cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

omap_gpmc.c (29154B)


      1/*
      2 * TI OMAP general purpose memory controller emulation.
      3 *
      4 * Copyright (C) 2007-2009 Nokia Corporation
      5 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
      6 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
      7 *
      8 * This program is free software; you can redistribute it and/or
      9 * modify it under the terms of the GNU General Public License as
     10 * published by the Free Software Foundation; either version 2 or
     11 * (at your option) any later version of the License.
     12 *
     13 * This program is distributed in the hope that it will be useful,
     14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 * GNU General Public License for more details.
     17 *
     18 * You should have received a copy of the GNU General Public License along
     19 * with this program; if not, see <http://www.gnu.org/licenses/>.
     20 */
     21
     22#include "qemu/osdep.h"
     23#include "hw/irq.h"
     24#include "hw/block/flash.h"
     25#include "hw/arm/omap.h"
     26#include "exec/memory.h"
     27#include "exec/address-spaces.h"
     28
     29/* General-Purpose Memory Controller */
     30struct omap_gpmc_s {
     31    qemu_irq irq;
     32    qemu_irq drq;
     33    MemoryRegion iomem;
     34    int accept_256;
     35
     36    uint8_t revision;
     37    uint8_t sysconfig;
     38    uint16_t irqst;
     39    uint16_t irqen;
     40    uint16_t lastirq;
     41    uint16_t timeout;
     42    uint16_t config;
     43    struct omap_gpmc_cs_file_s {
     44        uint32_t config[7];
     45        MemoryRegion *iomem;
     46        MemoryRegion container;
     47        MemoryRegion nandiomem;
     48        DeviceState *dev;
     49    } cs_file[8];
     50    int ecc_cs;
     51    int ecc_ptr;
     52    uint32_t ecc_cfg;
     53    ECCState ecc[9];
     54    struct prefetch {
     55        uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
     56        uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
     57        int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
     58        int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
     59        int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
     60        MemoryRegion iomem;
     61        uint8_t fifo[64];
     62    } prefetch;
     63};
     64
     65#define OMAP_GPMC_8BIT 0
     66#define OMAP_GPMC_16BIT 1
     67#define OMAP_GPMC_NOR 0
     68#define OMAP_GPMC_NAND 2
     69
     70static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
     71{
     72    return (f->config[0] >> 10) & 3;
     73}
     74
     75static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
     76{
     77    /* devsize field is really 2 bits but we ignore the high
     78     * bit to ensure consistent behaviour if the guest sets
     79     * it (values 2 and 3 are reserved in the TRM)
     80     */
     81    return (f->config[0] >> 12) & 1;
     82}
     83
     84/* Extract the chip-select value from the prefetch config1 register */
     85static int prefetch_cs(uint32_t config1)
     86{
     87    return (config1 >> 24) & 7;
     88}
     89
     90static int prefetch_threshold(uint32_t config1)
     91{
     92    return (config1 >> 8) & 0x7f;
     93}
     94
     95static void omap_gpmc_int_update(struct omap_gpmc_s *s)
     96{
     97    /* The TRM is a bit unclear, but it seems to say that
     98     * the TERMINALCOUNTSTATUS bit is set only on the
     99     * transition when the prefetch engine goes from
    100     * active to inactive, whereas the FIFOEVENTSTATUS
    101     * bit is held high as long as the fifo has at
    102     * least THRESHOLD bytes available.
    103     * So we do the latter here, but TERMINALCOUNTSTATUS
    104     * is set elsewhere.
