cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

boston.c (16906B)


      1/*
      2 * MIPS Boston development board emulation.
      3 *
      4 * Copyright (c) 2016 Imagination Technologies
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21#include "qemu/units.h"
     22
     23#include "hw/boards.h"
     24#include "hw/char/serial.h"
     25#include "hw/ide/pci.h"
     26#include "hw/ide/ahci.h"
     27#include "hw/loader.h"
     28#include "hw/loader-fit.h"
     29#include "hw/mips/bootloader.h"
     30#include "hw/mips/cps.h"
     31#include "hw/pci-host/xilinx-pcie.h"
     32#include "hw/qdev-clock.h"
     33#include "hw/qdev-properties.h"
     34#include "qapi/error.h"
     35#include "qemu/error-report.h"
     36#include "qemu/log.h"
     37#include "chardev/char.h"
     38#include "sysemu/device_tree.h"
     39#include "sysemu/sysemu.h"
     40#include "sysemu/qtest.h"
     41#include "sysemu/runstate.h"
     42
     43#include <libfdt.h>
     44#include "qom/object.h"
     45
     46#define TYPE_BOSTON "mips-boston"
     47typedef struct BostonState BostonState;
     48DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
     49                         TYPE_BOSTON)
     50
     51struct BostonState {
     52    SysBusDevice parent_obj;
     53
     54    MachineState *mach;
     55    MIPSCPSState cps;
     56    SerialMM *uart;
     57    Clock *cpuclk;
     58
     59    CharBackend lcd_display;
     60    char lcd_content[8];
     61    bool lcd_inited;
     62
     63    hwaddr kernel_entry;
     64    hwaddr fdt_base;
     65};
     66
     67enum boston_plat_reg {
     68    PLAT_FPGA_BUILD     = 0x00,
     69    PLAT_CORE_CL        = 0x04,
     70    PLAT_WRAPPER_CL     = 0x08,
     71    PLAT_SYSCLK_STATUS  = 0x0c,
     72    PLAT_SOFTRST_CTL    = 0x10,
     73#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
     74    PLAT_DDR3_STATUS    = 0x14,
     75#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
     76#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
     77    PLAT_PCIE_STATUS    = 0x18,
     78#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
     79#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
     80#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
     81    PLAT_FLASH_CTL      = 0x1c,
     82    PLAT_SPARE0         = 0x20,
     83    PLAT_SPARE1         = 0x24,
     84    PLAT_SPARE2         = 0x28,
     85    PLAT_SPARE3         = 0x2c,
     86    PLAT_MMCM_DIV       = 0x30,
     87#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
     88#define PLAT_MMCM_DIV_INPUT_SHIFT       8
     89#define PLAT_MMCM_DIV_MUL_SHIFT         16
     90#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
     91    PLAT_BUILD_CFG      = 0x34,
     92#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
     93#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
     94#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
     95#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
     96    PLAT_DDR_CFG        = 0x38,
     97#define PLAT_DDR_CFG_SIZE               (0xf << 0)
     98#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
     99    PLAT_NOC_PCIE0_ADDR = 0x3c,
    100    PLAT_NOC_PCIE1_ADDR = 0x40,
    101    PLAT_NOC_PCIE2_ADDR = 0x44,
    102    PLAT_SYS_CTL        = 0x48,
    103};
    104
    105static void boston_lcd_event(void *opaque, QEMUChrEvent event)
    106{
    107    BostonState *s = opaque;
    108    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
    109        qemu_chr_fe_printf(&s->lcd_display, "        ");
    110        s->lcd_inited = true;
    111    }
    112}
    113
    114static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
    115                                unsigned size)
    116{
    117    BostonState *s = opaque;
    118    uint64_t val = 0;
    119
    120    switch (size) {
    121    case 8:
    122        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
    123        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
    124        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
    125        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
    126        /* fall through */
    127    case 4:
    128        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
    129        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
    130        /* fall through */
    131    case 2:
    132        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
    133        /* fall through */
    134    case 1:
    135        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
    136        break;
    137    }
    138
    139    return val;
    140}
    141
    142static void boston_lcd_write(void *opaque, hwaddr addr,
    143                             uint64_t val, unsigned size)
    144{
    145    BostonState *s = opaque;
    146
    147    switch (size) {
    148    case 8:
