cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

mps2-fpgaio.c (10842B)


      1/*
      2 * ARM MPS2 AN505 FPGAIO emulation
      3 *
      4 * Copyright (c) 2018 Linaro Limited
      5 * Written by Peter Maydell
      6 *
      7 *  This program is free software; you can redistribute it and/or modify
      8 *  it under the terms of the GNU General Public License version 2 or
      9 *  (at your option) any later version.
     10 */
     11
     12/* This is a model of the "FPGA system control and I/O" block found
     13 * in the AN505 FPGA image for the MPS2 devboard.
     14 * It is documented in AN505:
     15 * https://developer.arm.com/documentation/dai0505/latest/
     16 */
     17
     18#include "qemu/osdep.h"
     19#include "qemu/log.h"
     20#include "qemu/module.h"
     21#include "qapi/error.h"
     22#include "trace.h"
     23#include "hw/sysbus.h"
     24#include "migration/vmstate.h"
     25#include "hw/registerfields.h"
     26#include "hw/misc/mps2-fpgaio.h"
     27#include "hw/misc/led.h"
     28#include "hw/qdev-properties.h"
     29#include "qemu/timer.h"
     30
     31REG32(LED0, 0)
     32REG32(DBGCTRL, 4)
     33REG32(BUTTON, 8)
     34REG32(CLK1HZ, 0x10)
     35REG32(CLK100HZ, 0x14)
     36REG32(COUNTER, 0x18)
     37REG32(PRESCALE, 0x1c)
     38REG32(PSCNTR, 0x20)
     39REG32(SWITCH, 0x28)
     40REG32(MISC, 0x4c)
     41
     42static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
     43{
     44    return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
     45}
     46
     47static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
     48{
     49    return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
     50}
     51
     52static void resync_counter(MPS2FPGAIO *s)
     53{
     54    /*
     55     * Update s->counter and s->pscntr to their true current values
     56     * by calculating how many times PSCNTR has ticked since the
     57     * last time we did a resync.
     58     */
     59    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
     60    int64_t elapsed = now - s->pscntr_sync_ticks;
     61
     62    /*
     63     * Round elapsed down to a whole number of PSCNTR ticks, so we don't
     64     * lose time if we do multiple resyncs in a single tick.
     65     */
     66    uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
     67
     68    /*
     69     * Work out what PSCNTR and COUNTER have moved to. We assume that
     70     * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
     71     * and that COUNTER increments at the same moment.
     72     */
     73    if (ticks == 0) {
     74        /* We haven't ticked since the last time we were asked */
     75        return;
     76    } else if (ticks < s->pscntr) {
     77        /* We haven't yet reached zero, just reduce the PSCNTR */
     78        s->pscntr -= ticks;
     79    } else {
     80        if (s->prescale == 0) {
     81            /*
     82             * If the reload value is zero then the PSCNTR will stick
     83             * at zero once it reaches it, and so we will increment
     84             * COUNTER every tick after that.
     85             */
     86            s->counter += ticks - s->pscntr;
     87            s->pscntr = 0;
     88        } else {
     89            /*
     90             * This is the complicated bit. This ASCII art diagram gives an
     91             * example with PRESCALE==5 PSCNTR==7:
     92             *
     93             * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
     94             * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
     95             * cinc                           1                 2
     96             * y            0  1  2  3  4  5  6  7  8  9 10 11 12
     97             * x            0  1  2  3  4  5  0  1  2  3  4  5  0
     98             *
     99             * where x = y % (s->prescale + 1)
    100             * and so PSCNTR = s->prescale - x
    101             * and COUNTER is incremented by y / (s->prescale + 1)
    102             *
    103             * The case where PSCNTR < PRESCALE works out the same,
    104             * though we must be careful to calculate y as 64-bit unsigned
    105             * for all parts of the expression.
    106             * y < 0 is not possible because that implies ticks < s->pscntr.
