cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

xive.c (59474B)


      1/*
      2 * QEMU PowerPC XIVE interrupt controller model
      3 *
      4 * Copyright (c) 2017-2018, IBM Corporation.
      5 *
      6 * This code is licensed under the GPL version 2 or later. See the
      7 * COPYING file in the top-level directory.
      8 */
      9
     10#include "qemu/osdep.h"
     11#include "qemu/log.h"
     12#include "qemu/module.h"
     13#include "qapi/error.h"
     14#include "target/ppc/cpu.h"
     15#include "sysemu/cpus.h"
     16#include "sysemu/dma.h"
     17#include "sysemu/reset.h"
     18#include "hw/qdev-properties.h"
     19#include "migration/vmstate.h"
     20#include "monitor/monitor.h"
     21#include "hw/irq.h"
     22#include "hw/ppc/xive.h"
     23#include "hw/ppc/xive_regs.h"
     24#include "trace.h"
     25
     26/*
     27 * XIVE Thread Interrupt Management context
     28 */
     29
     30/*
     31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
     32 * Interrupt Priority Register (PIPR), which contains the priority of
     33 * the most favored pending notification.
     34 */
     35static uint8_t ipb_to_pipr(uint8_t ibp)
     36{
     37    return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
     38}
     39
     40static uint8_t exception_mask(uint8_t ring)
     41{
     42    switch (ring) {
     43    case TM_QW1_OS:
     44        return TM_QW1_NSR_EO;
     45    case TM_QW3_HV_PHYS:
     46        return TM_QW3_NSR_HE;
     47    default:
     48        g_assert_not_reached();
     49    }
     50}
     51
     52static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
     53{
     54        switch (ring) {
     55        case TM_QW0_USER:
     56                return 0; /* Not supported */
     57        case TM_QW1_OS:
     58                return tctx->os_output;
     59        case TM_QW2_HV_POOL:
     60        case TM_QW3_HV_PHYS:
     61                return tctx->hv_output;
     62        default:
     63                return 0;
     64        }
     65}
     66
     67static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
     68{
     69    uint8_t *regs = &tctx->regs[ring];
     70    uint8_t nsr = regs[TM_NSR];
     71    uint8_t mask = exception_mask(ring);
     72
     73    qemu_irq_lower(xive_tctx_output(tctx, ring));
     74
     75    if (regs[TM_NSR] & mask) {
     76        uint8_t cppr = regs[TM_PIPR];
     77
     78        regs[TM_CPPR] = cppr;
     79
     80        /* Reset the pending buffer bit */
     81        regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
     82        regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
     83
     84        /* Drop Exception bit */
     85        regs[TM_NSR] &= ~mask;
     86
     87        trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
     88                               regs[TM_IPB], regs[TM_PIPR],
     89                               regs[TM_CPPR], regs[TM_NSR]);
     90    }
     91
     92    return (nsr << 8) | regs[TM_CPPR];
     93}
     94
     95static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
     96{
     97    uint8_t *regs = &tctx->regs[ring];
     98
     99    if (regs[TM_PIPR] < regs[TM_CPPR]) {
    100        switch (ring) {
    101        case TM_QW1_OS:
    102            regs[TM_NSR] |= TM_QW1_NSR_EO;
    103            break;
    104        case TM_QW3_HV_PHYS:
    105            regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
    106            break;
    107        default:
    108            g_assert_not_reached();
    109        }
    110        trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
    111                               regs[TM_IPB], regs[TM_PIPR],
    112                               regs[TM_CPPR], regs[TM_NSR]);
    113        qemu_irq_raise(xive_tctx_output(tctx, ring));
    114    }
    115}
    116
    117static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
    118{
    119    uint8_t *regs = &tctx->regs[ring];
    120
    121    trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
    122                             regs[TM_IPB], regs[TM_PIPR],
    123                             cppr, regs[TM_NSR]);
    124
    125    if (cppr > XIVE_PRIORITY_MAX) {
    126        cppr = 0xff;
    127    }
    128
    129    tctx->regs[ring + TM_CPPR] = cppr;
    130
    131    /* CPPR has changed, check if we need to raise a pending exception */
    132    xive_tctx_notify(tctx, ring);
    133}
    134
    135void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
    136{
    137    uint8_t *regs = &tctx->regs[ring];
    138
    139    regs[TM_IPB] |= ipb;
    140    regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
    141    xive_tctx_notify(tctx, ring);
    142}
    143
    144/*
    145 * XIVE Thread Interrupt Management Area (TIMA)
    146 */
    147
    148static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
    149                                hwaddr offset, uint64_t value, unsigned size)
    150{
    151    xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
    152}
    153
    154static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
    155                                   hwaddr offset, unsigned size)
    156{
    157    return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
    158}
    159
    160static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
    161                                      hwaddr offset, unsigned size)
    162{
    163    uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
    164    uint32_t qw2w2;
    165
    166    qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
    167    memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
    168    return qw2w2;
    169}
    170
    171static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
    172                            uint64_t value, unsigned size)
    173{
    174    tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
    175}
    176
    177static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
    178                                hwaddr offset, unsigned size)
    179{
    180    return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
    181}
    182
    183/*
    184 * Define an access map for each page of the TIMA that we will use in
    185 * the memory region ops to filter values when doing loads and stores
    186 * of raw registers values
    187 *
    188 * Registers accessibility bits :
    189 *
    190 *    0x0 - no access
    191 *    0x1 - write only
    192 *    0x2 - read only
    193 *    0x3 - read/write
    194 */
    195
    196static const uint8_t xive_tm_hw_view[] = {
    197    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
    198    3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
    199    0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
    200    3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
    201};
    202
    203static const uint8_t xive_tm_hv_view[] = {
    204    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
    205    3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
    206    0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
    207    3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
    208};
    209
    210static const uint8_t xive_tm_os_view[] = {
    211    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
    212    2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
    213    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
    214    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
    215};
    216
    217static const uint8_t xive_tm_user_view[] = {
    218    3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
    219    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
    220    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
    221    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
    222};
    223
    224/*
    225 * Overall TIMA access map for the thread interrupt management context
    226 * registers
    227 */
    228static const uint8_t *xive_tm_views[] = {
    229    [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
    230    [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
    231    [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
    232    [XIVE_TM_USER_PAGE] = xive_tm_user_view,
    233};
    234
    235/*
    236 * Computes a register access mask for a given offset in the TIMA
    237 */
    238static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
    239{
    240    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
    241    uint8_t reg_offset = offset & 0x3F;
    242    uint8_t reg_mask = write ? 0x1 : 0x2;
    243    uint64_t mask = 0x0;
    244    int i;
    245
    246    for (i = 0; i < size; i++) {
    247        if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
    248            mask |= (uint64_t) 0xff << (8 * (size - i - 1));
    249        }
    250    }
    251
    252    return mask;
    253}
    254
    255static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
    256                              unsigned size)
    257{
    258    uint8_t ring_offset = offset & 0x30;
    259    uint8_t reg_offset = offset & 0x3F;
    260    uint64_t mask = xive_tm_mask(offset, size, true);
    261    int i;
    262
    263    /*
    264     * Only 4 or 8 bytes stores are allowed and the User ring is
    265     * excluded
    266     */
    267    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
    268        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
    269                      HWADDR_PRIx"\n", offset);
    270        return;
    271    }
    272
    273    /*
    274     * Use the register offset for the raw values and filter out
    275     * reserved values
    276     */
    277    for (i = 0; i < size; i++) {
    278        uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
    279        if (byte_mask) {
    280            tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
    281                byte_mask;
    282        }
    283    }
    284}
    285
    286static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
    287{
    288    uint8_t ring_offset = offset & 0x30;
    289    uint8_t reg_offset = offset & 0x3F;
    290    uint64_t mask = xive_tm_mask(offset, size, false);
    291    uint64_t ret;
    292    int i;
    293
    294    /*
    295     * Only 4 or 8 bytes loads are allowed and the User ring is
    296     * excluded
    297     */
    298    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
    299        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
    300                      HWADDR_PRIx"\n", offset);
    301        return -1;
    302    }
    303
    304    /* Use the register offset for the raw values */
    305    ret = 0;
    306    for (i = 0; i < size; i++) {
    307        ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
    308    }
    309
    310    /* filter out reserved values */
    311    return ret & mask;
    312}
    313
    314/*
    315 * The TM context is mapped twice within each page. Stores and loads
    316 * to the first mapping below 2K write and read the specified values
    317 * without modification. The second mapping above 2K performs specific
    318 * state changes (side effects) in addition to setting/returning the
    319 * interrupt management area context of the processor thread.