    105     */
    106    if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
    107        s->irqst |= 1;
    108    }
    109    if ((s->irqen & s->irqst) != s->lastirq) {
    110        s->lastirq = s->irqen & s->irqst;
    111        qemu_set_irq(s->irq, s->lastirq);
    112    }
    113}
    114
    115static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
    116{
    117    if (s->prefetch.config1 & 4) {
    118        qemu_set_irq(s->drq, value);
    119    }
    120}
    121
    122/* Access functions for when a NAND-like device is mapped into memory:
    123 * all addresses in the region behave like accesses to the relevant
    124 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
    125 */
    126static uint64_t omap_nand_read(void *opaque, hwaddr addr,
    127                               unsigned size)
    128{
    129    struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
    130    uint64_t v;
    131    nand_setpins(f->dev, 0, 0, 0, 1, 0);
    132    switch (omap_gpmc_devsize(f)) {
    133    case OMAP_GPMC_8BIT:
    134        v = nand_getio(f->dev);
    135        if (size == 1) {
    136            return v;
    137        }
    138        v |= (nand_getio(f->dev) << 8);
    139        if (size == 2) {
    140            return v;
    141        }
    142        v |= (nand_getio(f->dev) << 16);
    143        v |= (nand_getio(f->dev) << 24);
    144        return v;
    145    case OMAP_GPMC_16BIT:
    146        v = nand_getio(f->dev);
    147        if (size == 1) {
    148            /* 8 bit read from 16 bit device : probably a guest bug */
    149            return v & 0xff;
    150        }
    151        if (size == 2) {
    152            return v;
    153        }
    154        v |= (nand_getio(f->dev) << 16);
    155        return v;
    156    default:
    157        abort();
    158    }
    159}
    160
    161static void omap_nand_setio(DeviceState *dev, uint64_t value,
    162                            int nandsize, int size)
    163{
    164    /* Write the specified value to the NAND device, respecting
    165     * both size of the NAND device and size of the write access.
    166     */
    167    switch (nandsize) {
    168    case OMAP_GPMC_8BIT:
    169        switch (size) {
    170        case 1:
    171            nand_setio(dev, value & 0xff);
    172            break;
    173        case 2:
    174            nand_setio(dev, value & 0xff);
    175            nand_setio(dev, (value >> 8) & 0xff);
    176            break;
    177        case 4:
    178        default:
    179            nand_setio(dev, value & 0xff);
    180            nand_setio(dev, (value >> 8) & 0xff);
    181            nand_setio(dev, (value >> 16) & 0xff);
    182            nand_setio(dev, (value >> 24) & 0xff);
    183            break;
    184        }
    185        break;
    186    case OMAP_GPMC_16BIT:
    187        switch (size) {
    188        case 1:
    189            /* writing to a 16bit device with 8bit access is probably a guest
    190             * bug; pass the value through anyway.
    191             */
    192        case 2:
    193            nand_setio(dev, value & 0xffff);
    194            break;
    195        case 4:
    196        default:
    197            nand_setio(dev, value & 0xffff);
    198            nand_setio(dev, (value >> 16) & 0xffff);
    199            break;
    200        }
    201        break;
    202    }
    203}
    204
    205static void omap_nand_write(void *opaque, hwaddr addr,
    206                            uint64_t value, unsigned size)
    207{
    208    struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
    209    nand_setpins(f->dev, 0, 0, 0, 1, 0);
    210    omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
    211}
    212
    213static const MemoryRegionOps omap_nand_ops = {
    214    .read = omap_nand_read,
    215    .write = omap_nand_write,
    216    .endianness = DEVICE_NATIVE_ENDIAN,
    217};
    218
    219static void fill_prefetch_fifo(struct omap_gpmc_s *s)
    220{
    221    /* Fill the prefetch FIFO by reading data from NAND.
    222     * We do this synchronously, unlike the hardware which
    223     * will do this asynchronously. We refill when the
    224     * FIFO has THRESHOLD bytes free, and we always refill
    225     * as much data as possible starting at the top end
    226     * of the FIFO.
    227     * (We have to refill at THRESHOLD rather than waiting
    228     * for the FIFO to empty to allow for the case where
    229     * the FIFO size isn't an exact multiple of THRESHOLD
    230     * and we're doing DMA transfers.)
    231     * This means we never need to handle wrap-around in
    232     * the fifo-reading code, and the next byte of data
    233     * to read is always fifo[63 - fifopointer].
    234     */
    235    int fptr;
    236    int cs = prefetch_cs(s->prefetch.config1);
    237    int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
    238    int bytes;
    239    /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
    240     * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
    241     * Instead believe the bit that says it is always a byte count.