    149        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
    150        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
    151        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
    152        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
    153        /* fall through */
    154    case 4:
    155        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
    156        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
    157        /* fall through */
    158    case 2:
    159        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
    160        /* fall through */
    161    case 1:
    162        s->lcd_content[(addr + 0) & 0x7] = val;
    163        break;
    164    }
    165
    166    qemu_chr_fe_printf(&s->lcd_display,
    167                       "\r%-8.8s", s->lcd_content);
    168}
    169
    170static const MemoryRegionOps boston_lcd_ops = {
    171    .read = boston_lcd_read,
    172    .write = boston_lcd_write,
    173    .endianness = DEVICE_NATIVE_ENDIAN,
    174};
    175
    176static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
    177                                    unsigned size)
    178{
    179    BostonState *s = opaque;
    180    uint32_t gic_freq, val;
    181
    182    if (size != 4) {
    183        qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
    184        return 0;
    185    }
    186
    187    switch (addr & 0xffff) {
    188    case PLAT_FPGA_BUILD:
    189    case PLAT_CORE_CL:
    190    case PLAT_WRAPPER_CL:
    191        return 0;
    192    case PLAT_DDR3_STATUS:
    193        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
    194    case PLAT_MMCM_DIV:
    195        gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
    196        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
    197        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
    198        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
    199        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
    200        return val;
    201    case PLAT_BUILD_CFG:
    202        val = PLAT_BUILD_CFG_PCIE0_EN;
    203        val |= PLAT_BUILD_CFG_PCIE1_EN;
    204        val |= PLAT_BUILD_CFG_PCIE2_EN;
    205        return val;
    206    case PLAT_DDR_CFG:
    207        val = s->mach->ram_size / GiB;
    208        assert(!(val & ~PLAT_DDR_CFG_SIZE));
    209        val |= PLAT_DDR_CFG_MHZ;
    210        return val;
    211    default:
    212        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
    213                      addr & 0xffff);
    214        return 0;
    215    }
    216}
    217
    218static void boston_platreg_write(void *opaque, hwaddr addr,
    219                                 uint64_t val, unsigned size)
    220{
    221    if (size != 4) {
    222        qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
    223        return;
    224    }
    225
    226    switch (addr & 0xffff) {
    227    case PLAT_FPGA_BUILD:
    228    case PLAT_CORE_CL:
    229    case PLAT_WRAPPER_CL:
    230    case PLAT_DDR3_STATUS:
    231    case PLAT_PCIE_STATUS:
    232    case PLAT_MMCM_DIV:
    233    case PLAT_BUILD_CFG:
    234    case PLAT_DDR_CFG:
    235        /* read only */
    236        break;
    237    case PLAT_SOFTRST_CTL:
    238        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
    239            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
    240        }
    241        break;
    242    default:
    243        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
    244                      " = 0x%" PRIx64 "\n", addr & 0xffff, val);
    245        break;
    246    }
    247}
    248
    249static const MemoryRegionOps boston_platreg_ops = {
    250    .read = boston_platreg_read,
    251    .write = boston_platreg_write,
    252    .endianness = DEVICE_NATIVE_ENDIAN,
    253};
    254
    255static void mips_boston_instance_init(Object *obj)
    256{
    257    BostonState *s = BOSTON(obj);
    258
    259    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
    260    clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
    261}
    262
    263static const TypeInfo boston_device = {
    264    .name          = TYPE_BOSTON,
    265    .parent        = TYPE_SYS_BUS_DEVICE,
    266    .instance_size = sizeof(BostonState),
    267    .instance_init = mips_boston_instance_init,
    268};
    269
    270static void boston_register_types(void)
    271{
    272    type_register_static(&boston_device);
    273}
    274type_init(boston_register_types)
    275
    276static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
    277{
    278    const uint32_t cm_base = 0x16100000;
    279    const uint32_t gic_base = 0x16120000;
    280    const uint32_t cpc_base = 0x16200000;
    281
    282    /* Move CM GCRs */
    283    bl_gen_write_ulong(&p,
    284                       cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