    320 */
    321static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
    322                                   hwaddr offset, unsigned size)
    323{
    324    return xive_tctx_accept(tctx, TM_QW1_OS);
    325}
    326
    327static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
    328                                hwaddr offset, uint64_t value, unsigned size)
    329{
    330    xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
    331}
    332
    333/*
    334 * Adjust the IPB to allow a CPU to process event queues of other
    335 * priorities during one physical interrupt cycle.
    336 */
    337static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
    338                                   hwaddr offset, uint64_t value, unsigned size)
    339{
    340    xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
    341}
    342
    343static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
    344                               uint32_t *nvt_idx, bool *vo)
    345{
    346    if (nvt_blk) {
    347        *nvt_blk = xive_nvt_blk(cam);
    348    }
    349    if (nvt_idx) {
    350        *nvt_idx = xive_nvt_idx(cam);
    351    }
    352    if (vo) {
    353        *vo = !!(cam & TM_QW1W2_VO);
    354    }
    355}
    356
    357static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
    358                                     uint32_t *nvt_idx, bool *vo)
    359{
    360    uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
    361    uint32_t cam = be32_to_cpu(qw1w2);
    362
    363    xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
    364    return qw1w2;
    365}
    366
    367static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
    368{
    369    memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
    370}
    371
    372static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
    373                                    hwaddr offset, unsigned size)
    374{
    375    uint32_t qw1w2;
    376    uint32_t qw1w2_new;
    377    uint8_t nvt_blk;
    378    uint32_t nvt_idx;
    379    bool vo;
    380
    381    qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
    382
    383    if (!vo) {
    384        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
    385                      nvt_blk, nvt_idx);
    386    }
    387
    388    /* Invalidate CAM line */
    389    qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
    390    xive_tctx_set_os_cam(tctx, qw1w2_new);
    391    return qw1w2;
    392}
    393
    394static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
    395                                  uint8_t nvt_blk, uint32_t nvt_idx)
    396{
    397    XiveNVT nvt;
    398    uint8_t ipb;
    399
    400    /*
    401     * Grab the associated NVT to pull the pending bits, and merge
    402     * them with the IPB of the thread interrupt context registers
    403     */
    404    if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
    405        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
    406                          nvt_blk, nvt_idx);
    407        return;
    408    }
    409
    410    ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
    411
    412    if (ipb) {
    413        /* Reset the NVT value */
    414        nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
    415        xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
    416
    417        /* Merge in current context */
    418        xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
    419    }
    420}
    421
    422/*
    423 * Updating the OS CAM line can trigger a resend of interrupt
    424 */
    425static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
    426                                hwaddr offset, uint64_t value, unsigned size)
    427{
    428    uint32_t cam = value;
    429    uint32_t qw1w2 = cpu_to_be32(cam);
    430    uint8_t nvt_blk;
    431    uint32_t nvt_idx;
    432    bool vo;
    433
    434    xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
    435
    436    /* First update the registers */
    437    xive_tctx_set_os_cam(tctx, qw1w2);
    438
    439    /* Check the interrupt pending bits */
    440    if (vo) {
    441        xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
    442    }
    443}
    444
    445/*
    446 * Define a mapping of "special" operations depending on the TIMA page
    447 * offset and the size of the operation.
    448 */
    449typedef struct XiveTmOp {
    450    uint8_t  page_offset;
    451    uint32_t op_offset;
    452    unsigned size;
    453    void     (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
    454                              hwaddr offset,
    455                              uint64_t value, unsigned size);
    456    uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
    457                             unsigned size);
    458} XiveTmOp;
    459
    460static const XiveTmOp xive_tm_operations[] = {
    461    /*
    462     * MMIOs below 2K : raw values and special operations without side
    463     * effects
    464     */
    465    { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
    466    { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,     4, xive_tm_push_os_ctx, NULL },
    467    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
    468    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
    469    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
    470
    471    /* MMIOs above 2K : special operations with side effects */
    472    { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
    473    { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
    474    { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
    475    { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
    476    { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
    477    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
    478    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
    479};
    480
    481static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
    482{
    483    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
    484    uint32_t op_offset = offset & 0xFFF;
    485    int i;
    486
    487    for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
    488        const XiveTmOp *xto = &xive_tm_operations[i];
    489
    490        /* Accesses done from a more privileged TIMA page is allowed */
    491        if (xto->page_offset >= page_offset &&
    492            xto->op_offset == op_offset &&
    493            xto->size == size &&
    494            ((write && xto->write_handler) || (!write && xto->read_handler))) {
    495            return xto;
    496        }
    497    }
    498    return NULL;
    499}
    500
    501/*
    502 * TIMA MMIO handlers
    503 */
    504void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
    505                        uint64_t value, unsigned size)
    506{
    507    const XiveTmOp *xto;
    508
    509    trace_xive_tctx_tm_write(offset, size, value);
    510
    511    /*
    512     * TODO: check V bit in Q[0-3]W2
    513     */
    514
    515    /*
    516     * First, check for special operations in the 2K region
    517     */
    518    if (offset & 0x800) {
    519        xto = xive_tm_find_op(offset, size, true);
    520        if (!xto) {
    521            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
    522                          "@%"HWADDR_PRIx"\n", offset);
    523        } else {
    524            xto->write_handler(xptr, tctx, offset, value, size);
    525        }
    526        return;
    527    }
    528
    529    /*
    530     * Then, for special operations in the region below 2K.
    531     */
    532    xto = xive_tm_find_op(offset, size, true);
    533    if (xto) {
    534        xto->write_handler(xptr, tctx, offset, value, size);
    535        return;
    536    }
    537
    538    /*
    539     * Finish with raw access to the register values
    540     */
    541    xive_tm_raw_write(tctx, offset, value, size);
    542}
    543
    544uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
    545                           unsigned size)
    546{
    547    const XiveTmOp *xto;
    548    uint64_t ret;
    549
    550    /*
    551     * TODO: check V bit in Q[0-3]W2
    552     */
    553
    554    /*
    555     * First, check for special operations in the 2K region
    556     */
    557    if (offset & 0x800) {
    558        xto = xive_tm_find_op(offset, size, false);
    559        if (!xto) {
    560            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
    561                          "@%"HWADDR_PRIx"\n", offset);
    562            return -1;
    563        }
    564        ret = xto->read_handler(xptr, tctx, offset, size);
    565        goto out;
    566    }
    567
    568    /*
    569     * Then, for special operations in the region below 2K.