    242     */
    243    bytes = 64 - s->prefetch.fifopointer;
    244    if (bytes > s->prefetch.count) {
    245        bytes = s->prefetch.count;
    246    }
    247    if (is16bit) {
    248        bytes &= ~1;
    249    }
    250
    251    s->prefetch.count -= bytes;
    252    s->prefetch.fifopointer += bytes;
    253    fptr = 64 - s->prefetch.fifopointer;
    254    /* Move the existing data in the FIFO so it sits just
    255     * before what we're about to read in
    256     */
    257    while (fptr < (64 - bytes)) {
    258        s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
    259        fptr++;
    260    }
    261    while (fptr < 64) {
    262        if (is16bit) {
    263            uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
    264            s->prefetch.fifo[fptr++] = v & 0xff;
    265            s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
    266        } else {
    267            s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
    268        }
    269    }
    270    if (s->prefetch.startengine && (s->prefetch.count == 0)) {
    271        /* This was the final transfer: raise TERMINALCOUNTSTATUS */
    272        s->irqst |= 2;
    273        s->prefetch.startengine = 0;
    274    }
    275    /* If there are any bytes in the FIFO at this point then
    276     * we must raise a DMA request (either this is a final part
    277     * transfer, or we filled the FIFO in which case we certainly
    278     * have THRESHOLD bytes available)
    279     */
    280    if (s->prefetch.fifopointer != 0) {
    281        omap_gpmc_dma_update(s, 1);
    282    }
    283    omap_gpmc_int_update(s);
    284}
    285
    286/* Access functions for a NAND-like device when the prefetch/postwrite
    287 * engine is enabled -- all addresses in the region behave alike:
    288 * data is read or written to the FIFO.
    289 */
    290static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
    291                                        unsigned size)
    292{
    293    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
    294    uint32_t data;
    295    if (s->prefetch.config1 & 1) {
    296        /* The TRM doesn't define the behaviour if you read from the
    297         * FIFO when the prefetch engine is in write mode. We choose
    298         * to always return zero.
    299         */
    300        return 0;
    301    }
    302    /* Note that trying to read an empty fifo repeats the last byte */
    303    if (s->prefetch.fifopointer) {
    304        s->prefetch.fifopointer--;
    305    }
    306    data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
    307    if (s->prefetch.fifopointer ==
    308        (64 - prefetch_threshold(s->prefetch.config1))) {
    309        /* We've drained THRESHOLD bytes now. So deassert the
    310         * DMA request, then refill the FIFO (which will probably
    311         * assert it again.)
    312         */
    313        omap_gpmc_dma_update(s, 0);
    314        fill_prefetch_fifo(s);
    315    }
    316    omap_gpmc_int_update(s);
    317    return data;
    318}
    319
    320static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
    321                                     uint64_t value, unsigned size)
    322{
    323    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
    324    int cs = prefetch_cs(s->prefetch.config1);
    325    if ((s->prefetch.config1 & 1) == 0) {
    326        /* The TRM doesn't define the behaviour of writing to the
    327         * FIFO when the prefetch engine is in read mode. We
    328         * choose to ignore the write.
    329         */
    330        return;
    331    }
    332    if (s->prefetch.count == 0) {
    333        /* The TRM doesn't define the behaviour of writing to the
    334         * FIFO if the transfer is complete. We choose to ignore.
    335         */
    336        return;
    337    }
    338    /* The only reason we do any data buffering in postwrite
    339     * mode is if we are talking to a 16 bit NAND device, in
    340     * which case we need to buffer the first byte of the
    341     * 16 bit word until the other byte arrives.