    285                       cm_base);
    286
    287    /* Move & enable GIC GCRs */
    288    bl_gen_write_ulong(&p,
    289                       cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_GIC_BASE_OFS),
    290                       gic_base | GCR_GIC_BASE_GICEN_MSK);
    291
    292    /* Move & enable CPC GCRs */
    293    bl_gen_write_ulong(&p,
    294                       cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_CPC_BASE_OFS),
    295                       cpc_base | GCR_CPC_BASE_CPCEN_MSK);
    296
    297    /*
    298     * Setup argument registers to follow the UHI boot protocol:
    299     *
    300     * a0/$4 = -2
    301     * a1/$5 = virtual address of FDT
    302     * a2/$6 = 0
    303     * a3/$7 = 0
    304     */
    305    bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
    306}
    307
    308static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
    309                                     const void *match_data, hwaddr *load_addr)
    310{
    311    BostonState *s = BOSTON(opaque);
    312    MachineState *machine = s->mach;
    313    const char *cmdline;
    314    int err;
    315    size_t ram_low_sz, ram_high_sz;
    316    size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
    317    g_autofree void *fdt = g_malloc0(fdt_sz);
    318
    319    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
    320    if (err) {
    321        fprintf(stderr, "unable to open FDT\n");
    322        return NULL;
    323    }
    324
    325    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
    326            ? machine->kernel_cmdline : " ";
    327    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
    328    if (err < 0) {
    329        fprintf(stderr, "couldn't set /chosen/bootargs\n");
    330        return NULL;
    331    }
    332
    333    ram_low_sz = MIN(256 * MiB, machine->ram_size);
    334    ram_high_sz = machine->ram_size - ram_low_sz;
    335    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
    336                                 1, 0x00000000, 1, ram_low_sz,
    337                                 1, 0x90000000, 1, ram_high_sz);
    338
    339    fdt = g_realloc(fdt, fdt_totalsize(fdt));
    340    qemu_fdt_dumpdtb(fdt, fdt_sz);
    341
    342    s->fdt_base = *load_addr;
    343
    344    return g_steal_pointer(&fdt);
    345}
    346
    347static const void *boston_kernel_filter(void *opaque, const void *kernel,
    348                                        hwaddr *load_addr, hwaddr *entry_addr)
    349{
    350    BostonState *s = BOSTON(opaque);
    351
    352    s->kernel_entry = *entry_addr;
    353
    354    return kernel;
    355}
    356
    357static const struct fit_loader_match boston_matches[] = {
    358    { "img,boston" },
    359    { NULL },
    360};
    361
    362static const struct fit_loader boston_fit_loader = {
    363    .matches = boston_matches,
    364    .addr_to_phys = cpu_mips_kseg0_to_phys,
    365    .fdt_filter = boston_fdt_filter,
    366    .kernel_filter = boston_kernel_filter,
    367};
    368
    369static inline XilinxPCIEHost *
    370xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
    371                 hwaddr cfg_base, uint64_t cfg_size,
    372                 hwaddr mmio_base, uint64_t mmio_size,
    373                 qemu_irq irq, bool link_up)
    374{
    375    DeviceState *dev;
    376    MemoryRegion *cfg, *mmio;
    377
    378    dev = qdev_new(TYPE_XILINX_PCIE_HOST);
    379
    380    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
    381    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
    382    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
    383    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
    384    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
    385    qdev_prop_set_bit(dev, "link_up", link_up);
    386
    387    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    388
    389    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
    390    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
    391
    392    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
    393    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
    394
    395    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
    396
    397    return XILINX_PCIE_HOST(dev);
    398}
    399
    400static void boston_mach_init(MachineState *machine)
    401{
    402    DeviceState *dev;
    403    BostonState *s;
    404    MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
    405    MemoryRegion *sys_mem = get_system_memory();
    406    XilinxPCIEHost *pcie2;
    407    PCIDevice *ahci;
    408    DriveInfo *hd[6];
    409    Chardev *chr;
    410    int fw_size, fit_err;
    411
    412    if ((machine->ram_size % GiB) ||
    413        (machine->ram_size > (2 * GiB))) {
    414        error_report("Memory size must be 1GB or 2GB");
    415        exit(1);
