cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

malta.c (48186B)


      1/*
      2 * QEMU Malta board support
      3 *
      4 * Copyright (c) 2006 Aurelien Jarno
      5 *
      6 * Permission is hereby granted, free of charge, to any person obtaining a copy
      7 * of this software and associated documentation files (the "Software"), to deal
      8 * in the Software without restriction, including without limitation the rights
      9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10 * copies of the Software, and to permit persons to whom the Software is
     11 * furnished to do so, subject to the following conditions:
     12 *
     13 * The above copyright notice and this permission notice shall be included in
     14 * all copies or substantial portions of the Software.
     15 *
     16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22 * THE SOFTWARE.
     23 */
     24
     25#include "qemu/osdep.h"
     26#include "qemu/units.h"
     27#include "qemu/bitops.h"
     28#include "qemu-common.h"
     29#include "qemu/datadir.h"
     30#include "hw/clock.h"
     31#include "hw/southbridge/piix.h"
     32#include "hw/isa/superio.h"
     33#include "hw/char/serial.h"
     34#include "net/net.h"
     35#include "hw/boards.h"
     36#include "hw/i2c/smbus_eeprom.h"
     37#include "hw/block/flash.h"
     38#include "hw/mips/mips.h"
     39#include "hw/mips/cpudevs.h"
     40#include "hw/pci/pci.h"
     41#include "qemu/log.h"
     42#include "hw/mips/bios.h"
     43#include "hw/ide.h"
     44#include "hw/irq.h"
     45#include "hw/loader.h"
     46#include "elf.h"
     47#include "qom/object.h"
     48#include "hw/sysbus.h"             /* SysBusDevice */
     49#include "qemu/host-utils.h"
     50#include "sysemu/qtest.h"
     51#include "sysemu/reset.h"
     52#include "sysemu/runstate.h"
     53#include "qapi/error.h"
     54#include "qemu/error-report.h"
     55#include "hw/misc/empty_slot.h"
     56#include "sysemu/kvm.h"
     57#include "semihosting/semihost.h"
     58#include "hw/mips/cps.h"
     59#include "hw/qdev-clock.h"
     60
     61#define ENVP_PADDR          0x2000
     62#define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
     63#define ENVP_NB_ENTRIES     16
     64#define ENVP_ENTRY_SIZE     256
     65
     66/* Hardware addresses */
     67#define FLASH_ADDRESS       0x1e000000ULL
     68#define FPGA_ADDRESS        0x1f000000ULL
     69#define RESET_ADDRESS       0x1fc00000ULL
     70
     71#define FLASH_SIZE          0x400000
     72
     73#define MAX_IDE_BUS         2
     74
     75typedef struct {
     76    MemoryRegion iomem;
     77    MemoryRegion iomem_lo; /* 0 - 0x900 */
     78    MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
     79    uint32_t leds;
     80    uint32_t brk;
     81    uint32_t gpout;
     82    uint32_t i2cin;
     83    uint32_t i2coe;
     84    uint32_t i2cout;
     85    uint32_t i2csel;
     86    CharBackend display;
     87    char display_text[9];
     88    SerialMM *uart;
     89    bool display_inited;
     90} MaltaFPGAState;
     91
     92#define TYPE_MIPS_MALTA "mips-malta"
     93OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
     94
     95struct MaltaState {
     96    SysBusDevice parent_obj;
     97
     98    Clock *cpuclk;
     99    MIPSCPSState cps;
    100    qemu_irq i8259[ISA_NUM_IRQS];
    101};
    102
    103static struct _loaderparams {
    104    int ram_size, ram_low_size;
    105    const char *kernel_filename;
    106    const char *kernel_cmdline;
    107    const char *initrd_filename;
    108} loaderparams;
    109
    110/* Malta FPGA */
    111static void malta_fpga_update_display(void *opaque)
    112{
    113    char leds_text[9];
    114    int i;
    115    MaltaFPGAState *s = opaque;
    116
    117    for (i = 7 ; i >= 0 ; i--) {
    118        if (s->leds & (1 << i)) {
    119            leds_text[i] = '#';
    120        } else {
    121            leds_text[i] = ' ';
    122        }
    123    }
    124    leds_text[8] = '\0';
    125
    126    qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
    127                       leds_text);
    128    qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
    129                       s->display_text);
    130}
    131
    132/*
    133 * EEPROM 24C01 / 24C02 emulation.
