cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

riscv_aclint.c (15790B)


      1/*
      2 * RISC-V ACLINT (Advanced Core Local Interruptor)
      3 * URL: https://github.com/riscv/riscv-aclint
      4 *
      5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
      6 * Copyright (c) 2017 SiFive, Inc.
      7 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
      8 *
      9 * This provides real-time clock, timer and interprocessor interrupts.
     10 *
     11 * This program is free software; you can redistribute it and/or modify it
     12 * under the terms and conditions of the GNU General Public License,
     13 * version 2 or later, as published by the Free Software Foundation.
     14 *
     15 * This program is distributed in the hope it will be useful, but WITHOUT
     16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     17 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     18 * more details.
     19 *
     20 * You should have received a copy of the GNU General Public License along with
     21 * this program.  If not, see <http://www.gnu.org/licenses/>.
     22 */
     23
     24#include "qemu/osdep.h"
     25#include "qapi/error.h"
     26#include "qemu/error-report.h"
     27#include "qemu/log.h"
     28#include "qemu/module.h"
     29#include "hw/sysbus.h"
     30#include "target/riscv/cpu.h"
     31#include "hw/qdev-properties.h"
     32#include "hw/intc/riscv_aclint.h"
     33#include "qemu/timer.h"
     34#include "hw/irq.h"
     35
     36typedef struct riscv_aclint_mtimer_callback {
     37    RISCVAclintMTimerState *s;
     38    int num;
     39} riscv_aclint_mtimer_callback;
     40
     41static uint64_t cpu_riscv_read_rtc(uint32_t timebase_freq)
     42{
     43    return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
     44        timebase_freq, NANOSECONDS_PER_SECOND);
     45}
     46
     47/*
     48 * Called when timecmp is written to update the QEMU timer or immediately
     49 * trigger timer interrupt if mtimecmp <= current timer value.
     50 */
     51static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
     52                                              RISCVCPU *cpu,
     53                                              int hartid,
     54                                              uint64_t value,
     55                                              uint32_t timebase_freq)
     56{
     57    uint64_t next;
     58    uint64_t diff;
     59
     60    uint64_t rtc_r = cpu_riscv_read_rtc(timebase_freq);
     61
     62    cpu->env.timecmp = value;
     63    if (cpu->env.timecmp <= rtc_r) {
     64        /*
     65         * If we're setting an MTIMECMP value in the "past",
     66         * immediately raise the timer interrupt
     67         */
     68        qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
     69        return;
     70    }
     71
     72    /* otherwise, set up the future timer interrupt */
     73    qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
     74    diff = cpu->env.timecmp - rtc_r;
     75    /* back to ns (note args switched in muldiv64) */
     76    uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
     77
     78    /*
     79     * check if ns_diff overflowed and check if the addition would potentially
     80     * overflow
     81     */
     82    if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
     83        ns_diff > INT64_MAX) {
     84        next = INT64_MAX;
     85    } else {
     86        /*
     87         * as it is very unlikely qemu_clock_get_ns will return a value
     88         * greater than INT64_MAX, no additional check is needed for an
     89         * unsigned integer overflow.
     90         */
     91        next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
     92        /*
     93         * if ns_diff is INT64_MAX next may still be outside the range
     94         * of a signed integer.
     95         */
     96        next = MIN(next, INT64_MAX);
     97    }
     98
     99    timer_mod(cpu->env.timer, next);
    100}
    101
    102/*
    103 * Callback used when the timer set using timer_mod expires.