    342     */
    343    int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
    344    if (is16bit) {
    345        /* fifopointer alternates between 64 (waiting for first
    346         * byte of word) and 63 (waiting for second byte)
    347         */
    348        if (s->prefetch.fifopointer == 64) {
    349            s->prefetch.fifo[0] = value;
    350            s->prefetch.fifopointer--;
    351        } else {
    352            value = (value << 8) | s->prefetch.fifo[0];
    353            omap_nand_write(&s->cs_file[cs], 0, value, 2);
    354            s->prefetch.count--;
    355            s->prefetch.fifopointer = 64;
    356        }
    357    } else {
    358        /* Just write the byte : fifopointer remains 64 at all times */
    359        omap_nand_write(&s->cs_file[cs], 0, value, 1);
    360        s->prefetch.count--;
    361    }
    362    if (s->prefetch.count == 0) {
    363        /* Final transfer: raise TERMINALCOUNTSTATUS */
    364        s->irqst |= 2;
    365        s->prefetch.startengine = 0;
    366    }
    367    omap_gpmc_int_update(s);
    368}
    369
    370static const MemoryRegionOps omap_prefetch_ops = {
    371    .read = omap_gpmc_prefetch_read,
    372    .write = omap_gpmc_prefetch_write,
    373    .endianness = DEVICE_NATIVE_ENDIAN,
    374    .impl.min_access_size = 1,
    375    .impl.max_access_size = 1,
    376};
    377
    378static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
    379{
    380    /* Return the MemoryRegion* to map/unmap for this chipselect */
    381    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
    382    if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
    383        return f->iomem;
    384    }
    385    if ((s->prefetch.config1 & 0x80) &&
    386        (prefetch_cs(s->prefetch.config1) == cs)) {
    387        /* The prefetch engine is enabled for this CS: map the FIFO */
    388        return &s->prefetch.iomem;
    389    }
    390    return &f->nandiomem;
    391}
    392
    393static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
    394{
    395    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
    396    uint32_t mask = (f->config[6] >> 8) & 0xf;
    397    uint32_t base = f->config[6] & 0x3f;
    398    uint32_t size;
    399
    400    if (!f->iomem && !f->dev) {
    401        return;
    402    }
    403
    404    if (!(f->config[6] & (1 << 6))) {
    405        /* Do nothing unless CSVALID */
    406        return;
    407    }
    408
    409    /* TODO: check for overlapping regions and report access errors */
    410    if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
    411         && !(s->accept_256 && !mask)) {
    412        fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
    413                 __func__, mask);
    414    }
    415
    416    base <<= 24;
    417    size = (0x0fffffff & ~(mask << 24)) + 1;
    418    /* TODO: rather than setting the size of the mapping (which should be
    419     * constant), the mask should cause wrapping of the address space, so
    420     * that the same memory becomes accessible at every <i>size</i> bytes
    421     * starting from <i>base</i>.  */
    422    memory_region_init(&f->container, NULL, "omap-gpmc-file", size);
    423    memory_region_add_subregion(&f->container, 0,
    424                                omap_gpmc_cs_memregion(s, cs));
    425    memory_region_add_subregion(get_system_memory(), base,
    426                                &f->container);
    427}
    428
    429static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
    430{
    431    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
    432    if (!(f->config[6] & (1 << 6))) {
    433        /* Do nothing unless CSVALID */
    434        return;
    435    }
    436    if (!f->iomem && !f->dev) {
    437        return;
    438    }
    439    memory_region_del_subregion(get_system_memory(), &f->container);
    440    memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
    441    object_unparent(OBJECT(&f->container));
    442}
    443
    444void omap_gpmc_reset(struct omap_gpmc_s *s)
    445{
    446    int i;
    447
    448    s->sysconfig = 0;
    449    s->irqst = 0;
    450    s->irqen = 0;
    451    omap_gpmc_int_update(s);
    452    for (i = 0; i < 8; i++) {
    453        /* This has to happen before we change any of the config
    454         * used to determine which memory regions are mapped or unmapped.
    455         */
    456        omap_gpmc_cs_unmap(s, i);
    457    }
    458    s->timeout = 0;
    459    s->config = 0xa00;
    460    s->prefetch.config1 = 0x00004000;
    461    s->prefetch.transfercount = 0x00000000;
    462    s->prefetch.startengine = 0;
    463    s->prefetch.fifopointer = 0;
    464    s->prefetch.count = 0;
    465    for (i = 0; i < 8; i ++) {
    466        s->cs_file[i].config[1] = 0x101001;
    467        s->cs_file[i].config[2] = 0x020201;
    468        s->cs_file[i].config[3] = 0x10031003;
    469        s->cs_file[i].config[4] = 0x10f1111;
    470        s->cs_file[i].config[5] = 0;
    471        s->cs_file[i].config[6] = 0xf00;
    472        /* In theory we could probe attached devices for some CFG1
    473         * bits here, but we just retain them across resets as they
    474         * were set initially by omap_gpmc_attach().