    134 *
    135 * Emulation for serial EEPROMs:
    136 * 24C01 - 1024 bit (128 x 8)
    137 * 24C02 - 2048 bit (256 x 8)
    138 *
    139 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
    140 */
    141
    142#if defined(DEBUG)
    143#  define logout(fmt, ...) \
    144          fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
    145#else
    146#  define logout(fmt, ...) ((void)0)
    147#endif
    148
    149struct _eeprom24c0x_t {
    150  uint8_t tick;
    151  uint8_t address;
    152  uint8_t command;
    153  uint8_t ack;
    154  uint8_t scl;
    155  uint8_t sda;
    156  uint8_t data;
    157  /* uint16_t size; */
    158  uint8_t contents[256];
    159};
    160
    161typedef struct _eeprom24c0x_t eeprom24c0x_t;
    162
    163static eeprom24c0x_t spd_eeprom = {
    164    .contents = {
    165        /* 00000000: */
    166        0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
    167        /* 00000008: */
    168        0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
    169        /* 00000010: */
    170        0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
    171        /* 00000018: */
    172        0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
    173        /* 00000020: */
    174        0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
    175        /* 00000028: */
    176        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    177        /* 00000030: */
    178        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    179        /* 00000038: */
    180        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
    181        /* 00000040: */
    182        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    183        /* 00000048: */
    184        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    185        /* 00000050: */
    186        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    187        /* 00000058: */
    188        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    189        /* 00000060: */
    190        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    191        /* 00000068: */
    192        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    193        /* 00000070: */
    194        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    195        /* 00000078: */
    196        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
    197    },
    198};
    199
    200static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
    201{
    202    enum { SDR = 0x4, DDR2 = 0x8 } type;
    203    uint8_t *spd = spd_eeprom.contents;
    204    uint8_t nbanks = 0;
    205    uint16_t density = 0;
    206    int i;
    207
    208    /* work in terms of MB */
    209    ram_size /= MiB;
    210
    211    while ((ram_size >= 4) && (nbanks <= 2)) {
    212        int sz_log2 = MIN(31 - clz32(ram_size), 14);
    213        nbanks++;
    214        density |= 1 << (sz_log2 - 2);
    215        ram_size -= 1 << sz_log2;
    216    }
    217
    218    /* split to 2 banks if possible */
    219    if ((nbanks == 1) && (density > 1)) {
    220        nbanks++;
    221        density >>= 1;
    222    }
    223
    224    if (density & 0xff00) {
    225        density = (density & 0xe0) | ((density >> 8) & 0x1f);
    226        type = DDR2;
    227    } else if (!(density & 0x1f)) {
    228        type = DDR2;
    229    } else {
    230        type = SDR;
    231    }
    232
    233    if (ram_size) {
    234        warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
    235                    " of SDRAM", ram_size);
    236    }
    237
    238    /* fill in SPD memory information */
    239    spd[2] = type;
    240    spd[5] = nbanks;
    241    spd[31] = density;
    242
    243    /* checksum */
    244    spd[63] = 0;
    245    for (i = 0; i < 63; i++) {
    246        spd[63] += spd[i];
    247    }
    248
    249    /* copy for SMBUS */
    250    memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
    251}
    252
    253static void generate_eeprom_serial(uint8_t *eeprom)
    254{
    255    int i, pos = 0;
    256    uint8_t mac[6] = { 0x00 };
    257    uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
    258
    259    /* version */
    260    eeprom[pos++] = 0x01;
    261
    262    /* count */
    263    eeprom[pos++] = 0x02;
    264
    265    /* MAC address */
    266    eeprom[pos++] = 0x01; /* MAC */
    267    eeprom[pos++] = 0x06; /* length */
    268    memcpy(&eeprom[pos], mac, sizeof(mac));
    269    pos += sizeof(mac);
    270
    271    /* serial number */
    272    eeprom[pos++] = 0x02; /* serial */
    273    eeprom[pos++] = 0x05; /* length */
    274    memcpy(&eeprom[pos], sn, sizeof(sn));
    275    pos += sizeof(sn);
    276
    277    /* checksum */
    278    eeprom[pos] = 0;
    279    for (i = 0; i < pos; i++) {
    280        eeprom[pos] += eeprom[i];
    281    }
    282}
    283
    284static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
    285{
    286    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
    287        eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
    288    return eeprom->sda;
    289}
    290
    291static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
    292{
    293    if (eeprom->scl && scl && (eeprom->sda != sda)) {
    294        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
    295                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
    296                sda ? "stop" : "start");
    297        if (!sda) {
    298            eeprom->tick = 1;
    299            eeprom->command = 0;
    300        }
    301    } else if (eeprom->tick == 0 && !eeprom->ack) {
    302        /* Waiting for start. */
    303        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
    304                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
    305    } else if (!eeprom->scl && scl) {
    306        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
    307                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
    308        if (eeprom->ack) {
    309            logout("\ti2c ack bit = 0\n");
    310            sda = 0;
    311            eeprom->ack = 0;
    312        } else if (eeprom->sda == sda) {
    313            uint8_t bit = (sda != 0);
    314            logout("\ti2c bit = %d\n", bit);
    315            if (eeprom->tick < 9) {
    316                eeprom->command <<= 1;
    317                eeprom->command += bit;
    318                eeprom->tick++;
    319                if (eeprom->tick == 9) {
    320                    logout("\tcommand 0x%04x, %s\n", eeprom->command,
    321                           bit ? "read" : "write");
    322                    eeprom->ack = 1;
    323                }
    324            } else if (eeprom->tick < 17) {
    325                if (eeprom->command & 1) {
    326                    sda = ((eeprom->data & 0x80) != 0);
    327                }
    328                eeprom->address <<= 1;
    329                eeprom->address += bit;
    330                eeprom->tick++;
    331                eeprom->data <<= 1;
    332                if (eeprom->tick == 17) {
    333                    eeprom->data = eeprom->contents[eeprom->address];
    334                    logout("\taddress 0x%04x, data 0x%02x\n",
    335                           eeprom->address, eeprom->data);
    336                    eeprom->ack = 1;
    337                    eeprom->tick = 0;
    338                }
    339            } else if (eeprom->tick >= 17) {
    340                sda = 0;
    341            }
    342        } else {
    343            logout("\tsda changed with raising scl\n");
    344        }
    345    } else {
    346        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
    347               scl, eeprom->sda, sda);
    348    }
    349    eeprom->scl = scl;
    350    eeprom->sda = sda;
    351}
    352
    353static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
    354                                unsigned size)
    355{
    356    MaltaFPGAState *s = opaque;
    357    uint32_t val = 0;
    358    uint32_t saddr;
    359
    360    saddr = (addr & 0xfffff);
    361
    362    switch (saddr) {
    363
    364    /* SWITCH Register */
    365    case 0x00200:
    366        val = 0x00000000;
    367        break;
    368
    369    /* STATUS Register */
    370    case 0x00208:
    371#ifdef TARGET_WORDS_BIGENDIAN
    372        val = 0x00000012;
    373#else
    374        val = 0x00000010;
    375#endif