    570     */
    571    xto = xive_tm_find_op(offset, size, false);
    572    if (xto) {
    573        ret = xto->read_handler(xptr, tctx, offset, size);
    574        goto out;
    575    }
    576
    577    /*
    578     * Finish with raw access to the register values
    579     */
    580    ret = xive_tm_raw_read(tctx, offset, size);
    581out:
    582    trace_xive_tctx_tm_read(offset, size, ret);
    583    return ret;
    584}
    585
    586static char *xive_tctx_ring_print(uint8_t *ring)
    587{
    588    uint32_t w2 = xive_tctx_word2(ring);
    589
    590    return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
    591                   "%02x  %02x   %02x  %08x",
    592                   ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
    593                   ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
    594                   be32_to_cpu(w2));
    595}
    596
    597static const char * const xive_tctx_ring_names[] = {
    598    "USER", "OS", "POOL", "PHYS",
    599};
    600
    601/*
    602 * kvm_irqchip_in_kernel() will cause the compiler to turn this
    603 * info a nop if CONFIG_KVM isn't defined.
    604 */
    605#define xive_in_kernel(xptr)                                            \
    606    (kvm_irqchip_in_kernel() &&                                         \
    607     ({                                                                 \
    608         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);      \
    609         xpc->in_kernel ? xpc->in_kernel(xptr) : false;                 \
    610     }))
    611
    612void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
    613{
    614    int cpu_index;
    615    int i;
    616
    617    /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
    618     * are hot plugged or unplugged.
    619     */
    620    if (!tctx) {
    621        return;
    622    }
    623
    624    cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
    625
    626    if (xive_in_kernel(tctx->xptr)) {
    627        Error *local_err = NULL;
    628
    629        kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
    630        if (local_err) {
    631            error_report_err(local_err);
    632            return;
    633        }
    634    }
    635
    636    monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
    637                   "  W2\n", cpu_index);
    638
    639    for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
    640        char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
    641        monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
    642                       xive_tctx_ring_names[i], s);
    643        g_free(s);
    644    }
    645}
    646
    647void xive_tctx_reset(XiveTCTX *tctx)
    648{
    649    memset(tctx->regs, 0, sizeof(tctx->regs));
    650
    651    /* Set some defaults */
    652    tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
    653    tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
    654    tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
    655
    656    /*
    657     * Initialize PIPR to 0xFF to avoid phantom interrupts when the
    658     * CPPR is first set.
    659     */
    660    tctx->regs[TM_QW1_OS + TM_PIPR] =
    661        ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
    662    tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
    663        ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
    664}
    665
    666static void xive_tctx_realize(DeviceState *dev, Error **errp)
    667{
    668    XiveTCTX *tctx = XIVE_TCTX(dev);
    669    PowerPCCPU *cpu;
    670    CPUPPCState *env;
    671
    672    assert(tctx->cs);
    673    assert(tctx->xptr);
    674
    675    cpu = POWERPC_CPU(tctx->cs);
    676    env = &cpu->env;
    677    switch (PPC_INPUT(env)) {
    678    case PPC_FLAGS_INPUT_POWER9:
    679        tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
    680        tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
    681        break;
    682
    683    default:
    684        error_setg(errp, "XIVE interrupt controller does not support "
    685                   "this CPU bus model");
    686        return;
    687    }
    688
    689    /* Connect the presenter to the VCPU (required for CPU hotplug) */
    690    if (xive_in_kernel(tctx->xptr)) {
    691        if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
    692            return;
    693        }
    694    }
    695}
    696
    697static int vmstate_xive_tctx_pre_save(void *opaque)
    698{
    699    XiveTCTX *tctx = XIVE_TCTX(opaque);
    700    Error *local_err = NULL;
    701    int ret;
    702
    703    if (xive_in_kernel(tctx->xptr)) {
    704        ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
    705        if (ret < 0) {
    706            error_report_err(local_err);
    707            return ret;
    708        }
    709    }
    710
    711    return 0;
    712}
    713
    714static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
    715{
    716    XiveTCTX *tctx = XIVE_TCTX(opaque);
    717    Error *local_err = NULL;
    718    int ret;
    719
    720    if (xive_in_kernel(tctx->xptr)) {
    721        /*
    722         * Required for hotplugged CPU, for which the state comes
    723         * after all states of the machine.
    724         */
    725        ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
    726        if (ret < 0) {
    727            error_report_err(local_err);
    728            return ret;
    729        }
    730    }
    731
    732    return 0;
    733}
    734
    735static const VMStateDescription vmstate_xive_tctx = {
    736    .name = TYPE_XIVE_TCTX,
    737    .version_id = 1,
    738    .minimum_version_id = 1,
    739    .pre_save = vmstate_xive_tctx_pre_save,
    740    .post_load = vmstate_xive_tctx_post_load,
    741    .fields = (VMStateField[]) {
    742        VMSTATE_BUFFER(regs, XiveTCTX),
    743        VMSTATE_END_OF_LIST()
    744    },
    745};
    746
    747static Property xive_tctx_properties[] = {
    748    DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
    749    DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
    750                     XivePresenter *),
    751    DEFINE_PROP_END_OF_LIST(),
    752};
    753
    754static void xive_tctx_class_init(ObjectClass *klass, void *data)
    755{
    756    DeviceClass *dc = DEVICE_CLASS(klass);
    757
    758    dc->desc = "XIVE Interrupt Thread Context";
    759    dc->realize = xive_tctx_realize;
    760    dc->vmsd = &vmstate_xive_tctx;
    761    device_class_set_props(dc, xive_tctx_properties);
    762    /*
    763     * Reason: part of XIVE interrupt controller, needs to be wired up
    764     * by xive_tctx_create().