    475         */
    476        if (i == 0) {
    477            s->cs_file[i].config[0] &= 0x00433e00;
    478            s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
    479            omap_gpmc_cs_map(s, i);
    480        } else {
    481            s->cs_file[i].config[0] &= 0x00403c00;
    482        }
    483    }
    484    s->ecc_cs = 0;
    485    s->ecc_ptr = 0;
    486    s->ecc_cfg = 0x3fcff000;
    487    for (i = 0; i < 9; i ++)
    488        ecc_reset(&s->ecc[i]);
    489}
    490
    491static int gpmc_wordaccess_only(hwaddr addr)
    492{
    493    /* Return true if the register offset is to a register that
    494     * only permits word width accesses.
    495     * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
    496     * for any chipselect.
    497     */
    498    if (addr >= 0x60 && addr <= 0x1d4) {
    499        int cs = (addr - 0x60) / 0x30;
    500        addr -= cs * 0x30;
    501        if (addr >= 0x7c && addr < 0x88) {
    502            /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
    503            return 0;
    504        }
    505    }
    506    return 1;
    507}
    508
    509static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
    510                               unsigned size)
    511{
    512    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
    513    int cs;
    514    struct omap_gpmc_cs_file_s *f;
    515
    516    if (size != 4 && gpmc_wordaccess_only(addr)) {
    517        return omap_badwidth_read32(opaque, addr);
    518    }
    519
    520    switch (addr) {
    521    case 0x000:	/* GPMC_REVISION */
    522        return s->revision;
    523
    524    case 0x010:	/* GPMC_SYSCONFIG */
    525        return s->sysconfig;
    526
    527    case 0x014:	/* GPMC_SYSSTATUS */
    528        return 1;						/* RESETDONE */
    529
    530    case 0x018:	/* GPMC_IRQSTATUS */
    531        return s->irqst;
    532
    533    case 0x01c:	/* GPMC_IRQENABLE */
    534        return s->irqen;
    535
    536    case 0x040:	/* GPMC_TIMEOUT_CONTROL */
    537        return s->timeout;
    538
    539    case 0x044:	/* GPMC_ERR_ADDRESS */
    540    case 0x048:	/* GPMC_ERR_TYPE */
    541        return 0;
    542
    543    case 0x050:	/* GPMC_CONFIG */
    544        return s->config;
    545
    546    case 0x054:	/* GPMC_STATUS */
    547        return 0x001;
    548
    549    case 0x060 ... 0x1d4:
    550        cs = (addr - 0x060) / 0x30;
    551        addr -= cs * 0x30;
    552        f = s->cs_file + cs;
    553        switch (addr) {
    554        case 0x60:      /* GPMC_CONFIG1 */
    555            return f->config[0];
    556        case 0x64:      /* GPMC_CONFIG2 */
    557            return f->config[1];
    558        case 0x68:      /* GPMC_CONFIG3 */
    559            return f->config[2];
    560        case 0x6c:      /* GPMC_CONFIG4 */
    561            return f->config[3];
    562        case 0x70:      /* GPMC_CONFIG5 */
    563            return f->config[4];
    564        case 0x74:      /* GPMC_CONFIG6 */
    565            return f->config[5];
    566        case 0x78:      /* GPMC_CONFIG7 */
    567            return f->config[6];
    568        case 0x84 ... 0x87: /* GPMC_NAND_DATA */
    569            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
    570                return omap_nand_read(f, 0, size);
    571            }
    572            return 0;
    573        }
    574        break;
    575
    576    case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
    577        return s->prefetch.config1;
    578    case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
    579        return s->prefetch.transfercount;
    580    case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
    581        return s->prefetch.startengine;
    582    case 0x1f0:	/* GPMC_PREFETCH_STATUS */
    583        /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
    584         * FIFOTHRESHOLDSTATUS bit should be set when
    585         * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
    586         * Apparently the underlying functional spec from which the TRM was
    587         * created states that the behaviour is ">=", and this also
    588         * makes more conceptual sense.