    376        break;
    377
    378    /* JMPRS Register */
    379    case 0x00210:
    380        val = 0x00;
    381        break;
    382
    383    /* LEDBAR Register */
    384    case 0x00408:
    385        val = s->leds;
    386        break;
    387
    388    /* BRKRES Register */
    389    case 0x00508:
    390        val = s->brk;
    391        break;
    392
    393    /* UART Registers are handled directly by the serial device */
    394
    395    /* GPOUT Register */
    396    case 0x00a00:
    397        val = s->gpout;
    398        break;
    399
    400    /* XXX: implement a real I2C controller */
    401
    402    /* GPINP Register */
    403    case 0x00a08:
    404        /* IN = OUT until a real I2C control is implemented */
    405        if (s->i2csel) {
    406            val = s->i2cout;
    407        } else {
    408            val = 0x00;
    409        }
    410        break;
    411
    412    /* I2CINP Register */
    413    case 0x00b00:
    414        val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
    415        break;
    416
    417    /* I2COE Register */
    418    case 0x00b08:
    419        val = s->i2coe;
    420        break;
    421
    422    /* I2COUT Register */
    423    case 0x00b10:
    424        val = s->i2cout;
    425        break;
    426
    427    /* I2CSEL Register */
    428    case 0x00b18:
    429        val = s->i2csel;
    430        break;
    431
    432    default:
    433        qemu_log_mask(LOG_GUEST_ERROR,
    434                      "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
    435                      addr);
    436        break;
    437    }
    438    return val;
    439}
    440
    441static void malta_fpga_write(void *opaque, hwaddr addr,
    442                             uint64_t val, unsigned size)
    443{
    444    MaltaFPGAState *s = opaque;
    445    uint32_t saddr;
    446
    447    saddr = (addr & 0xfffff);
    448
    449    switch (saddr) {
    450
    451    /* SWITCH Register */
    452    case 0x00200:
    453        break;
    454
    455    /* JMPRS Register */
    456    case 0x00210:
    457        break;
    458
    459    /* LEDBAR Register */
    460    case 0x00408:
    461        s->leds = val & 0xff;
    462        malta_fpga_update_display(s);
    463        break;
    464
    465    /* ASCIIWORD Register */
    466    case 0x00410:
    467        snprintf(s->display_text, 9, "%08X", (uint32_t)val);
    468        malta_fpga_update_display(s);
    469        break;
    470
    471    /* ASCIIPOS0 to ASCIIPOS7 Registers */
    472    case 0x00418:
    473    case 0x00420:
    474    case 0x00428:
    475    case 0x00430:
    476    case 0x00438:
    477    case 0x00440:
    478    case 0x00448:
    479    case 0x00450:
    480        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
    481        malta_fpga_update_display(s);
    482        break;
    483
    484    /* SOFTRES Register */
    485    case 0x00500:
    486        if (val == 0x42) {
    487            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
    488        }
    489        break;
    490
    491    /* BRKRES Register */
    492    case 0x00508:
    493        s->brk = val & 0xff;
    494        break;
    495
    496    /* UART Registers are handled directly by the serial device */
    497
    498    /* GPOUT Register */
    499    case 0x00a00:
    500        s->gpout = val & 0xff;
    501        break;
    502
    503    /* I2COE Register */
    504    case 0x00b08:
    505        s->i2coe = val & 0x03;
    506        break;
    507
    508    /* I2COUT Register */
    509    case 0x00b10:
    510        eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
    511        s->i2cout = val;
    512        break;
    513
    514    /* I2CSEL Register */
    515    case 0x00b18:
    516        s->i2csel = val & 0x01;
    517        break;
    518
    519    default:
    520        qemu_log_mask(LOG_GUEST_ERROR,
    521                      "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
    522                      addr);
    523        break;
    524    }
    525}
    526
    527static const MemoryRegionOps malta_fpga_ops = {
    528    .read = malta_fpga_read,
    529    .write = malta_fpga_write,
    530    .endianness = DEVICE_NATIVE_ENDIAN,
    531};
    532
    533static void malta_fpga_reset(void *opaque)
    534{
    535    MaltaFPGAState *s = opaque;
    536
    537    s->leds   = 0x00;
    538    s->brk    = 0x0a;
    539    s->gpout  = 0x00;
    540    s->i2cin  = 0x3;
    541    s->i2coe  = 0x0;
    542    s->i2cout = 0x3;
    543    s->i2csel = 0x1;
    544
    545    s->display_text[8] = '\0';
    546    snprintf(s->display_text, 9, "        ");
    547}
    548
    549static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
    550{
    551    MaltaFPGAState *s = opaque;
    552
    553    if (event == CHR_EVENT_OPENED && !s->display_inited) {
    554        qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
    555        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
    556        qemu_chr_fe_printf(&s->display, "+        +\r\n");
    557        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
    558        qemu_chr_fe_printf(&s->display, "\n");
    559        qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
    560        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
    561        qemu_chr_fe_printf(&s->display, "+        +\r\n");
    562        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
    563        s->display_inited = true;
    564    }
    565}
    566
    567static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
    568         hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
    569{
    570    MaltaFPGAState *s;
    571    Chardev *chr;
    572
    573    s = g_new0(MaltaFPGAState, 1);
    574
    575    memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
    576                          "malta-fpga", 0x100000);
    577    memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
    578                             &s->iomem, 0, 0x900);
    579    memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
    580                             &s->iomem, 0xa00, 0x100000 - 0xa00);
    581
    582    memory_region_add_subregion(address_space, base, &s->iomem_lo);
    583    memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
    584
    585    chr = qemu_chr_new("fpga", "vc:320x200", NULL);
    586    qemu_chr_fe_init(&s->display, chr, NULL);
    587    qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
    588                             malta_fgpa_display_event, NULL, s, NULL, true);
    589
    590    s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
    591                             230400, uart_chr, DEVICE_NATIVE_ENDIAN);
    592
    593    malta_fpga_reset(s);
    594    qemu_register_reset(malta_fpga_reset, s);
    595
    596    return s;
    597}
    598
    599/* Network support */
    600static void network_init(PCIBus *pci_bus)
    601{
    602    int i;
    603
    604    for (i = 0; i < nb_nics; i++) {
    605        NICInfo *nd = &nd_table[i];
    606        const char *default_devaddr = NULL;
    607
    608        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
    609            /* The malta board has a PCNet card using PCI SLOT 11 */
    610            default_devaddr = "0b";
    611
    612        pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
    613    }
    614}
    615
    616static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
    617                                      uint64_t kernel_entry)
    618{
    619    uint16_t *p;
    620
    621    /* Small bootloader */
    622    p = (uint16_t *)base;
    623
    624#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
    625#define NM_HI2(VAL) \
    626          (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
    627#define NM_LO(VAL)  ((VAL) & 0xfff)
    628
    629    stw_p(p++, 0x2800); stw_p(p++, 0x001c);
    630                                /* bc to_here */
    631    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    632                                /* nop */
    633    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    634                                /* nop */
    635    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    636                                /* nop */
    637    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    638                                /* nop */