    107             */
    108            uint64_t y = ticks - s->pscntr + s->prescale;
    109            s->pscntr = s->prescale - (y % (s->prescale + 1));
    110            s->counter += y / (s->prescale + 1);
    111        }
    112    }
    113
    114    /*
    115     * Only advance the sync time to the timestamp of the last PSCNTR tick,
    116     * not all the way to 'now', so we don't lose time if we do multiple
    117     * resyncs in a single tick.
    118     */
    119    s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
    120                                     s->prescale_clk);
    121}
    122
    123static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
    124{
    125    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
    126    uint64_t r;
    127    int64_t now;
    128
    129    switch (offset) {
    130    case A_LED0:
    131        r = s->led0;
    132        break;
    133    case A_DBGCTRL:
    134        if (!s->has_dbgctrl) {
    135            goto bad_offset;
    136        }
    137        r = s->dbgctrl;
    138        break;
    139    case A_BUTTON:
    140        /* User-pressable board buttons. We don't model that, so just return
    141         * zeroes.
    142         */
    143        r = 0;
    144        break;
    145    case A_PRESCALE:
    146        r = s->prescale;
    147        break;
    148    case A_MISC:
    149        r = s->misc;
    150        break;
    151    case A_CLK1HZ:
    152        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    153        r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
    154        break;
    155    case A_CLK100HZ:
    156        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    157        r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
    158        break;
    159    case A_COUNTER:
    160        resync_counter(s);
    161        r = s->counter;
    162        break;
    163    case A_PSCNTR:
    164        resync_counter(s);
    165        r = s->pscntr;
    166        break;
    167    case A_SWITCH:
    168        if (!s->has_switches) {
    169            goto bad_offset;
    170        }
    171        /* User-togglable board switches. We don't model that, so report 0. */
    172        r = 0;
    173        break;
    174    default:
    175    bad_offset:
    176        qemu_log_mask(LOG_GUEST_ERROR,
    177                      "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
    178        r = 0;
    179        break;
    180    }
    181
    182    trace_mps2_fpgaio_read(offset, r, size);
    183    return r;
    184}
    185
    186static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
    187                              unsigned size)
    188{
    189    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
    190    int64_t now;
    191
    192    trace_mps2_fpgaio_write(offset, value, size);
    193
    194    switch (offset) {
    195    case A_LED0:
    196        if (s->num_leds != 0) {
    197            uint32_t i;
    198
    199            s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds);
    200            for (i = 0; i < s->num_leds; i++) {
    201                led_set_state(s->led[i], value & (1 << i));
    202            }
    203        }
    204        break;
    205    case A_DBGCTRL:
    206        if (!s->has_dbgctrl) {
    207            goto bad_offset;
    208        }
    209        qemu_log_mask(LOG_UNIMP,
    210                      "MPS2 FPGAIO: DBGCTRL unimplemented\n");
    211        s->dbgctrl = value;
    212        break;
    213    case A_PRESCALE:
    214        resync_counter(s);
    215        s->prescale = value;
    216        break;
    217    case A_MISC:
    218        /* These are control bits for some of the other devices on the
    219         * board (SPI, CLCD, etc). We don't implement that yet, so just
    220         * make the bits read as written.