    589         */
    590        return (s->prefetch.fifopointer << 24) |
    591                ((s->prefetch.fifopointer >=
    592                  ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
    593                s->prefetch.count;
    594
    595    case 0x1f4:	/* GPMC_ECC_CONFIG */
    596        return s->ecc_cs;
    597    case 0x1f8:	/* GPMC_ECC_CONTROL */
    598        return s->ecc_ptr;
    599    case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
    600        return s->ecc_cfg;
    601    case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
    602        cs = (addr & 0x1f) >> 2;
    603        /* TODO: check correctness */
    604        return
    605                ((s->ecc[cs].cp    &  0x07) <<  0) |
    606                ((s->ecc[cs].cp    &  0x38) << 13) |
    607                ((s->ecc[cs].lp[0] & 0x1ff) <<  3) |
    608                ((s->ecc[cs].lp[1] & 0x1ff) << 19);
    609
    610    case 0x230:	/* GPMC_TESTMODE_CTRL */
    611        return 0;
    612    case 0x234:	/* GPMC_PSA_LSB */
    613    case 0x238:	/* GPMC_PSA_MSB */
    614        return 0x00000000;
    615    }
    616
    617    OMAP_BAD_REG(addr);
    618    return 0;
    619}
    620
    621static void omap_gpmc_write(void *opaque, hwaddr addr,
    622                            uint64_t value, unsigned size)
    623{
    624    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
    625    int cs;
    626    struct omap_gpmc_cs_file_s *f;
    627
    628    if (size != 4 && gpmc_wordaccess_only(addr)) {
    629        omap_badwidth_write32(opaque, addr, value);
    630        return;
    631    }
    632
    633    switch (addr) {
    634    case 0x000:	/* GPMC_REVISION */
    635    case 0x014:	/* GPMC_SYSSTATUS */
    636    case 0x054:	/* GPMC_STATUS */
    637    case 0x1f0:	/* GPMC_PREFETCH_STATUS */
    638    case 0x200 ... 0x220:	/* GPMC_ECC_RESULT */
    639    case 0x234:	/* GPMC_PSA_LSB */
    640    case 0x238:	/* GPMC_PSA_MSB */
    641        OMAP_RO_REG(addr);
    642        break;
    643
    644    case 0x010:	/* GPMC_SYSCONFIG */
    645        if ((value >> 3) == 0x3)
    646            fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
    647                            __func__, value >> 3);
    648        if (value & 2)
    649            omap_gpmc_reset(s);
    650        s->sysconfig = value & 0x19;
    651        break;
    652
    653    case 0x018:	/* GPMC_IRQSTATUS */
    654        s->irqst &= ~value;
    655        omap_gpmc_int_update(s);
    656        break;
    657
    658    case 0x01c:	/* GPMC_IRQENABLE */
    659        s->irqen = value & 0xf03;
    660        omap_gpmc_int_update(s);
    661        break;
    662
    663    case 0x040:	/* GPMC_TIMEOUT_CONTROL */
    664        s->timeout = value & 0x1ff1;
    665        break;
    666
    667    case 0x044:	/* GPMC_ERR_ADDRESS */
    668    case 0x048:	/* GPMC_ERR_TYPE */
    669        break;
    670
    671    case 0x050:	/* GPMC_CONFIG */
    672        s->config = value & 0xf13;
    673        break;
    674
    675    case 0x060 ... 0x1d4:
    676        cs = (addr - 0x060) / 0x30;
    677        addr -= cs * 0x30;
    678        f = s->cs_file + cs;
    679        switch (addr) {
    680        case 0x60:      /* GPMC_CONFIG1 */
    681            f->config[0] = value & 0xffef3e13;
    682            break;
    683        case 0x64:      /* GPMC_CONFIG2 */
    684            f->config[1] = value & 0x001f1f8f;
    685            break;
    686        case 0x68:      /* GPMC_CONFIG3 */
    687            f->config[2] = value & 0x001f1f8f;
    688            break;
    689        case 0x6c:      /* GPMC_CONFIG4 */
    690            f->config[3] = value & 0x1f8f1f8f;
    691            break;
    692        case 0x70:      /* GPMC_CONFIG5 */
    693            f->config[4] = value & 0x0f1f1f1f;
    694            break;
    695        case 0x74:      /* GPMC_CONFIG6 */
    696            f->config[5] = value & 0x00000fcf;
    697            break;
    698        case 0x78:      /* GPMC_CONFIG7 */
    699            if ((f->config[6] ^ value) & 0xf7f) {