    765     */
    766    dc->user_creatable = false;
    767}
    768
    769static const TypeInfo xive_tctx_info = {
    770    .name          = TYPE_XIVE_TCTX,
    771    .parent        = TYPE_DEVICE,
    772    .instance_size = sizeof(XiveTCTX),
    773    .class_init    = xive_tctx_class_init,
    774};
    775
    776Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
    777{
    778    Object *obj;
    779
    780    obj = object_new(TYPE_XIVE_TCTX);
    781    object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
    782    object_unref(obj);
    783    object_property_set_link(obj, "cpu", cpu, &error_abort);
    784    object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
    785    if (!qdev_realize(DEVICE(obj), NULL, errp)) {
    786        object_unparent(obj);
    787        return NULL;
    788    }
    789    return obj;
    790}
    791
    792void xive_tctx_destroy(XiveTCTX *tctx)
    793{
    794    Object *obj = OBJECT(tctx);
    795
    796    object_unparent(obj);
    797}
    798
    799/*
    800 * XIVE ESB helpers
    801 */
    802
    803uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
    804{
    805    uint8_t old_pq = *pq & 0x3;
    806
    807    *pq &= ~0x3;
    808    *pq |= value & 0x3;
    809
    810    return old_pq;
    811}
    812
    813bool xive_esb_trigger(uint8_t *pq)
    814{
    815    uint8_t old_pq = *pq & 0x3;
    816
    817    switch (old_pq) {
    818    case XIVE_ESB_RESET:
    819        xive_esb_set(pq, XIVE_ESB_PENDING);
    820        return true;
    821    case XIVE_ESB_PENDING:
    822    case XIVE_ESB_QUEUED:
    823        xive_esb_set(pq, XIVE_ESB_QUEUED);
    824        return false;
    825    case XIVE_ESB_OFF:
    826        xive_esb_set(pq, XIVE_ESB_OFF);
    827        return false;
    828    default:
    829         g_assert_not_reached();
    830    }
    831}
    832
    833bool xive_esb_eoi(uint8_t *pq)
    834{
    835    uint8_t old_pq = *pq & 0x3;
    836
    837    switch (old_pq) {
    838    case XIVE_ESB_RESET:
    839    case XIVE_ESB_PENDING:
    840        xive_esb_set(pq, XIVE_ESB_RESET);
    841        return false;
    842    case XIVE_ESB_QUEUED:
    843        xive_esb_set(pq, XIVE_ESB_PENDING);
    844        return true;
    845    case XIVE_ESB_OFF:
    846        xive_esb_set(pq, XIVE_ESB_OFF);
    847        return false;
    848    default:
    849         g_assert_not_reached();
    850    }
    851}
    852
    853/*
    854 * XIVE Interrupt Source (or IVSE)
    855 */
    856
    857uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
    858{
    859    assert(srcno < xsrc->nr_irqs);
    860
    861    return xsrc->status[srcno] & 0x3;
    862}
    863
    864uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
    865{
    866    assert(srcno < xsrc->nr_irqs);
    867
    868    return xive_esb_set(&xsrc->status[srcno], pq);
    869}
    870
    871/*
    872 * Returns whether the event notification should be forwarded.
    873 */
    874static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
    875{
    876    uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
    877
    878    xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
    879
    880    switch (old_pq) {
    881    case XIVE_ESB_RESET:
    882        xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
    883        return true;
    884    default:
    885        return false;
    886    }
    887}
    888
    889/*
    890 * Returns whether the event notification should be forwarded.
    891 */
    892static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
    893{
    894    bool ret;
    895
    896    assert(srcno < xsrc->nr_irqs);
    897
    898    ret = xive_esb_trigger(&xsrc->status[srcno]);
    899
    900    if (xive_source_irq_is_lsi(xsrc, srcno) &&
    901        xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
    902        qemu_log_mask(LOG_GUEST_ERROR,
    903                      "XIVE: queued an event on LSI IRQ %d\n", srcno);
    904    }
    905
    906    return ret;
    907}
    908
    909/*
    910 * Returns whether the event notification should be forwarded.
    911 */
    912static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
    913{
    914    bool ret;
    915
    916    assert(srcno < xsrc->nr_irqs);
    917
    918    ret = xive_esb_eoi(&xsrc->status[srcno]);
    919
    920    /*
    921     * LSI sources do not set the Q bit but they can still be
    922     * asserted, in which case we should forward a new event
    923     * notification
    924     */
    925    if (xive_source_irq_is_lsi(xsrc, srcno) &&
    926        xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
    927        ret = xive_source_lsi_trigger(xsrc, srcno);
    928    }
    929
    930    return ret;
    931}
    932
    933/*
    934 * Forward the source event notification to the Router
    935 */
    936static void xive_source_notify(XiveSource *xsrc, int srcno)
    937{
    938    XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
    939
    940    if (xnc->notify) {
    941        xnc->notify(xsrc->xive, srcno);
    942    }
    943}
    944
    945/*
    946 * In a two pages ESB MMIO setting, even page is the trigger page, odd
    947 * page is for management
    948 */
    949static inline bool addr_is_even(hwaddr addr, uint32_t shift)
    950{
    951    return !((addr >> shift) & 1);
    952}
    953
    954static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
    955{
    956    return xive_source_esb_has_2page(xsrc) &&
    957        addr_is_even(addr, xsrc->esb_shift - 1);
    958}
    959
    960/*
    961 * ESB MMIO loads
    962 *                      Trigger page    Management/EOI page
    963 *
    964 * ESB MMIO setting     2 pages         1 or 2 pages
    965 *
    966 * 0x000 .. 0x3FF       -1              EOI and return 0|1
    967 * 0x400 .. 0x7FF       -1              EOI and return 0|1
    968 * 0x800 .. 0xBFF       -1              return PQ
    969 * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
    970 * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
    971 * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
    972 * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
    973 */
    974static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
    975{
    976    XiveSource *xsrc = XIVE_SOURCE(opaque);
    977    uint32_t offset = addr & 0xFFF;
    978    uint32_t srcno = addr >> xsrc->esb_shift;
    979    uint64_t ret = -1;
    980
    981    /* In a two pages ESB MMIO setting, trigger page should not be read */
    982    if (xive_source_is_trigger_page(xsrc, addr)) {
    983        qemu_log_mask(LOG_GUEST_ERROR,
    984                      "XIVE: invalid load on IRQ %d trigger page at "
    985                      "0x%"HWADDR_PRIx"\n", srcno, addr);
    986        return -1;
    987    }
    988
    989    switch (offset) {
    990    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
    991        ret = xive_source_esb_eoi(xsrc, srcno);
    992
    993        /* Forward the source event notification for routing */
    994        if (ret) {
    995            xive_source_notify(xsrc, srcno);
    996        }
    997        break;
    998
    999    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
   1000        ret = xive_source_esb_get(xsrc, srcno);
   1001        break;
   1002
   1003    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
   1004    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
   1005    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
   1006    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
   1007        ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