    639    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    640                                /* nop */
    641    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    642                                /* nop */
    643    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    644                                /* nop */
    645
    646    /* to_here: */
    647    if (semihosting_get_argc()) {
    648        /* Preserve a0 content as arguments have been passed    */
    649        stw_p(p++, 0x8000); stw_p(p++, 0xc000);
    650                                /* nop                          */
    651    } else {
    652        stw_p(p++, 0x0080); stw_p(p++, 0x0002);
    653                                /* li a0,2                      */
    654    }
    655
    656    stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
    657
    658    stw_p(p++, NM_HI2(ENVP_VADDR - 64));
    659                                /* lui sp,%hi(ENVP_VADDR - 64)   */
    660
    661    stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
    662                                /* ori sp,sp,%lo(ENVP_VADDR - 64) */
    663
    664    stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
    665
    666    stw_p(p++, NM_HI2(ENVP_VADDR));
    667                                /* lui a1,%hi(ENVP_VADDR)        */
    668
    669    stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
    670                                /* ori a1,a1,%lo(ENVP_VADDR)     */
    671
    672    stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
    673
    674    stw_p(p++, NM_HI2(ENVP_VADDR + 8));
    675                                /* lui a2,%hi(ENVP_VADDR + 8)    */
    676
    677    stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
    678                                /* ori a2,a2,%lo(ENVP_VADDR + 8) */
    679
    680    stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
    681
    682    stw_p(p++, NM_HI2(loaderparams.ram_low_size));
    683                                /* lui a3,%hi(loaderparams.ram_low_size) */
    684
    685    stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
    686                                /* ori a3,a3,%lo(loaderparams.ram_low_size) */
    687
    688    /*
    689     * Load BAR registers as done by YAMON:
    690     *
    691     *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
    692     *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
    693     *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
    694     *
    695     */
    696    stw_p(p++, 0xe040); stw_p(p++, 0x0681);
    697                                /* lui t1, %hi(0xb4000000)      */
    698
    699#ifdef TARGET_WORDS_BIGENDIAN
    700
    701    stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
    702                                /* lui t0, %hi(0xdf000000)      */
    703
    704    /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
    705    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
    706                                /* sw t0, 0x68(t1)              */
    707
    708    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
    709                                /* lui t1, %hi(0xbbe00000)      */
    710
    711    stw_p(p++, 0xe020); stw_p(p++, 0x0801);
    712                                /* lui t0, %hi(0xc0000000)      */
    713
    714    /* 0x48 corresponds to GT_PCI0IOLD                          */
    715    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
    716                                /* sw t0, 0x48(t1)              */
    717
    718    stw_p(p++, 0xe020); stw_p(p++, 0x0800);
    719                                /* lui t0, %hi(0x40000000)      */
    720
    721    /* 0x50 corresponds to GT_PCI0IOHD                          */
    722    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
    723                                /* sw t0, 0x50(t1)              */
    724
    725    stw_p(p++, 0xe020); stw_p(p++, 0x0001);
    726                                /* lui t0, %hi(0x80000000)      */
    727
    728    /* 0x58 corresponds to GT_PCI0M0LD                          */
    729    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
    730                                /* sw t0, 0x58(t1)              */
    731
    732    stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
    733                                /* lui t0, %hi(0x3f000000)      */
    734
    735    /* 0x60 corresponds to GT_PCI0M0HD                          */
    736    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
    737                                /* sw t0, 0x60(t1)              */
    738
    739    stw_p(p++, 0xe020); stw_p(p++, 0x0821);
    740                                /* lui t0, %hi(0xc1000000)      */
    741
    742    /* 0x80 corresponds to GT_PCI0M1LD                          */
    743    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
    744                                /* sw t0, 0x80(t1)              */
    745
    746    stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
    747                                /* lui t0, %hi(0x5e000000)      */
    748
    749#else
    750
    751    stw_p(p++, 0x0020); stw_p(p++, 0x00df);
    752                                /* addiu[32] t0, $0, 0xdf       */
    753
    754    /* 0x68 corresponds to GT_ISD                               */
    755    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
    756                                /* sw t0, 0x68(t1)              */
    757
    758    /* Use kseg2 remapped address 0x1be00000                    */
    759    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
    760                                /* lui t1, %hi(0xbbe00000)      */
    761
    762    stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
    763                                /* addiu[32] t0, $0, 0xc0       */
    764
    765    /* 0x48 corresponds to GT_PCI0IOLD                          */
    766    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
    767                                /* sw t0, 0x48(t1)              */
    768
    769    stw_p(p++, 0x0020); stw_p(p++, 0x0040);
    770                                /* addiu[32] t0, $0, 0x40       */
    771
    772    /* 0x50 corresponds to GT_PCI0IOHD                          */
    773    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
    774                                /* sw t0, 0x50(t1)              */
    775
    776    stw_p(p++, 0x0020); stw_p(p++, 0x0080);
    777                                /* addiu[32] t0, $0, 0x80       */
    778
    779    /* 0x58 corresponds to GT_PCI0M0LD                          */
    780    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
    781                                /* sw t0, 0x58(t1)              */
    782
    783    stw_p(p++, 0x0020); stw_p(p++, 0x003f);
    784                                /* addiu[32] t0, $0, 0x3f       */
    785
    786    /* 0x60 corresponds to GT_PCI0M0HD                          */
    787    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
    788                                /* sw t0, 0x60(t1)              */
    789
    790    stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
    791                                /* addiu[32] t0, $0, 0xc1       */
    792
    793    /* 0x80 corresponds to GT_PCI0M1LD                          */
    794    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
    795                                /* sw t0, 0x80(t1)              */
    796
    797    stw_p(p++, 0x0020); stw_p(p++, 0x005e);
    798                                /* addiu[32] t0, $0, 0x5e       */
    799
    800#endif
    801
    802    /* 0x88 corresponds to GT_PCI0M1HD                          */
    803    stw_p(p++, 0x8422); stw_p(p++, 0x9088);
    804                                /* sw t0, 0x88(t1)              */
    805
    806    stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
    807
    808    stw_p(p++, NM_HI2(kernel_entry));
    809                                /* lui t9,%hi(kernel_entry)     */
    810
    811    stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
    812                                /* ori t9,t9,%lo(kernel_entry)  */
    813
    814    stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
    815                                /* jalrc   t8                   */
    816}
    817
    818/*
    819 * ROM and pseudo bootloader
    820 *
    821 * The following code implements a very very simple bootloader. It first
    822 * loads the registers a0 to a3 to the values expected by the OS, and
    823 * then jump at the kernel address.