    700                omap_gpmc_cs_unmap(s, cs);
    701                f->config[6] = value & 0x00000f7f;
    702                omap_gpmc_cs_map(s, cs);
    703            }
    704            break;
    705        case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
    706            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
    707                nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
    708                omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
    709            }
    710            break;
    711        case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
    712            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
    713                nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
    714                omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
    715            }
    716            break;
    717        case 0x84 ... 0x87: /* GPMC_NAND_DATA */
    718            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
    719                omap_nand_write(f, 0, value, size);
    720            }
    721            break;
    722        default:
    723            goto bad_reg;
    724        }
    725        break;
    726
    727    case 0x1e0:	/* GPMC_PREFETCH_CONFIG1 */
    728        if (!s->prefetch.startengine) {
    729            uint32_t newconfig1 = value & 0x7f8f7fbf;
    730            uint32_t changed;
    731            changed = newconfig1 ^ s->prefetch.config1;
    732            if (changed & (0x80 | 0x7000000)) {
    733                /* Turning the engine on or off, or mapping it somewhere else.
    734                 * cs_map() and cs_unmap() check the prefetch config and
    735                 * overall CSVALID bits, so it is sufficient to unmap-and-map
    736                 * both the old cs and the new one. Note that we adhere to
    737                 * the "unmap/change config/map" order (and not unmap twice
    738                 * if newcs == oldcs), otherwise we'll try to delete the wrong
    739                 * memory region.
    740                 */
    741                int oldcs = prefetch_cs(s->prefetch.config1);
    742                int newcs = prefetch_cs(newconfig1);
    743                omap_gpmc_cs_unmap(s, oldcs);
    744                if (oldcs != newcs) {
    745                    omap_gpmc_cs_unmap(s, newcs);
    746                }
    747                s->prefetch.config1 = newconfig1;
    748                omap_gpmc_cs_map(s, oldcs);
    749                if (oldcs != newcs) {
    750                    omap_gpmc_cs_map(s, newcs);
    751                }
    752            } else {
    753                s->prefetch.config1 = newconfig1;
    754            }
    755        }
    756        break;
    757
    758    case 0x1e4:	/* GPMC_PREFETCH_CONFIG2 */
    759        if (!s->prefetch.startengine) {
    760            s->prefetch.transfercount = value & 0x3fff;
    761        }
    762        break;
    763
    764    case 0x1ec:	/* GPMC_PREFETCH_CONTROL */
    765        if (s->prefetch.startengine != (value & 1)) {
    766            s->prefetch.startengine = value & 1;
    767            if (s->prefetch.startengine) {
    768                /* Prefetch engine start */
    769                s->prefetch.count = s->prefetch.transfercount;
    770                if (s->prefetch.config1 & 1) {
    771                    /* Write */
    772                    s->prefetch.fifopointer = 64;
    773                } else {
    774                    /* Read */
    775                    s->prefetch.fifopointer = 0;
    776                    fill_prefetch_fifo(s);
    777                }
    778            } else {
    779                /* Prefetch engine forcibly stopped. The TRM
    780                 * doesn't define the behaviour if you do this.
    781                 * We clear the prefetch count, which means that
    782                 * we permit no more writes, and don't read any
    783                 * more data from NAND. The CPU can still drain
    784                 * the FIFO of unread data.