   1008        break;
   1009    default:
   1010        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
   1011                      offset);
   1012    }
   1013
   1014    trace_xive_source_esb_read(addr, srcno, ret);
   1015
   1016    return ret;
   1017}
   1018
   1019/*
   1020 * ESB MMIO stores
   1021 *                      Trigger page    Management/EOI page
   1022 *
   1023 * ESB MMIO setting     2 pages         1 or 2 pages
   1024 *
   1025 * 0x000 .. 0x3FF       Trigger         Trigger
   1026 * 0x400 .. 0x7FF       Trigger         EOI
   1027 * 0x800 .. 0xBFF       Trigger         undefined
   1028 * 0xC00 .. 0xCFF       Trigger         PQ=00
   1029 * 0xD00 .. 0xDFF       Trigger         PQ=01
   1030 * 0xE00 .. 0xDFF       Trigger         PQ=10
   1031 * 0xF00 .. 0xDFF       Trigger         PQ=11
   1032 */
   1033static void xive_source_esb_write(void *opaque, hwaddr addr,
   1034                                  uint64_t value, unsigned size)
   1035{
   1036    XiveSource *xsrc = XIVE_SOURCE(opaque);
   1037    uint32_t offset = addr & 0xFFF;
   1038    uint32_t srcno = addr >> xsrc->esb_shift;
   1039    bool notify = false;
   1040
   1041    trace_xive_source_esb_write(addr, srcno, value);
   1042
   1043    /* In a two pages ESB MMIO setting, trigger page only triggers */
   1044    if (xive_source_is_trigger_page(xsrc, addr)) {
   1045        notify = xive_source_esb_trigger(xsrc, srcno);
   1046        goto out;
   1047    }
   1048
   1049    switch (offset) {
   1050    case 0 ... 0x3FF:
   1051        notify = xive_source_esb_trigger(xsrc, srcno);
   1052        break;
   1053
   1054    case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
   1055        if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
   1056            qemu_log_mask(LOG_GUEST_ERROR,
   1057                          "XIVE: invalid Store EOI for IRQ %d\n", srcno);
   1058            return;
   1059        }
   1060
   1061        notify = xive_source_esb_eoi(xsrc, srcno);
   1062        break;
   1063
   1064    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
   1065    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
   1066    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
   1067    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
   1068        xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
   1069        break;
   1070
   1071    default:
   1072        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
   1073                      offset);
   1074        return;
   1075    }
   1076
   1077out:
   1078    /* Forward the source event notification for routing */
   1079    if (notify) {
   1080        xive_source_notify(xsrc, srcno);
   1081    }
   1082}
   1083
   1084static const MemoryRegionOps xive_source_esb_ops = {
   1085    .read = xive_source_esb_read,
   1086    .write = xive_source_esb_write,
   1087    .endianness = DEVICE_BIG_ENDIAN,
   1088    .valid = {
   1089        .min_access_size = 8,
   1090        .max_access_size = 8,
   1091    },
   1092    .impl = {
   1093        .min_access_size = 8,
   1094        .max_access_size = 8,
   1095    },
   1096};
   1097
   1098void xive_source_set_irq(void *opaque, int srcno, int val)
   1099{
   1100    XiveSource *xsrc = XIVE_SOURCE(opaque);
   1101    bool notify = false;
   1102
   1103    if (xive_source_irq_is_lsi(xsrc, srcno)) {
   1104        if (val) {
   1105            notify = xive_source_lsi_trigger(xsrc, srcno);
   1106        } else {
   1107            xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
   1108        }
   1109    } else {
   1110        if (val) {
   1111            notify = xive_source_esb_trigger(xsrc, srcno);
   1112        }
   1113    }
   1114
   1115    /* Forward the source event notification for routing */
   1116    if (notify) {
   1117        xive_source_notify(xsrc, srcno);
   1118    }
   1119}
   1120
   1121void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
   1122{
   1123    int i;
   1124
   1125    for (i = 0; i < xsrc->nr_irqs; i++) {
   1126        uint8_t pq = xive_source_esb_get(xsrc, i);
   1127
   1128        if (pq == XIVE_ESB_OFF) {
   1129            continue;
   1130        }
   1131
   1132        monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
   1133                       xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
   1134                       pq & XIVE_ESB_VAL_P ? 'P' : '-',
   1135                       pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
   1136                       xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
   1137    }
   1138}
   1139
   1140static void xive_source_reset(void *dev)
   1141{
   1142    XiveSource *xsrc = XIVE_SOURCE(dev);
   1143
   1144    /* Do not clear the LSI bitmap */
   1145
   1146    /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
   1147    memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
   1148}
   1149
   1150static void xive_source_realize(DeviceState *dev, Error **errp)
   1151{
   1152    XiveSource *xsrc = XIVE_SOURCE(dev);
   1153    size_t esb_len = xive_source_esb_len(xsrc);
   1154
   1155    assert(xsrc->xive);
   1156
   1157    if (!xsrc->nr_irqs) {
   1158        error_setg(errp, "Number of interrupt needs to be greater than 0");
   1159        return;
   1160    }
   1161
   1162    if (xsrc->esb_shift != XIVE_ESB_4K &&
   1163        xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
   1164        xsrc->esb_shift != XIVE_ESB_64K &&
   1165        xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
   1166        error_setg(errp, "Invalid ESB shift setting");
   1167        return;
   1168    }
   1169
   1170    xsrc->status = g_malloc0(xsrc->nr_irqs);
   1171    xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
   1172
   1173    memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
   1174    memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
   1175                          &xive_source_esb_ops, xsrc, "xive.esb-emulated",
   1176                          esb_len);
   1177    memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
   1178
   1179    qemu_register_reset(xive_source_reset, dev);
   1180}
   1181
   1182static const VMStateDescription vmstate_xive_source = {
   1183    .name = TYPE_XIVE_SOURCE,
   1184    .version_id = 1,
   1185    .minimum_version_id = 1,
   1186    .fields = (VMStateField[]) {
   1187        VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
   1188        VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
   1189        VMSTATE_END_OF_LIST()
   1190    },
   1191};
   1192
   1193/*
   1194 * The default XIVE interrupt source setting for the ESB MMIOs is two
   1195 * 64k pages without Store EOI, to be in sync with KVM.
   1196 */
   1197static Property xive_source_properties[] = {
   1198    DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
   1199    DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
   1200    DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
   1201    DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
   1202                     XiveNotifier *),
   1203    DEFINE_PROP_END_OF_LIST(),
   1204};
   1205
   1206static void xive_source_class_init(ObjectClass *klass, void *data)
   1207{
   1208    DeviceClass *dc = DEVICE_CLASS(klass);
   1209
   1210    dc->desc    = "XIVE Interrupt Source";
   1211    device_class_set_props(dc, xive_source_properties);
   1212    dc->realize = xive_source_realize;
   1213    dc->vmsd    = &vmstate_xive_source;
   1214    /*
   1215     * Reason: part of XIVE interrupt controller, needs to be wired up,
   1216     * e.g. by spapr_xive_instance_init().
