        }
   2262        break;
   2263    case 0x300 ... 0x33f: /* NVIC Active */
   2264        val = 0;
   2265
   2266        if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
   2267            break;
   2268        }
   2269
   2270        startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
   2271
   2272        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
   2273            if (s->vectors[startvec + i].active &&
   2274                (attrs.secure || s->itns[startvec + i])) {
   2275                val |= (1 << i);
   2276            }
   2277        }
   2278        break;
   2279    case 0x400 ... 0x5ef: /* NVIC Priority */
   2280        val = 0;
   2281        startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
   2282
   2283        for (i = 0; i < size && startvec + i < s->num_irq; i++) {
   2284            if (attrs.secure || s->itns[startvec + i]) {
   2285                val |= s->vectors[startvec + i].prio << (8 * i);
   2286            }
   2287        }
   2288        break;
   2289    case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
   2290        if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
   2291            val = 0;
   2292            break;
   2293        }
   2294        /* fall through */
   2295    case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
   2296        val = 0;
   2297        for (i = 0; i < size; i++) {
   2298            unsigned hdlidx = (offset - 0xd14) + i;
   2299            int sbank = shpr_bank(s, hdlidx, attrs);
   2300
   2301            if (sbank < 0) {
   2302                continue;
   2303            }
   2304            val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
   2305        }
   2306        break;
   2307    case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
   2308        if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
   2309            val = 0;
   2310            break;
   2311        };
   2312        /*
   2313         * The BFSR bits [15:8] are shared between security states
   2314         * and we store them in the NS copy. They are RAZ/WI for
   2315         * NS code if AIRCR.BFHFNMINS is 0.
   2316         */
   2317        val = s->cpu->env.v7m.cfsr[attrs.secure];
   2318        if (!attrs.secure &&
   2319            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   2320            val &= ~R_V7M_CFSR_BFSR_MASK;
   2321        } else {
   2322            val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
   2323        }
   2324        val = extract32(val, (offset - 0xd28) * 8, size * 8);
   2325        break;
   2326    case 0xfe0 ... 0xfff: /* ID.  */
   2327        if (offset & 3) {
   2328            val = 0;
   2329        } else {
   2330            val = nvic_id[(offset - 0xfe0) >> 2];
   2331        }
   2332        break;
   2333    default:
   2334        if (size == 4) {
   2335            val = nvic_readl(s, offset, attrs);
   2336        } else {
   2337            qemu_log_mask(LOG_GUEST_ERROR,
   2338                          "NVIC: Bad read of size %d at offset 0x%x\n",
   2339                          size, offset);
   2340            val = 0;
   2341        }
   2342    }
   2343
   2344    trace_nvic_sysreg_read(addr, val, size);
   2345    *data = val;
   2346    return MEMTX_OK;
   2347}
   2348
   2349static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
   2350                                     uint64_t value, unsigned size,
   2351                                     MemTxAttrs attrs)
   2352{
   2353    NVICState *s = (NVICState *)opaque;
   2354    uint32_t offset = addr;
   2355    unsigned i, startvec, end;
   2356    unsigned setval = 0;
   2357
   2358    trace_nvic_sysreg_write(addr, value, size);
   2359
   2360    if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
   2361        /* Generate BusFault for unprivileged accesses */
   2362        return MEMTX_ERROR;
   2363    }
   2364
   2365    switch (offset) {
   2366    case 0x100 ... 0x13f: /* NVIC Set enable */
   2367        offset += 0x80;
   2368        setval = 1;
   2369        /* fall through */
   2370    case 0x180 ... 0x1bf: /* NVIC Clear enable */
   2371        startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
   2372
   2373        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
   2374            if (value & (1 << i) &&
   2375                (attrs.secure || s->itns[startvec + i])) {
   2376                s->vectors[startvec + i].enabled = setval;
   2377            }
   2378        }
   2379        nvic_irq_update(s);
   2380        goto exit_ok;
   2381    case 0x200 ... 0x23f: /* NVIC Set pend */
   2382        /* the special logic in armv7m_nvic_set_pending()