    824 *
    825 * The bootloader should pass the locations of the kernel arguments and
    826 * environment variables tables. Those tables contain the 32-bit address
    827 * of NULL terminated strings. The environment variables table should be
    828 * terminated by a NULL address.
    829 *
    830 * For a simpler implementation, the number of kernel arguments is fixed
    831 * to two (the name of the kernel and the command line), and the two
    832 * tables are actually the same one.
    833 *
    834 * The registers a0 to a3 should contain the following values:
    835 *   a0 - number of kernel arguments
    836 *   a1 - 32-bit address of the kernel arguments table
    837 *   a2 - 32-bit address of the environment variables table
    838 *   a3 - RAM size in bytes
    839 */
    840static void write_bootloader(uint8_t *base, uint64_t run_addr,
    841                             uint64_t kernel_entry)
    842{
    843    uint32_t *p;
    844
    845    /* Small bootloader */
    846    p = (uint32_t *)base;
    847
    848    stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
    849                 ((run_addr + 0x580) & 0x0fffffff) >> 2);
    850    stl_p(p++, 0x00000000);                  /* nop */
    851
    852    /* YAMON service vector */
    853    stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
    854    stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
    855    stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
    856    stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
    857    stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
    858    stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
    859    stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
    860    stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
    861    stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
    862    stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
    863    stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
    864    stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
    865    stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
    866
    867
    868    /* Second part of the bootloader */
    869    p = (uint32_t *) (base + 0x580);
    870
    871    if (semihosting_get_argc()) {
    872        /* Preserve a0 content as arguments have been passed */
    873        stl_p(p++, 0x00000000);              /* nop */
    874    } else {
    875        stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
    876    }
    877
    878    /* lui sp, high(ENVP_VADDR) */
    879    stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
    880    /* ori sp, sp, low(ENVP_VADDR) */
    881    stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
    882    /* lui a1, high(ENVP_VADDR) */
    883    stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
    884    /* ori a1, a1, low(ENVP_VADDR) */
    885    stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
    886    /* lui a2, high(ENVP_VADDR + 8) */
    887    stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
    888    /* ori a2, a2, low(ENVP_VADDR + 8) */
    889    stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
    890    /* lui a3, high(ram_low_size) */
    891    stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
    892    /* ori a3, a3, low(ram_low_size) */
    893    stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
    894
    895    /* Load BAR registers as done by YAMON */
    896    stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
    897
    898#ifdef TARGET_WORDS_BIGENDIAN
    899    stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
    900#else
    901    stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
    902#endif
    903    stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
    904
    905    stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
    906
    907#ifdef TARGET_WORDS_BIGENDIAN
    908    stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
    909#else
    910    stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
    911#endif
    912    stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
    913#ifdef TARGET_WORDS_BIGENDIAN
    914    stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
    915#else
    916    stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
    917#endif
    918    stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
    919
    920#ifdef TARGET_WORDS_BIGENDIAN
    921    stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
    922#else
    923    stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
    924#endif
    925    stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
    926#ifdef TARGET_WORDS_BIGENDIAN
    927    stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
    928#else
    929    stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
    930#endif
    931    stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
    932
    933#ifdef TARGET_WORDS_BIGENDIAN
    934    stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
    935#else
    936    stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
    937#endif
    938    stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
    939#ifdef TARGET_WORDS_BIGENDIAN
    940    stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
    941#else
    942    stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
    943#endif
    944    stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
    945
    946    /* Jump to kernel code */
    947    stl_p(p++, 0x3c1f0000 |
    948          ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
    949    stl_p(p++, 0x37ff0000 |
    950          (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
    951    stl_p(p++, 0x03e00009);                  /* jalr ra */
    952    stl_p(p++, 0x00000000);                  /* nop */
    953
    954    /* YAMON subroutines */
    955    p = (uint32_t *) (base + 0x800);
    956    stl_p(p++, 0x03e00009);                  /* jalr ra */
    957    stl_p(p++, 0x24020000);                  /* li v0,0 */
    958    /* 808 YAMON print */
    959    stl_p(p++, 0x03e06821);                  /* move t5,ra */
    960    stl_p(p++, 0x00805821);                  /* move t3,a0 */
    961    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
    962    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
    963    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
    964    stl_p(p++, 0x10800005);                  /* beqz a0,834 */
    965    stl_p(p++, 0x00000000);                  /* nop */
    966    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
    967    stl_p(p++, 0x00000000);                  /* nop */
    968    stl_p(p++, 0x1000fff9);                  /* b 814 */
    969    stl_p(p++, 0x00000000);                  /* nop */
    970    stl_p(p++, 0x01a00009);                  /* jalr t5 */
    971    stl_p(p++, 0x01602021);                  /* move a0,t3 */
    972    /* 0x83c YAMON print_count */
    973    stl_p(p++, 0x03e06821);                  /* move t5,ra */
    974    stl_p(p++, 0x00805821);                  /* move t3,a0 */
    975    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
    976    stl_p(p++, 0x00c06021);                  /* move t4,a2 */
    977    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
    978    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
    979    stl_p(p++, 0x00000000);                  /* nop */
    980    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
    981    stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
    982    stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
    983    stl_p(p++, 0x00000000);                  /* nop */
    984    stl_p(p++, 0x01a00009);                  /* jalr t5 */
    985    stl_p(p++, 0x01602021);                  /* move a0,t3 */
    986    /* 0x870 */
    987    stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
    988    stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
    989    stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
    990    stl_p(p++, 0x00000000);                  /* nop */
    991    stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
    992    stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
    993    stl_p(p++, 0x00000000);                  /* nop */
    994    stl_p(p++, 0x03e00009);                  /* jalr ra */
    995    stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
    996
    997}
    998
    999static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
   1000                                        const char *string, ...)