   1217     */
   1218    dc->user_creatable = false;
   1219}
   1220
   1221static const TypeInfo xive_source_info = {
   1222    .name          = TYPE_XIVE_SOURCE,
   1223    .parent        = TYPE_DEVICE,
   1224    .instance_size = sizeof(XiveSource),
   1225    .class_init    = xive_source_class_init,
   1226};
   1227
   1228/*
   1229 * XiveEND helpers
   1230 */
   1231
   1232void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
   1233{
   1234    uint64_t qaddr_base = xive_end_qaddr(end);
   1235    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
   1236    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
   1237    uint32_t qentries = 1 << (qsize + 10);
   1238    int i;
   1239
   1240    /*
   1241     * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
   1242     */
   1243    monitor_printf(mon, " [ ");
   1244    qindex = (qindex - (width - 1)) & (qentries - 1);
   1245    for (i = 0; i < width; i++) {
   1246        uint64_t qaddr = qaddr_base + (qindex << 2);
   1247        uint32_t qdata = -1;
   1248
   1249        if (dma_memory_read(&address_space_memory, qaddr, &qdata,
   1250                            sizeof(qdata))) {
   1251            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
   1252                          HWADDR_PRIx "\n", qaddr);
   1253            return;
   1254        }
   1255        monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
   1256                       be32_to_cpu(qdata));
   1257        qindex = (qindex + 1) & (qentries - 1);
   1258    }
   1259    monitor_printf(mon, "]");
   1260}
   1261
   1262void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
   1263{
   1264    uint64_t qaddr_base = xive_end_qaddr(end);
   1265    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
   1266    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
   1267    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
   1268    uint32_t qentries = 1 << (qsize + 10);
   1269
   1270    uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
   1271    uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
   1272    uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
   1273    uint8_t pq;
   1274
   1275    if (!xive_end_is_valid(end)) {
   1276        return;
   1277    }
   1278
   1279    pq = xive_get_field32(END_W1_ESn, end->w1);
   1280
   1281    monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
   1282                   end_idx,
   1283                   pq & XIVE_ESB_VAL_P ? 'P' : '-',
   1284                   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
   1285                   xive_end_is_valid(end)    ? 'v' : '-',
   1286                   xive_end_is_enqueue(end)  ? 'q' : '-',
   1287                   xive_end_is_notify(end)   ? 'n' : '-',
   1288                   xive_end_is_backlog(end)  ? 'b' : '-',
   1289                   xive_end_is_escalate(end) ? 'e' : '-',
   1290                   xive_end_is_uncond_escalation(end)   ? 'u' : '-',
   1291                   xive_end_is_silent_escalation(end)   ? 's' : '-',
   1292                   xive_end_is_firmware(end)   ? 'f' : '-',
   1293                   priority, nvt_blk, nvt_idx);
   1294
   1295    if (qaddr_base) {
   1296        monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
   1297                       qaddr_base, qindex, qentries, qgen);
   1298        xive_end_queue_pic_print_info(end, 6, mon);
   1299    }
   1300    monitor_printf(mon, "\n");
   1301}
   1302
   1303static void xive_end_enqueue(XiveEND *end, uint32_t data)
   1304{
   1305    uint64_t qaddr_base = xive_end_qaddr(end);
   1306    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
   1307    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
   1308    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
   1309
   1310    uint64_t qaddr = qaddr_base + (qindex << 2);
   1311    uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
   1312    uint32_t qentries = 1 << (qsize + 10);
   1313
   1314    if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
   1315        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
   1316                      HWADDR_PRIx "\n", qaddr);
   1317        return;
   1318    }
   1319
   1320    qindex = (qindex + 1) & (qentries - 1);
   1321    if (qindex == 0) {
   1322        qgen ^= 1;
   1323        end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
   1324    }
   1325    end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
   1326}
   1327
   1328void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
   1329                                   Monitor *mon)
   1330{
   1331    XiveEAS *eas = (XiveEAS *) &end->w4;
   1332    uint8_t pq;
   1333
   1334    if (!xive_end_is_escalate(end)) {
   1335        return;
   1336    }
   1337
   1338    pq = xive_get_field32(END_W1_ESe, end->w1);
   1339
   1340    monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
   1341                   end_idx,
   1342                   pq & XIVE_ESB_VAL_P ? 'P' : '-',
   1343                   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
   1344                   xive_eas_is_valid(eas) ? 'V' : ' ',
   1345                   xive_eas_is_masked(eas) ? 'M' : ' ',
   1346                   (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
   1347                   (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
   1348                   (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
   1349}
   1350
   1351/*
   1352 * XIVE Router (aka. Virtualization Controller or IVRE)
   1353 */
   1354
   1355int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
   1356                        XiveEAS *eas)
   1357{
   1358    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1359
   1360    return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
   1361}
   1362
   1363int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
   1364                        XiveEND *end)
   1365{
   1366   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1367
   1368   return xrc->get_end(xrtr, end_blk, end_idx, end);
   1369}
   1370
   1371int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
   1372                          XiveEND *end, uint8_t word_number)
   1373{
   1374   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1375
   1376   return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
   1377}
   1378
   1379int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
   1380                        XiveNVT *nvt)
   1381{
   1382   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1383
   1384   return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
   1385}
   1386
   1387int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
   1388                        XiveNVT *nvt, uint8_t word_number)
   1389{
   1390   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1391
   1392   return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
   1393}
   1394
   1395static int xive_router_get_block_id(XiveRouter *xrtr)
   1396{
   1397   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
   1398
   1399   return xrc->get_block_id(xrtr);
   1400}
   1401
   1402static void xive_router_realize(DeviceState *dev, Error **errp)
   1403{
   1404    XiveRouter *xrtr = XIVE_ROUTER(dev);
   1405
   1406    assert(xrtr->xfb);
   1407}
   1408
   1409/*
   1410 * Encode the HW CAM line in the block group mode format :
   1411 *
   1412 *   chip << 19 | 0000000 0 0001 thread (7Bit)
   1413 */
   1414static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
   1415{
   1416    CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
   1417    uint32_t pir = env->spr_cb[SPR_PIR].default_value;
   1418    uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
   1419
   1420    return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
   1421}
   1422
   1423/*
   1424 * The thread context register words are in big-endian format.
   1425 */
   1426int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
   1427                              uint8_t format,
   1428                              uint8_t nvt_blk, uint32_t nvt_idx,
   1429                              bool cam_ignore, uint32_t logic_serv)
   1430{
   1431    uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
   1432    uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
   1433    uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
   1434    uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
   1435    uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
   1436
   1437    /*
   1438     * TODO (PowerNV): ignore mode. The low order bits of the NVT
   1439     * identifier are ignored in the "CAM" match.
   1440     */
   1441
   1442    if (format == 0) {
   1443        if (cam_ignore == true) {
   1444            /*
   1445             * F=0 & i=1: Logical server notification (bits ignored at
   1446             * the end of the NVT identifier)
   1447             */
   1448            qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
   1449                          nvt_blk, nvt_idx);
   1450             return -1;
   1451        }
   1452
   1453        /* F=0 & i=0: Specific NVT notification */
   1454
   1455        /* PHYS ring */
   1456        if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
   1457            cam == xive_tctx_hw_cam_line(xptr, tctx)) {
   1458            return TM_QW3_HV_PHYS;
   1459        }
   1460
   1461        /* HV POOL ring */
   1462        if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
   1463            cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
   1464            return TM_QW2_HV_POOL;
   1465        }
   1466
   1467        /* OS ring */
   1468        if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
   1469            cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
   1470            return TM_QW1_OS;
   1471        }
   1472    } else {
   1473        /* F=1 : User level Event-Based Branch (EBB) notification */
   1474
   1475        /* USER ring */
   1476        if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
   1477             (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
   1478             (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
   1479             (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
   1480            return TM_QW0_USER;
   1481        }
   1482    }
   1483    return -1;
   1484}
   1485
   1486/*
   1487 * This is our simple Xive Presenter Engine model. It is merged in the
   1488 * Router as it does not require an extra object.
   1489 *
   1490 * It receives notification requests sent by the IVRE to find one
   1491 * matching NVT (or more) dispatched on the processor threads. In case
   1492 * of a single NVT notification, the process is abreviated and the
   1493 * thread is signaled if a match is found. In case of a logical server
   1494 * notification (bits ignored at the end of the NVT identifier), the
   1495 * IVPE and IVRE select a winning thread using different filters. This
   1496 * involves 2 or 3 exchanges on the PowerBus that the model does not
   1497 * support.
   1498 *
   1499 * The parameters represent what is sent on the PowerBus
   1500 */
   1501bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
   1502                           uint8_t nvt_blk, uint32_t nvt_idx,
   1503                           bool cam_ignore, uint8_t priority,
   1504                           uint32_t logic_serv)
   1505{
   1506    XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
   1507    XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
   1508    int count;
   1509
   1510    /*
   1511     * Ask the machine to scan the interrupt controllers for a match
   1512     */
   1513    count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
   1514                           priority, logic_serv, &match);
   1515    if (count < 0) {
   1516        return false;
   1517    }
   1518
   1519    /* handle CPU exception delivery */
   1520    if (count) {
   1521        trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
   1522        xive_tctx_ipb_update(match.tctx, match.ring,
   1523                             xive_priority_to_ipb(priority));
   1524    }
   1525
   1526    return !!count;
   1527}
   1528
   1529/*
   1530 * Notification using the END ESe/ESn bit (Event State Buffer for
   1531 * escalation and notification). Provide further coalescing in the
   1532 * Router.