    104 * Should raise the timer interrupt line
    105 */
    106static void riscv_aclint_mtimer_cb(void *opaque)
    107{
    108    riscv_aclint_mtimer_callback *state = opaque;
    109
    110    qemu_irq_raise(state->s->timer_irqs[state->num]);
    111}
    112
    113/* CPU read MTIMER register */
    114static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
    115    unsigned size)
    116{
    117    RISCVAclintMTimerState *mtimer = opaque;
    118
    119    if (addr >= mtimer->timecmp_base &&
    120        addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
    121        size_t hartid = mtimer->hartid_base +
    122                        ((addr - mtimer->timecmp_base) >> 3);
    123        CPUState *cpu = qemu_get_cpu(hartid);
    124        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
    125        if (!env) {
    126            qemu_log_mask(LOG_GUEST_ERROR,
    127                          "aclint-mtimer: invalid hartid: %zu", hartid);
    128        } else if ((addr & 0x7) == 0) {
    129            /* timecmp_lo */
    130            uint64_t timecmp = env->timecmp;
    131            return timecmp & 0xFFFFFFFF;
    132        } else if ((addr & 0x7) == 4) {
    133            /* timecmp_hi */
    134            uint64_t timecmp = env->timecmp;
    135            return (timecmp >> 32) & 0xFFFFFFFF;
    136        } else {
    137            qemu_log_mask(LOG_UNIMP,
    138                          "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
    139            return 0;
    140        }
    141    } else if (addr == mtimer->time_base) {
    142        /* time_lo */
    143        return cpu_riscv_read_rtc(mtimer->timebase_freq) & 0xFFFFFFFF;
    144    } else if (addr == mtimer->time_base + 4) {
    145        /* time_hi */
    146        return (cpu_riscv_read_rtc(mtimer->timebase_freq) >> 32) & 0xFFFFFFFF;
    147    }
    148
    149    qemu_log_mask(LOG_UNIMP,
    150                  "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
    151    return 0;
    152}
    153
    154/* CPU write MTIMER register */
    155static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
    156    uint64_t value, unsigned size)
    157{
    158    RISCVAclintMTimerState *mtimer = opaque;
    159
    160    if (addr >= mtimer->timecmp_base &&
    161        addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
    162        size_t hartid = mtimer->hartid_base +
    163                        ((addr - mtimer->timecmp_base) >> 3);
    164        CPUState *cpu = qemu_get_cpu(hartid);
    165        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
    166        if (!env) {
    167            qemu_log_mask(LOG_GUEST_ERROR,
    168                          "aclint-mtimer: invalid hartid: %zu", hartid);
    169        } else if ((addr & 0x7) == 0) {
    170            /* timecmp_lo */
    171            uint64_t timecmp_hi = env->timecmp >> 32;
    172            riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
    173                timecmp_hi << 32 | (value & 0xFFFFFFFF),
    174                mtimer->timebase_freq);
    175            return;
    176        } else if ((addr & 0x7) == 4) {
    177            /* timecmp_hi */
    178            uint64_t timecmp_lo = env->timecmp;
    179            riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
    180                value << 32 | (timecmp_lo & 0xFFFFFFFF),
    181                mtimer->timebase_freq);
    182        } else {
    183            qemu_log_mask(LOG_UNIMP,
    184                          "aclint-mtimer: invalid timecmp write: %08x",
    185                          (uint32_t)addr);
    186        }
    187        return;
    188    } else if (addr == mtimer->time_base) {
    189        /* time_lo */
    190        qemu_log_mask(LOG_UNIMP,
    191                      "aclint-mtimer: time_lo write not implemented");
    192        return;
    193    } else if (addr == mtimer->time_base + 4) {
    194        /* time_hi */
    195        qemu_log_mask(LOG_UNIMP,
    196                      "aclint-mtimer: time_hi write not implemented");
    197        return;
    198    }
    199
    200    qemu_log_mask(LOG_UNIMP,
    201                  "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
    202}
    203
    204static const MemoryRegionOps riscv_aclint_mtimer_ops = {
    205    .read = riscv_aclint_mtimer_read,
    206    .write = riscv_aclint_mtimer_write,
    207    .endianness = DEVICE_LITTLE_ENDIAN,
    208    .valid = {
    209        .min_access_size = 4,
    210        .max_access_size = 8
    211    }
    212};
    213
    214static Property riscv_aclint_mtimer_properties[] = {
    215    DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
    216        hartid_base, 0),
    217    DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