   1001{
   1002    va_list ap;
   1003    uint32_t table_addr;
   1004
   1005    if (index >= ENVP_NB_ENTRIES) {
   1006        return;
   1007    }
   1008
   1009    if (string == NULL) {
   1010        prom_buf[index] = 0;
   1011        return;
   1012    }
   1013
   1014    table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
   1015    prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
   1016
   1017    va_start(ap, string);
   1018    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
   1019    va_end(ap);
   1020}
   1021
   1022/* Kernel */
   1023static uint64_t load_kernel(void)
   1024{
   1025    uint64_t kernel_entry, kernel_high, initrd_size;
   1026    long kernel_size;
   1027    ram_addr_t initrd_offset;
   1028    int big_endian;
   1029    uint32_t *prom_buf;
   1030    long prom_size;
   1031    int prom_index = 0;
   1032    uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
   1033
   1034#ifdef TARGET_WORDS_BIGENDIAN
   1035    big_endian = 1;
   1036#else
   1037    big_endian = 0;
   1038#endif
   1039
   1040    kernel_size = load_elf(loaderparams.kernel_filename, NULL,
   1041                           cpu_mips_kseg0_to_phys, NULL,
   1042                           &kernel_entry, NULL,
   1043                           &kernel_high, NULL, big_endian, EM_MIPS,
   1044                           1, 0);
   1045    if (kernel_size < 0) {
   1046        error_report("could not load kernel '%s': %s",
   1047                     loaderparams.kernel_filename,
   1048                     load_elf_strerror(kernel_size));
   1049        exit(1);
   1050    }
   1051
   1052    /* Check where the kernel has been linked */
   1053    if (kernel_entry & 0x80000000ll) {
   1054        if (kvm_enabled()) {
   1055            error_report("KVM guest kernels must be linked in useg. "
   1056                         "Did you forget to enable CONFIG_KVM_GUEST?");
   1057            exit(1);
   1058        }
   1059
   1060        xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
   1061    } else {
   1062        /* if kernel entry is in useg it is probably a KVM T&E kernel */
   1063        mips_um_ksegs_enable();
   1064
   1065        xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
   1066    }
   1067
   1068    /* load initrd */
   1069    initrd_size = 0;
   1070    initrd_offset = 0;
   1071    if (loaderparams.initrd_filename) {
   1072        initrd_size = get_image_size(loaderparams.initrd_filename);
   1073        if (initrd_size > 0) {
   1074            /*
   1075             * The kernel allocates the bootmap memory in the low memory after
   1076             * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
   1077             * pages.
   1078             */
   1079            initrd_offset = ROUND_UP(loaderparams.ram_low_size
   1080                                     - (initrd_size + 128 * KiB),
   1081                                     INITRD_PAGE_SIZE);
   1082            if (kernel_high >= initrd_offset) {
   1083                error_report("memory too small for initial ram disk '%s'",
   1084                             loaderparams.initrd_filename);
   1085                exit(1);
   1086            }
   1087            initrd_size = load_image_targphys(loaderparams.initrd_filename,
   1088                                              initrd_offset,
   1089                                              loaderparams.ram_size - initrd_offset);
   1090        }
   1091        if (initrd_size == (target_ulong) -1) {
   1092            error_report("could not load initial ram disk '%s'",
   1093                         loaderparams.initrd_filename);
   1094            exit(1);
   1095        }
   1096    }
   1097
   1098    /* Setup prom parameters. */
   1099    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
   1100    prom_buf = g_malloc(prom_size);
   1101
   1102    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
   1103    if (initrd_size > 0) {
   1104        prom_set(prom_buf, prom_index++,
   1105                 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
   1106                 xlate_to_kseg0(NULL, initrd_offset),
   1107                 initrd_size, loaderparams.kernel_cmdline);
   1108    } else {
   1109        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
   1110    }
   1111
   1112    prom_set(prom_buf, prom_index++, "memsize");
   1113    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
   1114
   1115    prom_set(prom_buf, prom_index++, "ememsize");
   1116    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
   1117
   1118    prom_set(prom_buf, prom_index++, "modetty0");
   1119    prom_set(prom_buf, prom_index++, "38400n8r");
   1120    prom_set(prom_buf, prom_index++, NULL);
   1121
   1122    rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
   1123
   1124    g_free(prom_buf);
   1125    return kernel_entry;
   1126}
   1127
   1128static void malta_mips_config(MIPSCPU *cpu)
   1129{
   1130    MachineState *ms = MACHINE(qdev_get_machine());
   1131    unsigned int smp_cpus = ms->smp.cpus;
   1132    CPUMIPSState *env = &cpu->env;
   1133    CPUState *cs = CPU(cpu);
   1134
   1135    if (ase_mt_available(env)) {
   1136        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
   1137                                           CP0MVPC0_PTC, 8,
   1138                                           smp_cpus * cs->nr_threads - 1);
   1139        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
   1140                                           CP0MVPC0_PVPE, 4, smp_cpus - 1);
   1141    }
   1142}
   1143
   1144static void main_cpu_reset(void *opaque)
   1145{
   1146    MIPSCPU *cpu = opaque;
   1147    CPUMIPSState *env = &cpu->env;
   1148
   1149    cpu_reset(CPU(cpu));
   1150
   1151    /*
   1152     * The bootloader does not need to be rewritten as it is located in a
   1153     * read only location. The kernel location and the arguments table
   1154     * location does not change.