    416    }
    417
    418    dev = qdev_new(TYPE_BOSTON);
    419    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    420
    421    s = BOSTON(dev);
    422    s->mach = machine;
    423
    424    if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
    425        error_report("Boston requires CPUs which support CPS");
    426        exit(1);
    427    }
    428
    429    object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
    430    object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
    431                            &error_fatal);
    432    object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
    433                            &error_fatal);
    434    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
    435                          qdev_get_clock_out(dev, "cpu-refclk"));
    436    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
    437
    438    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
    439
    440    flash =  g_new(MemoryRegion, 1);
    441    memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
    442                           &error_fatal);
    443    memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
    444
    445    memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
    446
    447    ddr_low_alias = g_new(MemoryRegion, 1);
    448    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
    449                             machine->ram, 0,
    450                             MIN(machine->ram_size, (256 * MiB)));
    451    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
    452
    453    xilinx_pcie_init(sys_mem, 0,
    454                     0x10000000, 32 * MiB,
    455                     0x40000000, 1 * GiB,
    456                     get_cps_irq(&s->cps, 2), false);
    457
    458    xilinx_pcie_init(sys_mem, 1,
    459                     0x12000000, 32 * MiB,
    460                     0x20000000, 512 * MiB,
    461                     get_cps_irq(&s->cps, 1), false);
    462
    463    pcie2 = xilinx_pcie_init(sys_mem, 2,
    464                             0x14000000, 32 * MiB,
    465                             0x16000000, 1 * MiB,
    466                             get_cps_irq(&s->cps, 0), true);
    467
    468    platreg = g_new(MemoryRegion, 1);
    469    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
    470                          "boston-platregs", 0x1000);
    471    memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
    472
    473    s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
    474                             get_cps_irq(&s->cps, 3), 10000000,
    475                             serial_hd(0), DEVICE_NATIVE_ENDIAN);
    476
    477    lcd = g_new(MemoryRegion, 1);
    478    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
    479    memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
    480
    481    chr = qemu_chr_new("lcd", "vc:320x240", NULL);
    482    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
    483    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
    484                             boston_lcd_event, NULL, s, NULL, true);
    485
    486    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
    487                                           PCI_DEVFN(0, 0),
    488                                           true, TYPE_ICH9_AHCI);
    489    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
    490    ide_drive_get(hd, ahci_get_num_ports(ahci));
    491    ahci_ide_create_devs(ahci, hd);
    492
    493    if (machine->firmware) {
    494        fw_size = load_image_targphys(machine->firmware,
    495                                      0x1fc00000, 4 * MiB);
    496        if (fw_size == -1) {
    497            error_report("unable to load firmware image '%s'",
    498                          machine->firmware);
    499            exit(1);
    500        }
    501    } else if (machine->kernel_filename) {
    502        fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
    503        if (fit_err) {
    504            error_report("unable to load FIT image");
    505            exit(1);
    506        }
    507
    508        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
    509                     s->kernel_entry, s->fdt_base);
    510    } else if (!qtest_enabled()) {
    511        error_report("Please provide either a -kernel or -bios argument");
    512        exit(1);
    513    }
    514}
    515
    516static void boston_mach_class_init(MachineClass *mc)
    517{
    518    mc->desc = "MIPS Boston";
    519    mc->init = boston_mach_init;
    520    mc->block_default_type = IF_IDE;
    521    mc->default_ram_size = 1 * GiB;
    522    mc->default_ram_id = "boston.ddr";
    523    mc->max_cpus = 16;
    524    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
    525}
    526
    527DEFINE_MACHINE("boston", boston_mach_class_init)