    218    DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
    219        timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
    220    DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
    221        time_base, RISCV_ACLINT_DEFAULT_MTIME),
    222    DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
    223        aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
    224    DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
    225        timebase_freq, 0),
    226    DEFINE_PROP_END_OF_LIST(),
    227};
    228
    229static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
    230{
    231    RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
    232    int i;
    233
    234    memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
    235                          s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
    236    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
    237
    238    s->timer_irqs = g_malloc(sizeof(qemu_irq) * s->num_harts);
    239    qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
    240
    241    /* Claim timer interrupt bits */
    242    for (i = 0; i < s->num_harts; i++) {
    243        RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
    244        if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
    245            error_report("MTIP already claimed");
    246            exit(1);
    247        }
    248    }
    249}
    250
    251static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
    252{
    253    DeviceClass *dc = DEVICE_CLASS(klass);
    254    dc->realize = riscv_aclint_mtimer_realize;
    255    device_class_set_props(dc, riscv_aclint_mtimer_properties);
    256}
    257
    258static const TypeInfo riscv_aclint_mtimer_info = {
    259    .name          = TYPE_RISCV_ACLINT_MTIMER,
    260    .parent        = TYPE_SYS_BUS_DEVICE,
    261    .instance_size = sizeof(RISCVAclintMTimerState),
    262    .class_init    = riscv_aclint_mtimer_class_init,
    263};
    264
    265/*
    266 * Create ACLINT MTIMER device.
    267 */
    268DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
    269    uint32_t hartid_base, uint32_t num_harts,
    270    uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
    271    bool provide_rdtime)
    272{
    273    int i;
    274    DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
    275
    276    assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
    277    assert(!(addr & 0x7));
    278    assert(!(timecmp_base & 0x7));
    279    assert(!(time_base & 0x7));
    280
    281    qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
    282    qdev_prop_set_uint32(dev, "num-harts", num_harts);
    283    qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
    284    qdev_prop_set_uint32(dev, "time-base", time_base);
    285    qdev_prop_set_uint32(dev, "aperture-size", size);
    286    qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
    287    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    288    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
    289
    290    for (i = 0; i < num_harts; i++) {
    291        CPUState *cpu = qemu_get_cpu(hartid_base + i);
    292        RISCVCPU *rvcpu = RISCV_CPU(cpu);
    293        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
    294        riscv_aclint_mtimer_callback *cb =
    295            g_malloc0(sizeof(riscv_aclint_mtimer_callback));
    296
    297        if (!env) {
    298            g_free(cb);
    299            continue;
    300        }
    301        if (provide_rdtime) {
    302            riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, timebase_freq);
    303        }
    304
    305        cb->s = RISCV_ACLINT_MTIMER(dev);
    306        cb->num = i;
    307        env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
    308                                  &riscv_aclint_mtimer_cb, cb);
    309        env->timecmp = 0;
    310
    311        qdev_connect_gpio_out(dev, i,
    312                              qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
    313    }
    314
    315    return dev;
    316}
    317
    318/* CPU read [M|S]SWI register */
    319static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
    320    unsigned size)
    321{
    322    RISCVAclintSwiState *swi = opaque;
    323
    324    if (addr < (swi->num_harts << 2)) {
    325        size_t hartid = swi->hartid_base + (addr >> 2);
    326        CPUState *cpu = qemu_get_cpu(hartid);
    327        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
    328        if (!env) {
    329            qemu_log_mask(LOG_GUEST_ERROR,
    330                          "aclint-swi: invalid hartid: %zu", hartid);
    331        } else if ((addr & 0x3) == 0) {
    332            return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