   1155     */
   1156    if (loaderparams.kernel_filename) {
   1157        env->CP0_Status &= ~(1 << CP0St_ERL);
   1158    }
   1159
   1160    malta_mips_config(cpu);
   1161
   1162    if (kvm_enabled()) {
   1163        /* Start running from the bootloader we wrote to end of RAM */
   1164        env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
   1165    }
   1166}
   1167
   1168static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
   1169                                   qemu_irq *cbus_irq, qemu_irq *i8259_irq)
   1170{
   1171    CPUMIPSState *env;
   1172    MIPSCPU *cpu;
   1173    int i;
   1174
   1175    for (i = 0; i < ms->smp.cpus; i++) {
   1176        cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
   1177
   1178        /* Init internal devices */
   1179        cpu_mips_irq_init_cpu(cpu);
   1180        cpu_mips_clock_init(cpu);
   1181        qemu_register_reset(main_cpu_reset, cpu);
   1182    }
   1183
   1184    cpu = MIPS_CPU(first_cpu);
   1185    env = &cpu->env;
   1186    *i8259_irq = env->irq[2];
   1187    *cbus_irq = env->irq[4];
   1188}
   1189
   1190static void create_cps(MachineState *ms, MaltaState *s,
   1191                       qemu_irq *cbus_irq, qemu_irq *i8259_irq)
   1192{
   1193    object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
   1194    object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
   1195                            &error_fatal);
   1196    object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
   1197                            &error_fatal);
   1198    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
   1199    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
   1200
   1201    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
   1202
   1203    *i8259_irq = get_cps_irq(&s->cps, 3);
   1204    *cbus_irq = NULL;
   1205}
   1206
   1207static void mips_create_cpu(MachineState *ms, MaltaState *s,
   1208                            qemu_irq *cbus_irq, qemu_irq *i8259_irq)
   1209{
   1210    if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
   1211        create_cps(ms, s, cbus_irq, i8259_irq);
   1212    } else {
   1213        create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
   1214    }
   1215}
   1216
   1217static
   1218void mips_malta_init(MachineState *machine)
   1219{
   1220    ram_addr_t ram_size = machine->ram_size;
   1221    ram_addr_t ram_low_size;
   1222    const char *kernel_filename = machine->kernel_filename;
   1223    const char *kernel_cmdline = machine->kernel_cmdline;
   1224    const char *initrd_filename = machine->initrd_filename;
   1225    char *filename;
   1226    PFlashCFI01 *fl;
   1227    MemoryRegion *system_memory = get_system_memory();
   1228    MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
   1229    MemoryRegion *ram_low_postio;
   1230    MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
   1231    const size_t smbus_eeprom_size = 8 * 256;
   1232    uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
   1233    uint64_t kernel_entry, bootloader_run_addr;
   1234    PCIBus *pci_bus;
   1235    ISABus *isa_bus;
   1236    qemu_irq cbus_irq, i8259_irq;
   1237    I2CBus *smbus;
   1238    DriveInfo *dinfo;
   1239    int fl_idx = 0;
   1240    int be;
   1241    MaltaState *s;
   1242    DeviceState *dev;
   1243
   1244    s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
   1245    sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
   1246
   1247    /* create CPU */
   1248    mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
   1249
   1250    /* allocate RAM */
   1251    if (ram_size > 2 * GiB) {
   1252        error_report("Too much memory for this machine: %" PRId64 "MB,"
   1253                     " maximum 2048MB", ram_size / MiB);
   1254        exit(1);
   1255    }
   1256
   1257    /* register RAM at high address where it is undisturbed by IO */
   1258    memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
   1259
   1260    /* alias for pre IO hole access */
   1261    memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
   1262                             machine->ram, 0, MIN(ram_size, 256 * MiB));
   1263    memory_region_add_subregion(system_memory, 0, ram_low_preio);
   1264
   1265    /* alias for post IO hole access, if there is enough RAM */
   1266    if (ram_size > 512 * MiB) {
   1267        ram_low_postio = g_new(MemoryRegion, 1);
   1268        memory_region_init_alias(ram_low_postio, NULL,
   1269                                 "mips_malta_low_postio.ram",
   1270                                 machine->ram, 512 * MiB,
   1271                                 ram_size - 512 * MiB);
   1272        memory_region_add_subregion(system_memory, 512 * MiB,
   1273                                    ram_low_postio);
   1274    }
   1275
   1276#ifdef TARGET_WORDS_BIGENDIAN
   1277    be = 1;
   1278#else
   1279    be = 0;
   1280#endif
   1281
   1282    /* FPGA */
   1283
   1284    /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
   1285    malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
   1286
   1287    /* Load firmware in flash / BIOS. */
   1288    dinfo = drive_get(IF_PFLASH, 0, fl_idx);
   1289    fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
   1290                               FLASH_SIZE,
   1291                               dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
   1292                               65536,
   1293                               4, 0x0000, 0x0000, 0x0000, 0x0000, be);
   1294    bios = pflash_cfi01_get_memory(fl);
   1295    fl_idx++;
   1296    if (kernel_filename) {
   1297        ram_low_size = MIN(ram_size, 256 * MiB);
   1298        /* For KVM we reserve 1MB of RAM for running bootloader */
   1299        if (kvm_enabled()) {
   1300            ram_low_size -= 0x100000;
   1301            bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
   1302        } else {
   1303            bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
   1304        }
   1305
   1306        /* Write a small bootloader to the flash location. */
   1307        loaderparams.ram_size = ram_size;
   1308        loaderparams.ram_low_size = ram_low_size;
   1309        loaderparams.kernel_filename = kernel_filename;
   1310        loaderparams.kernel_cmdline = kernel_cmdline;