   2383         * is not needed since IRQs are never escalated
   2384         */
   2385        offset += 0x80;
   2386        setval = 1;
   2387        /* fall through */
   2388    case 0x280 ... 0x2bf: /* NVIC Clear pend */
   2389        startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
   2390
   2391        for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
   2392            if (value & (1 << i) &&
   2393                (attrs.secure || s->itns[startvec + i])) {
   2394                s->vectors[startvec + i].pending = setval;
   2395            }
   2396        }
   2397        nvic_irq_update(s);
   2398        goto exit_ok;
   2399    case 0x300 ... 0x33f: /* NVIC Active */
   2400        goto exit_ok; /* R/O */
   2401    case 0x400 ... 0x5ef: /* NVIC Priority */
   2402        startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
   2403
   2404        for (i = 0; i < size && startvec + i < s->num_irq; i++) {
   2405            if (attrs.secure || s->itns[startvec + i]) {
   2406                set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
   2407            }
   2408        }
   2409        nvic_irq_update(s);
   2410        goto exit_ok;
   2411    case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
   2412        if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
   2413            goto exit_ok;
   2414        }
   2415        /* fall through */
   2416    case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
   2417        for (i = 0; i < size; i++) {
   2418            unsigned hdlidx = (offset - 0xd14) + i;
   2419            int newprio = extract32(value, i * 8, 8);
   2420            int sbank = shpr_bank(s, hdlidx, attrs);
   2421
   2422            if (sbank < 0) {
   2423                continue;
   2424            }
   2425            set_prio(s, hdlidx, sbank, newprio);
   2426        }
   2427        nvic_irq_update(s);
   2428        goto exit_ok;
   2429    case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
   2430        if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
   2431            goto exit_ok;
   2432        }
   2433        /* All bits are W1C, so construct 32 bit value with 0s in
   2434         * the parts not written by the access size
   2435         */
   2436        value <<= ((offset - 0xd28) * 8);
   2437
   2438        if (!attrs.secure &&
   2439            !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
   2440            /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
   2441            value &= ~R_V7M_CFSR_BFSR_MASK;
   2442        }
   2443
   2444        s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
   2445        if (attrs.secure) {
   2446            /* The BFSR bits [15:8] are shared between security states
   2447             * and we store them in the NS copy.
   2448             */
   2449            s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
   2450        }
   2451        goto exit_ok;
   2452    }
   2453    if (size == 4) {
   2454        nvic_writel(s, offset, value, attrs);
   2455        goto exit_ok;
   2456    }
   2457    qemu_log_mask(LOG_GUEST_ERROR,
   2458                  "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
   2459    /* This is UNPREDICTABLE; treat as RAZ/WI */
   2460
   2461 exit_ok:
   2462    /* Ensure any changes made are reflected in the cached hflags.  */
   2463    arm_rebuild_hflags(&s->cpu->env);
   2464    return MEMTX_OK;
   2465}
   2466
   2467static const MemoryRegionOps nvic_sysreg_ops = {
   2468    .read_with_attrs = nvic_sysreg_read,
   2469    .write_with_attrs = nvic_sysreg_write,
   2470    .endianness = DEVICE_NATIVE_ENDIAN,
   2471};
   2472
   2473static int nvic_post_load(void *opaque, int version_id)
   2474{
   2475    NVICState *s = opaque;
   2476    unsigned i;
   2477    int resetprio;
   2478
   2479    /* Check for out of range priority settings */
   2480    resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
   2481
   2482    if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
   2483        s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
   2484        s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
   2485        return 1;
   2486    }
   2487    for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
   2488        if (s->vectors[i].prio & ~0xff) {
   2489            return 1;
   2490        }
   2491    }
   2492
   2493    nvic_recompute_state(s);
   2494
   2495    return 0;
   2496}
   2497
   2498static const VMStateDescription vmstate_VecInfo = {
   2499    .name = "armv7m_nvic_info",
   2500    .version_id = 1,
   2501    .minimum_version_id = 1,
   2502    .fields = (VMStateField[]) {