   1533 */
   1534static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
   1535                                      uint32_t end_idx, XiveEND *end,
   1536                                      uint32_t end_esmask)
   1537{
   1538    uint8_t pq = xive_get_field32(end_esmask, end->w1);
   1539    bool notify = xive_esb_trigger(&pq);
   1540
   1541    if (pq != xive_get_field32(end_esmask, end->w1)) {
   1542        end->w1 = xive_set_field32(end_esmask, end->w1, pq);
   1543        xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
   1544    }
   1545
   1546    /* ESe/n[Q]=1 : end of notification */
   1547    return notify;
   1548}
   1549
   1550/*
   1551 * An END trigger can come from an event trigger (IPI or HW) or from
   1552 * another chip. We don't model the PowerBus but the END trigger
   1553 * message has the same parameters than in the function below.
   1554 */
   1555static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
   1556                                   uint32_t end_idx, uint32_t end_data)
   1557{
   1558    XiveEND end;
   1559    uint8_t priority;
   1560    uint8_t format;
   1561    uint8_t nvt_blk;
   1562    uint32_t nvt_idx;
   1563    XiveNVT nvt;
   1564    bool found;
   1565
   1566    /* END cache lookup */
   1567    if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
   1568        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
   1569                      end_idx);
   1570        return;
   1571    }
   1572
   1573    if (!xive_end_is_valid(&end)) {
   1574        trace_xive_router_end_notify(end_blk, end_idx, end_data);
   1575        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
   1576                      end_blk, end_idx);
   1577        return;
   1578    }
   1579
   1580    if (xive_end_is_enqueue(&end)) {
   1581        xive_end_enqueue(&end, end_data);
   1582        /* Enqueuing event data modifies the EQ toggle and index */
   1583        xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
   1584    }
   1585
   1586    /*
   1587     * When the END is silent, we skip the notification part.
   1588     */
   1589    if (xive_end_is_silent_escalation(&end)) {
   1590        goto do_escalation;
   1591    }
   1592
   1593    /*
   1594     * The W7 format depends on the F bit in W6. It defines the type
   1595     * of the notification :
   1596     *
   1597     *   F=0 : single or multiple NVT notification
   1598     *   F=1 : User level Event-Based Branch (EBB) notification, no
   1599     *         priority
   1600     */
   1601    format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
   1602    priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
   1603
   1604    /* The END is masked */
   1605    if (format == 0 && priority == 0xff) {
   1606        return;
   1607    }
   1608
   1609    /*
   1610     * Check the END ESn (Event State Buffer for notification) for
   1611     * even further coalescing in the Router
   1612     */
   1613    if (!xive_end_is_notify(&end)) {
   1614        /* ESn[Q]=1 : end of notification */
   1615        if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
   1616                                       &end, END_W1_ESn)) {
   1617            return;
   1618        }
   1619    }
   1620
   1621    /*
   1622     * Follows IVPE notification
   1623     */
   1624    nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
   1625    nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
   1626
   1627    /* NVT cache lookup */
   1628    if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
   1629        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
   1630                      nvt_blk, nvt_idx);
   1631        return;
   1632    }
   1633
   1634    if (!xive_nvt_is_valid(&nvt)) {
   1635        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
   1636                      nvt_blk, nvt_idx);
   1637        return;
   1638    }
   1639
   1640    found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
   1641                          xive_get_field32(END_W7_F0_IGNORE, end.w7),
   1642                          priority,
   1643                          xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
   1644
   1645    /* TODO: Auto EOI. */
   1646
   1647    if (found) {
   1648        return;
   1649    }
   1650
   1651    /*
   1652     * If no matching NVT is dispatched on a HW thread :
   1653     * - specific VP: update the NVT structure if backlog is activated
   1654     * - logical server : forward request to IVPE (not supported)
   1655     */
   1656    if (xive_end_is_backlog(&end)) {
   1657        uint8_t ipb;
   1658
   1659        if (format == 1) {
   1660            qemu_log_mask(LOG_GUEST_ERROR,
   1661                          "XIVE: END %x/%x invalid config: F1 & backlog\n",
   1662                          end_blk, end_idx);
   1663            return;
   1664        }
   1665        /*
   1666         * Record the IPB in the associated NVT structure for later
   1667         * use. The presenter will resend the interrupt when the vCPU
   1668         * is dispatched again on a HW thread.
   1669         */
   1670        ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
   1671            xive_priority_to_ipb(priority);
   1672        nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
   1673        xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
   1674
   1675        /*
   1676         * On HW, follows a "Broadcast Backlog" to IVPEs
   1677         */
   1678    }
   1679
   1680do_escalation:
   1681    /*
   1682     * If activated, escalate notification using the ESe PQ bits and
   1683     * the EAS in w4-5
   1684     */
   1685    if (!xive_end_is_escalate(&end)) {
   1686        return;
   1687    }
   1688
   1689    /*
   1690     * Check the END ESe (Event State Buffer for escalation) for even
   1691     * further coalescing in the Router
   1692     */
   1693    if (!xive_end_is_uncond_escalation(&end)) {
   1694        /* ESe[Q]=1 : end of notification */
   1695        if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
   1696                                       &end, END_W1_ESe)) {
   1697            return;
   1698        }
   1699    }
   1700
   1701    trace_xive_router_end_escalate(end_blk, end_idx,
   1702           (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
   1703           (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
   1704           (uint32_t) xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
   1705    /*
   1706     * The END trigger becomes an Escalation trigger
   1707     */
   1708    xive_router_end_notify(xrtr,
   1709                           xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
   1710                           xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
   1711                           xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
   1712}
   1713
   1714void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
   1715{
   1716    XiveRouter *xrtr = XIVE_ROUTER(xn);
   1717    uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
   1718    uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
   1719    XiveEAS eas;
   1720
   1721    /* EAS cache lookup */
   1722    if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
   1723        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
   1724        return;
   1725    }
   1726
   1727    /*
   1728     * The IVRE checks the State Bit Cache at this point. We skip the
   1729     * SBC lookup because the state bits of the sources are modeled
   1730     * internally in QEMU.