    221         */
    222        qemu_log_mask(LOG_UNIMP,
    223                      "MPS2 FPGAIO: MISC control bits unimplemented\n");
    224        s->misc = value;
    225        break;
    226    case A_CLK1HZ:
    227        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    228        s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
    229        break;
    230    case A_CLK100HZ:
    231        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    232        s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
    233        break;
    234    case A_COUNTER:
    235        resync_counter(s);
    236        s->counter = value;
    237        break;
    238    case A_PSCNTR:
    239        resync_counter(s);
    240        s->pscntr = value;
    241        break;
    242    default:
    243    bad_offset:
    244        qemu_log_mask(LOG_GUEST_ERROR,
    245                      "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
    246        break;
    247    }
    248}
    249
    250static const MemoryRegionOps mps2_fpgaio_ops = {
    251    .read = mps2_fpgaio_read,
    252    .write = mps2_fpgaio_write,
    253    .endianness = DEVICE_LITTLE_ENDIAN,
    254};
    255
    256static void mps2_fpgaio_reset(DeviceState *dev)
    257{
    258    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
    259    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    260
    261    trace_mps2_fpgaio_reset();
    262    s->led0 = 0;
    263    s->prescale = 0;
    264    s->misc = 0;
    265    s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
    266    s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
    267    s->counter = 0;
    268    s->pscntr = 0;
    269    s->pscntr_sync_ticks = now;
    270
    271    for (size_t i = 0; i < s->num_leds; i++) {
    272        device_cold_reset(DEVICE(s->led[i]));
    273    }
    274}
    275
    276static void mps2_fpgaio_init(Object *obj)
    277{
    278    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    279    MPS2FPGAIO *s = MPS2_FPGAIO(obj);
    280
    281    memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
    282                          "mps2-fpgaio", 0x1000);
    283    sysbus_init_mmio(sbd, &s->iomem);
    284}
    285
    286static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
    287{
    288    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
    289    uint32_t i;
    290
    291    if (s->num_leds > MPS2FPGAIO_MAX_LEDS) {
    292        error_setg(errp, "num-leds cannot be greater than %d",
    293                   MPS2FPGAIO_MAX_LEDS);
    294        return;
    295    }
    296
    297    for (i = 0; i < s->num_leds; i++) {
    298        g_autofree char *ledname = g_strdup_printf("USERLED%d", i);
    299        s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
    300                                      LED_COLOR_GREEN, ledname);
    301    }
    302}
    303
    304static const VMStateDescription mps2_fpgaio_vmstate = {
    305    .name = "mps2-fpgaio",
    306    .version_id = 3,
    307    .minimum_version_id = 3,
    308    .fields = (VMStateField[]) {
    309        VMSTATE_UINT32(led0, MPS2FPGAIO),
    310        VMSTATE_UINT32(prescale, MPS2FPGAIO),
    311        VMSTATE_UINT32(misc, MPS2FPGAIO),
    312        VMSTATE_UINT32(dbgctrl, MPS2FPGAIO),
    313        VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
    314        VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
    315        VMSTATE_UINT32(counter, MPS2FPGAIO),
    316        VMSTATE_UINT32(pscntr, MPS2FPGAIO),
    317        VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
    318        VMSTATE_END_OF_LIST()
    319    },
    320};
    321
    322static Property mps2_fpgaio_properties[] = {
    323    /* Frequency of the prescale counter */
    324    DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
    325    /* Number of LEDs controlled by LED0 register */
    326    DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2),
    327    DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false),
    328    DEFINE_PROP_BOOL("has-dbgctrl", MPS2FPGAIO, has_dbgctrl, false),
    329    DEFINE_PROP_END_OF_LIST(),
    330};
    331
    332static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
    333{
    334    DeviceClass *dc = DEVICE_CLASS(klass);
    335
    336    dc->vmsd = &mps2_fpgaio_vmstate;
    337    dc->realize = mps2_fpgaio_realize;
    338    dc->reset = mps2_fpgaio_reset;
    339    device_class_set_props(dc, mps2_fpgaio_properties);
    340}
    341
    342static const TypeInfo mps2_fpgaio_info = {
    343    .name = TYPE_MPS2_FPGAIO,
    344    .parent = TYPE_SYS_BUS_DEVICE,
    345    .instance_size = sizeof(MPS2FPGAIO),
    346    .instance_init = mps2_fpgaio_init,
    347    .class_init = mps2_fpgaio_class_init,
    348};
    349
    350static void mps2_fpgaio_register_types(void)
    351{
    352    type_register_static(&mps2_fpgaio_info);
    353}
    354
    355type_init(mps2_fpgaio_register_types);