    785                 */
    786                s->prefetch.count = 0;
    787            }
    788            omap_gpmc_int_update(s);
    789        }
    790        break;
    791
    792    case 0x1f4:	/* GPMC_ECC_CONFIG */
    793        s->ecc_cs = 0x8f;
    794        break;
    795    case 0x1f8:	/* GPMC_ECC_CONTROL */
    796        if (value & (1 << 8))
    797            for (cs = 0; cs < 9; cs ++)
    798                ecc_reset(&s->ecc[cs]);
    799        s->ecc_ptr = value & 0xf;
    800        if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
    801            s->ecc_ptr = 0;
    802            s->ecc_cs &= ~1;
    803        }
    804        break;
    805    case 0x1fc:	/* GPMC_ECC_SIZE_CONFIG */
    806        s->ecc_cfg = value & 0x3fcff1ff;
    807        break;
    808    case 0x230:	/* GPMC_TESTMODE_CTRL */
    809        if (value & 7)
    810            fprintf(stderr, "%s: test mode enable attempt\n", __func__);
    811        break;
    812
    813    default:
    814    bad_reg:
    815        OMAP_BAD_REG(addr);
    816        return;
    817    }
    818}
    819
    820static const MemoryRegionOps omap_gpmc_ops = {
    821    .read = omap_gpmc_read,
    822    .write = omap_gpmc_write,
    823    .endianness = DEVICE_NATIVE_ENDIAN,
    824};
    825
    826struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
    827                                   hwaddr base,
    828                                   qemu_irq irq, qemu_irq drq)
    829{
    830    int cs;
    831    struct omap_gpmc_s *s = g_new0(struct omap_gpmc_s, 1);
    832
    833    memory_region_init_io(&s->iomem, NULL, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
    834    memory_region_add_subregion(get_system_memory(), base, &s->iomem);
    835
    836    s->irq = irq;
    837    s->drq = drq;
    838    s->accept_256 = cpu_is_omap3630(mpu);
    839    s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
    840    s->lastirq = 0;
    841    omap_gpmc_reset(s);
    842
    843    /* We have to register a different IO memory handler for each
    844     * chip select region in case a NAND device is mapped there. We
    845     * make the region the worst-case size of 256MB and rely on the
    846     * container memory region in cs_map to chop it down to the actual
    847     * guest-requested size.
    848     */
    849    for (cs = 0; cs < 8; cs++) {
    850        memory_region_init_io(&s->cs_file[cs].nandiomem, NULL,
    851                              &omap_nand_ops,
    852                              &s->cs_file[cs],
    853                              "omap-nand",
    854                              256 * 1024 * 1024);
    855    }
    856
    857    memory_region_init_io(&s->prefetch.iomem, NULL, &omap_prefetch_ops, s,
    858                          "omap-gpmc-prefetch", 256 * 1024 * 1024);
    859    return s;
    860}
    861
    862void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
    863{
    864    struct omap_gpmc_cs_file_s *f;
    865    assert(iomem);
    866
    867    if (cs < 0 || cs >= 8) {
    868        fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
    869        exit(-1);
    870    }
    871    f = &s->cs_file[cs];
    872
    873    omap_gpmc_cs_unmap(s, cs);
    874    f->config[0] &= ~(0xf << 10);
    875    f->iomem = iomem;
    876    omap_gpmc_cs_map(s, cs);
    877}
    878
    879void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
    880{
    881    struct omap_gpmc_cs_file_s *f;
    882    assert(nand);
    883
    884    if (cs < 0 || cs >= 8) {
    885        fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
    886        exit(-1);
    887    }
    888    f = &s->cs_file[cs];
    889
    890    omap_gpmc_cs_unmap(s, cs);
    891    f->config[0] &= ~(0xf << 10);
    892    f->config[0] |= (OMAP_GPMC_NAND << 10);
    893    f->dev = nand;
    894    if (nand_getbuswidth(f->dev) == 16) {
    895        f->config[0] |= OMAP_GPMC_16BIT << 12;
    896    }
    897    omap_gpmc_cs_map(s, cs);
    898}