   1731     */
   1732
   1733    if (!xive_eas_is_valid(&eas)) {
   1734        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
   1735        return;
   1736    }
   1737
   1738    if (xive_eas_is_masked(&eas)) {
   1739        /* Notification completed */
   1740        return;
   1741    }
   1742
   1743    /*
   1744     * The event trigger becomes an END trigger
   1745     */
   1746    xive_router_end_notify(xrtr,
   1747                           xive_get_field64(EAS_END_BLOCK, eas.w),
   1748                           xive_get_field64(EAS_END_INDEX, eas.w),
   1749                           xive_get_field64(EAS_END_DATA,  eas.w));
   1750}
   1751
   1752static Property xive_router_properties[] = {
   1753    DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
   1754                     TYPE_XIVE_FABRIC, XiveFabric *),
   1755    DEFINE_PROP_END_OF_LIST(),
   1756};
   1757
   1758static void xive_router_class_init(ObjectClass *klass, void *data)
   1759{
   1760    DeviceClass *dc = DEVICE_CLASS(klass);
   1761    XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
   1762
   1763    dc->desc    = "XIVE Router Engine";
   1764    device_class_set_props(dc, xive_router_properties);
   1765    /* Parent is SysBusDeviceClass. No need to call its realize hook */
   1766    dc->realize = xive_router_realize;
   1767    xnc->notify = xive_router_notify;
   1768}
   1769
   1770static const TypeInfo xive_router_info = {
   1771    .name          = TYPE_XIVE_ROUTER,
   1772    .parent        = TYPE_SYS_BUS_DEVICE,
   1773    .abstract      = true,
   1774    .instance_size = sizeof(XiveRouter),
   1775    .class_size    = sizeof(XiveRouterClass),
   1776    .class_init    = xive_router_class_init,
   1777    .interfaces    = (InterfaceInfo[]) {
   1778        { TYPE_XIVE_NOTIFIER },
   1779        { TYPE_XIVE_PRESENTER },
   1780        { }
   1781    }
   1782};
   1783
   1784void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
   1785{
   1786    if (!xive_eas_is_valid(eas)) {
   1787        return;
   1788    }
   1789
   1790    monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
   1791                   lisn, xive_eas_is_masked(eas) ? "M" : " ",
   1792                   (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
   1793                   (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
   1794                   (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
   1795}
   1796
   1797/*
   1798 * END ESB MMIO loads
   1799 */
   1800static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
   1801{
   1802    XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
   1803    uint32_t offset = addr & 0xFFF;
   1804    uint8_t end_blk;
   1805    uint32_t end_idx;
   1806    XiveEND end;
   1807    uint32_t end_esmask;
   1808    uint8_t pq;
   1809    uint64_t ret = -1;
   1810
   1811    /*
   1812     * The block id should be deduced from the load address on the END
   1813     * ESB MMIO but our model only supports a single block per XIVE chip.
   1814     */
   1815    end_blk = xive_router_get_block_id(xsrc->xrtr);
   1816    end_idx = addr >> (xsrc->esb_shift + 1);
   1817
   1818    trace_xive_end_source_read(end_blk, end_idx, addr);
   1819
   1820    if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
   1821        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
   1822                      end_idx);
   1823        return -1;
   1824    }
   1825
   1826    if (!xive_end_is_valid(&end)) {
   1827        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
   1828                      end_blk, end_idx);
   1829        return -1;
   1830    }
   1831
   1832    end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
   1833    pq = xive_get_field32(end_esmask, end.w1);
   1834
   1835    switch (offset) {
   1836    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
   1837        ret = xive_esb_eoi(&pq);
   1838
   1839        /* Forward the source event notification for routing ?? */
   1840        break;
   1841
   1842    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
   1843        ret = pq;
   1844        break;
   1845
   1846    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
   1847    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
   1848    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
   1849    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
   1850        ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
   1851        break;
   1852    default:
   1853        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
   1854                      offset);
   1855        return -1;
   1856    }
   1857
   1858    if (pq != xive_get_field32(end_esmask, end.w1)) {
   1859        end.w1 = xive_set_field32(end_esmask, end.w1, pq);
   1860        xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
   1861    }
   1862
   1863    return ret;
   1864}
   1865
   1866/*
   1867 * END ESB MMIO stores are invalid
   1868 */
   1869static void xive_end_source_write(void *opaque, hwaddr addr,
   1870                                  uint64_t value, unsigned size)
   1871{
   1872    qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
   1873                  HWADDR_PRIx"\n", addr);
   1874}
   1875
   1876static const MemoryRegionOps xive_end_source_ops = {
   1877    .read = xive_end_source_read,
   1878    .write = xive_end_source_write,
   1879    .endianness = DEVICE_BIG_ENDIAN,
   1880    .valid = {
   1881        .min_access_size = 8,
   1882        .max_access_size = 8,
   1883    },
   1884    .impl = {
   1885        .min_access_size = 8,
   1886        .max_access_size = 8,
   1887    },
   1888};
   1889
   1890static void xive_end_source_realize(DeviceState *dev, Error **errp)
   1891{
   1892    XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
   1893
   1894    assert(xsrc->xrtr);
   1895
   1896    if (!xsrc->nr_ends) {
   1897        error_setg(errp, "Number of interrupt needs to be greater than 0");
   1898        return;
   1899    }
   1900
   1901    if (xsrc->esb_shift != XIVE_ESB_4K &&
   1902        xsrc->esb_shift != XIVE_ESB_64K) {
   1903        error_setg(errp, "Invalid ESB shift setting");
   1904        return;
   1905    }
   1906
   1907    /*
   1908     * Each END is assigned an even/odd pair of MMIO pages, the even page
   1909     * manages the ESn field while the odd page manages the ESe field.
   1910     */
   1911    memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
   1912                          &xive_end_source_ops, xsrc, "xive.end",
   1913                          (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
   1914}
   1915
   1916static Property xive_end_source_properties[] = {
   1917    DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
   1918    DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
   1919    DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
   1920                     XiveRouter *),
   1921    DEFINE_PROP_END_OF_LIST(),
   1922};
   1923
   1924static void xive_end_source_class_init(ObjectClass *klass, void *data)
   1925{
   1926    DeviceClass *dc = DEVICE_CLASS(klass);
   1927
   1928    dc->desc    = "XIVE END Source";
   1929    device_class_set_props(dc, xive_end_source_properties);
   1930    dc->realize = xive_end_source_realize;
   1931    /*
   1932     * Reason: part of XIVE interrupt controller, needs to be wired up,
   1933     * e.g. by spapr_xive_instance_init().
   1934     */
   1935    dc->user_creatable = false;
   1936}
   1937
   1938static const TypeInfo xive_end_source_info = {
   1939    .name          = TYPE_XIVE_END_SOURCE,
   1940    .parent        = TYPE_DEVICE,
   1941    .instance_size = sizeof(XiveENDSource),
   1942    .class_init    = xive_end_source_class_init,
   1943};
   1944
   1945/*
   1946 * XIVE Notifier
   1947 */
   1948static const TypeInfo xive_notifier_info = {
   1949    .name = TYPE_XIVE_NOTIFIER,
   1950    .parent = TYPE_INTERFACE,
   1951    .class_size = sizeof(XiveNotifierClass),
   1952};
   1953
   1954/*
   1955 * XIVE Presenter
   1956 */
   1957static const TypeInfo xive_presenter_info = {
   1958    .name = TYPE_XIVE_PRESENTER,
   1959    .parent = TYPE_INTERFACE,
   1960    .class_size = sizeof(XivePresenterClass),
   1961};
   1962
   1963/*
   1964 * XIVE Fabric
   1965 */
   1966static const TypeInfo xive_fabric_info = {
   1967    .name = TYPE_XIVE_FABRIC,
   1968    .parent = TYPE_INTERFACE,
   1969    .class_size = sizeof(XiveFabricClass),
   1970};
   1971
   1972static void xive_register_types(void)
   1973{
   1974    type_register_static(&xive_fabric_info);
   1975    type_register_static(&xive_source_info);
   1976    type_register_static(&xive_notifier_info);
   1977    type_register_static(&xive_presenter_info);
   1978    type_register_static(&xive_router_info);
   1979    type_register_static(&xive_end_source_info);
   1980    type_register_static(&xive_tctx_info);
   1981}
   1982
   1983type_init(xive_register_types)