    333        }
    334    }
    335
    336    qemu_log_mask(LOG_UNIMP,
    337                  "aclint-swi: invalid read: %08x", (uint32_t)addr);
    338    return 0;
    339}
    340
    341/* CPU write [M|S]SWI register */
    342static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
    343        unsigned size)
    344{
    345    RISCVAclintSwiState *swi = opaque;
    346
    347    if (addr < (swi->num_harts << 2)) {
    348        size_t hartid = swi->hartid_base + (addr >> 2);
    349        CPUState *cpu = qemu_get_cpu(hartid);
    350        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
    351        if (!env) {
    352            qemu_log_mask(LOG_GUEST_ERROR,
    353                          "aclint-swi: invalid hartid: %zu", hartid);
    354        } else if ((addr & 0x3) == 0) {
    355            if (value & 0x1) {
    356                qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
    357            } else {
    358                if (!swi->sswi) {
    359                    qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
    360                }
    361            }
    362            return;
    363        }
    364    }
    365
    366    qemu_log_mask(LOG_UNIMP,
    367                  "aclint-swi: invalid write: %08x", (uint32_t)addr);
    368}
    369
    370static const MemoryRegionOps riscv_aclint_swi_ops = {
    371    .read = riscv_aclint_swi_read,
    372    .write = riscv_aclint_swi_write,
    373    .endianness = DEVICE_LITTLE_ENDIAN,
    374    .valid = {
    375        .min_access_size = 4,
    376        .max_access_size = 4
    377    }
    378};
    379
    380static Property riscv_aclint_swi_properties[] = {
    381    DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
    382    DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
    383    DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
    384    DEFINE_PROP_END_OF_LIST(),
    385};
    386
    387static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
    388{
    389    RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
    390    int i;
    391
    392    memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
    393                          TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
    394    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
    395
    396    swi->soft_irqs = g_malloc(sizeof(qemu_irq) * swi->num_harts);
    397    qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
    398
    399    /* Claim software interrupt bits */
    400    for (i = 0; i < swi->num_harts; i++) {
    401        RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
    402        /* We don't claim mip.SSIP because it is writeable by software */
    403        if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
    404            error_report("MSIP already claimed");
    405            exit(1);
    406        }
    407    }
    408}
    409
    410static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
    411{
    412    DeviceClass *dc = DEVICE_CLASS(klass);
    413    dc->realize = riscv_aclint_swi_realize;
    414    device_class_set_props(dc, riscv_aclint_swi_properties);
    415}
    416
    417static const TypeInfo riscv_aclint_swi_info = {
    418    .name          = TYPE_RISCV_ACLINT_SWI,
    419    .parent        = TYPE_SYS_BUS_DEVICE,
    420    .instance_size = sizeof(RISCVAclintSwiState),
    421    .class_init    = riscv_aclint_swi_class_init,
    422};
    423
    424/*
    425 * Create ACLINT [M|S]SWI device.
    426 */
    427DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
    428    uint32_t num_harts, bool sswi)
    429{
    430    int i;
    431    DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
    432
    433    assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
    434    assert(!(addr & 0x3));
    435
    436    qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
    437    qdev_prop_set_uint32(dev, "num-harts", num_harts);
    438    qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
    439    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    440    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
    441
    442    for (i = 0; i < num_harts; i++) {
    443        CPUState *cpu = qemu_get_cpu(hartid_base + i);
    444        RISCVCPU *rvcpu = RISCV_CPU(cpu);
    445
    446        qdev_connect_gpio_out(dev, i,
    447                              qdev_get_gpio_in(DEVICE(rvcpu),
    448                                  (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
    449    }
    450
    451    return dev;
    452}
    453
    454static void riscv_aclint_register_types(void)
    455{
    456    type_register_static(&riscv_aclint_mtimer_info);
    457    type_register_static(&riscv_aclint_swi_info);
    458}
    459
    460type_init(riscv_aclint_register_types)