   2503        VMSTATE_INT16(prio, VecInfo),
   2504        VMSTATE_UINT8(enabled, VecInfo),
   2505        VMSTATE_UINT8(pending, VecInfo),
   2506        VMSTATE_UINT8(active, VecInfo),
   2507        VMSTATE_UINT8(level, VecInfo),
   2508        VMSTATE_END_OF_LIST()
   2509    }
   2510};
   2511
   2512static bool nvic_security_needed(void *opaque)
   2513{
   2514    NVICState *s = opaque;
   2515
   2516    return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
   2517}
   2518
   2519static int nvic_security_post_load(void *opaque, int version_id)
   2520{
   2521    NVICState *s = opaque;
   2522    int i;
   2523
   2524    /* Check for out of range priority settings */
   2525    if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
   2526        && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
   2527        /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
   2528         * if the CPU state has been migrated yet; a mismatch won't
   2529         * cause the emulation to blow up, though.
   2530         */
   2531        return 1;
   2532    }
   2533    for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
   2534        if (s->sec_vectors[i].prio & ~0xff) {
   2535            return 1;
   2536        }
   2537    }
   2538    return 0;
   2539}
   2540
   2541static const VMStateDescription vmstate_nvic_security = {
   2542    .name = "armv7m_nvic/m-security",
   2543    .version_id = 1,
   2544    .minimum_version_id = 1,
   2545    .needed = nvic_security_needed,
   2546    .post_load = &nvic_security_post_load,
   2547    .fields = (VMStateField[]) {
   2548        VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
   2549                             vmstate_VecInfo, VecInfo),
   2550        VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
   2551        VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
   2552        VMSTATE_END_OF_LIST()
   2553    }
   2554};
   2555
   2556static const VMStateDescription vmstate_nvic = {
   2557    .name = "armv7m_nvic",
   2558    .version_id = 4,
   2559    .minimum_version_id = 4,
   2560    .post_load = &nvic_post_load,
   2561    .fields = (VMStateField[]) {
   2562        VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
   2563                             vmstate_VecInfo, VecInfo),
   2564        VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
   2565        VMSTATE_END_OF_LIST()
   2566    },
   2567    .subsections = (const VMStateDescription*[]) {
   2568        &vmstate_nvic_security,
   2569        NULL
   2570    }
   2571};
   2572
   2573static Property props_nvic[] = {
   2574    /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
   2575    DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
   2576    DEFINE_PROP_END_OF_LIST()
   2577};
   2578
   2579static void armv7m_nvic_reset(DeviceState *dev)
   2580{
   2581    int resetprio;
   2582    NVICState *s = NVIC(dev);
   2583
   2584    memset(s->vectors, 0, sizeof(s->vectors));
   2585    memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
   2586    s->prigroup[M_REG_NS] = 0;
   2587    s->prigroup[M_REG_S] = 0;
   2588
   2589    s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
   2590    /* MEM, BUS, and USAGE are enabled through
   2591     * the System Handler Control register
   2592     */
   2593    s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
   2594    s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
   2595    s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
   2596
   2597    /* DebugMonitor is enabled via DEMCR.MON_EN */
   2598    s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
   2599
   2600    resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
   2601    s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
   2602    s->vectors[ARMV7M_EXCP_NMI].prio = -2;
   2603    s->vectors[ARMV7M_EXCP_HARD].prio = -1;
   2604
   2605    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
   2606        s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
   2607        s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
   2608        s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
   2609        s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
   2610
   2611        /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
   2612        s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
   2613        /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
   2614        s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
   2615    } else {
   2616        s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
   2617    }
   2618
   2619    /* Strictly speaking the reset handler should be enabled.