   1311        loaderparams.initrd_filename = initrd_filename;
   1312        kernel_entry = load_kernel();
   1313
   1314        if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
   1315            write_bootloader(memory_region_get_ram_ptr(bios),
   1316                             bootloader_run_addr, kernel_entry);
   1317        } else {
   1318            write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
   1319                                      bootloader_run_addr, kernel_entry);
   1320        }
   1321        if (kvm_enabled()) {
   1322            /* Write the bootloader code @ the end of RAM, 1MB reserved */
   1323            write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
   1324                                    ram_low_size,
   1325                             bootloader_run_addr, kernel_entry);
   1326        }
   1327    } else {
   1328        target_long bios_size = FLASH_SIZE;
   1329        /* The flash region isn't executable from a KVM guest */
   1330        if (kvm_enabled()) {
   1331            error_report("KVM enabled but no -kernel argument was specified. "
   1332                         "Booting from flash is not supported with KVM.");
   1333            exit(1);
   1334        }
   1335        /* Load firmware from flash. */
   1336        if (!dinfo) {
   1337            /* Load a BIOS image. */
   1338            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
   1339                                      machine->firmware ?: BIOS_FILENAME);
   1340            if (filename) {
   1341                bios_size = load_image_targphys(filename, FLASH_ADDRESS,
   1342                                                BIOS_SIZE);
   1343                g_free(filename);
   1344            } else {
   1345                bios_size = -1;
   1346            }
   1347            if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
   1348                machine->firmware && !qtest_enabled()) {
   1349                error_report("Could not load MIPS bios '%s'", machine->firmware);
   1350                exit(1);
   1351            }
   1352        }
   1353        /*
   1354         * In little endian mode the 32bit words in the bios are swapped,
   1355         * a neat trick which allows bi-endian firmware.
   1356         */
   1357#ifndef TARGET_WORDS_BIGENDIAN
   1358        {
   1359            uint32_t *end, *addr;
   1360            const size_t swapsize = MIN(bios_size, 0x3e0000);
   1361            addr = rom_ptr(FLASH_ADDRESS, swapsize);
   1362            if (!addr) {
   1363                addr = memory_region_get_ram_ptr(bios);
   1364            }
   1365            end = (void *)addr + swapsize;
   1366            while (addr < end) {
   1367                bswap32s(addr);
   1368                addr++;
   1369            }
   1370        }
   1371#endif
   1372    }
   1373
   1374    /*
   1375     * Map the BIOS at a 2nd physical location, as on the real board.
   1376     * Copy it so that we can patch in the MIPS revision, which cannot be
   1377     * handled by an overlapping region as the resulting ROM code subpage
   1378     * regions are not executable.
   1379     */
   1380    memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
   1381                           &error_fatal);
   1382    if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
   1383                  FLASH_ADDRESS, BIOS_SIZE)) {
   1384        memcpy(memory_region_get_ram_ptr(bios_copy),
   1385               memory_region_get_ram_ptr(bios), BIOS_SIZE);
   1386    }
   1387    memory_region_set_readonly(bios_copy, true);
   1388    memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
   1389
   1390    /* Board ID = 0x420 (Malta Board with CoreLV) */
   1391    stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
   1392
   1393    /* Northbridge */
   1394    pci_bus = gt64120_register(s->i8259);
   1395    /*
   1396     * The whole address space decoded by the GT-64120A doesn't generate
   1397     * exception when accessing invalid memory. Create an empty slot to
   1398     * emulate this feature.
   1399     */
   1400    empty_slot_init("GT64120", 0, 0x20000000);
   1401
   1402    /* Southbridge */
   1403    dev = piix4_create(pci_bus, &isa_bus, &smbus);
   1404
   1405    /* Interrupt controller */
   1406    qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
   1407    for (int i = 0; i < ISA_NUM_IRQS; i++) {
   1408        s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
   1409    }
   1410
   1411    /* generate SPD EEPROM data */
   1412    generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
   1413    generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
   1414    smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
   1415    g_free(smbus_eeprom_buf);
   1416
   1417    /* Super I/O: SMS FDC37M817 */
   1418    isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
   1419
   1420    /* Network card */
   1421    network_init(pci_bus);
   1422
   1423    /* Optional PCI video card */
   1424    pci_vga_init(pci_bus);
   1425}
   1426
   1427static void mips_malta_instance_init(Object *obj)
   1428{
   1429    MaltaState *s = MIPS_MALTA(obj);
   1430
   1431    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
   1432    clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
   1433}
   1434
   1435static const TypeInfo mips_malta_device = {
   1436    .name          = TYPE_MIPS_MALTA,
   1437    .parent        = TYPE_SYS_BUS_DEVICE,
   1438    .instance_size = sizeof(MaltaState),
   1439    .instance_init = mips_malta_instance_init,
   1440};
   1441
   1442static void mips_malta_machine_init(MachineClass *mc)
   1443{
   1444    mc->desc = "MIPS Malta Core LV";
   1445    mc->init = mips_malta_init;
   1446    mc->block_default_type = IF_IDE;
   1447    mc->max_cpus = 16;
   1448    mc->is_default = true;
   1449#ifdef TARGET_MIPS64
   1450    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
   1451#else
   1452    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
   1453#endif
   1454    mc->default_ram_id = "mips_malta.ram";
   1455}
   1456
   1457DEFINE_MACHINE("malta", mips_malta_machine_init)
   1458
   1459static void mips_malta_register_types(void)
   1460{
   1461    type_register_static(&mips_malta_device);
   1462}
   1463
   1464type_init(mips_malta_register_types)