   2620     * However, we don't simulate soft resets through the NVIC,
   2621     * and the reset vector should never be pended.
   2622     * So we leave it disabled to catch logic errors.
   2623     */
   2624
   2625    s->exception_prio = NVIC_NOEXC_PRIO;
   2626    s->vectpending = 0;
   2627    s->vectpending_is_s_banked = false;
   2628    s->vectpending_prio = NVIC_NOEXC_PRIO;
   2629
   2630    if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
   2631        memset(s->itns, 0, sizeof(s->itns));
   2632    } else {
   2633        /* This state is constant and not guest accessible in a non-security
   2634         * NVIC; we set the bits to true to avoid having to do a feature
   2635         * bit check in the NVIC enable/pend/etc register accessors.
   2636         */
   2637        int i;
   2638
   2639        for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
   2640            s->itns[i] = true;
   2641        }
   2642    }
   2643
   2644    /*
   2645     * We updated state that affects the CPU's MMUidx and thus its hflags;
   2646     * and we can't guarantee that we run before the CPU reset function.
   2647     */
   2648    arm_rebuild_hflags(&s->cpu->env);
   2649}
   2650
   2651static void nvic_systick_trigger(void *opaque, int n, int level)
   2652{
   2653    NVICState *s = opaque;
   2654
   2655    if (level) {
   2656        /* SysTick just asked us to pend its exception.
   2657         * (This is different from an external interrupt line's
   2658         * behaviour.)
   2659         * n == 0 : NonSecure systick
   2660         * n == 1 : Secure systick
   2661         */
   2662        armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
   2663    }
   2664}
   2665
   2666static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
   2667{
   2668    NVICState *s = NVIC(dev);
   2669
   2670    /* The armv7m container object will have set our CPU pointer */
   2671    if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
   2672        error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
   2673        return;
   2674    }
   2675
   2676    if (s->num_irq > NVIC_MAX_IRQ) {
   2677        error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
   2678        return;
   2679    }
   2680
   2681    qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
   2682
   2683    /* include space for internal exception vectors */
   2684    s->num_irq += NVIC_FIRST_IRQ;
   2685
   2686    s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
   2687
   2688    /*
   2689     * This device provides a single memory region which covers the
   2690     * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the
   2691     * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF.
   2692     */
   2693    memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
   2694                          "nvic_sysregs", 0x1000);
   2695    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem);
   2696}
   2697
   2698static void armv7m_nvic_instance_init(Object *obj)
   2699{
   2700    DeviceState *dev = DEVICE(obj);
   2701    NVICState *nvic = NVIC(obj);
   2702    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
   2703
   2704    sysbus_init_irq(sbd, &nvic->excpout);
   2705    qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
   2706    qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
   2707                            M_REG_NUM_BANKS);
   2708    qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
   2709}
   2710
   2711static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
   2712{
   2713    DeviceClass *dc = DEVICE_CLASS(klass);
   2714
   2715    dc->vmsd  = &vmstate_nvic;
   2716    device_class_set_props(dc, props_nvic);
   2717    dc->reset = armv7m_nvic_reset;
   2718    dc->realize = armv7m_nvic_realize;
   2719}
   2720
   2721static const TypeInfo armv7m_nvic_info = {
   2722    .name          = TYPE_NVIC,
   2723    .parent        = TYPE_SYS_BUS_DEVICE,
   2724    .instance_init = armv7m_nvic_instance_init,
   2725    .instance_size = sizeof(NVICState),
   2726    .class_init    = armv7m_nvic_class_init,
   2727    .class_size    = sizeof(SysBusDeviceClass),
   2728};
   2729
   2730static void armv7m_nvic_register_types(void)
   2731{
   2732    type_register_static(&armv7m_nvic_info);
   2733}
   2734
   2735type_init(armv7m_nvic_register_types)