cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

ftgmac100.c (42214B)


      1/*
      2 * Faraday FTGMAC100 Gigabit Ethernet
      3 *
      4 * Copyright (C) 2016-2017, IBM Corporation.
      5 *
      6 * Based on Coldfire Fast Ethernet Controller emulation.
      7 *
      8 * Copyright (c) 2007 CodeSourcery.
      9 *
     10 * This code is licensed under the GPL version 2 or later. See the
     11 * COPYING file in the top-level directory.
     12 */
     13
     14#include "qemu/osdep.h"
     15#include "hw/irq.h"
     16#include "hw/net/ftgmac100.h"
     17#include "sysemu/dma.h"
     18#include "qapi/error.h"
     19#include "qemu/log.h"
     20#include "qemu/module.h"
     21#include "net/checksum.h"
     22#include "net/eth.h"
     23#include "hw/net/mii.h"
     24#include "hw/qdev-properties.h"
     25#include "migration/vmstate.h"
     26
     27/* For crc32 */
     28#include <zlib.h>
     29
     30/*
     31 * FTGMAC100 registers
     32 */
     33#define FTGMAC100_ISR             0x00
     34#define FTGMAC100_IER             0x04
     35#define FTGMAC100_MAC_MADR        0x08
     36#define FTGMAC100_MAC_LADR        0x0c
     37#define FTGMAC100_MATH0           0x10
     38#define FTGMAC100_MATH1           0x14
     39#define FTGMAC100_NPTXPD          0x18
     40#define FTGMAC100_RXPD            0x1C
     41#define FTGMAC100_NPTXR_BADR      0x20
     42#define FTGMAC100_RXR_BADR        0x24
     43#define FTGMAC100_HPTXPD          0x28
     44#define FTGMAC100_HPTXR_BADR      0x2c
     45#define FTGMAC100_ITC             0x30
     46#define FTGMAC100_APTC            0x34
     47#define FTGMAC100_DBLAC           0x38
     48#define FTGMAC100_REVR            0x40
     49#define FTGMAC100_FEAR1           0x44
     50#define FTGMAC100_RBSR            0x4c
     51#define FTGMAC100_TPAFCR          0x48
     52
     53#define FTGMAC100_MACCR           0x50
     54#define FTGMAC100_MACSR           0x54
     55#define FTGMAC100_PHYCR           0x60
     56#define FTGMAC100_PHYDATA         0x64
     57#define FTGMAC100_FCR             0x68
     58
     59/*
     60 * Interrupt status register & interrupt enable register
     61 */
     62#define FTGMAC100_INT_RPKT_BUF    (1 << 0)
     63#define FTGMAC100_INT_RPKT_FIFO   (1 << 1)
     64#define FTGMAC100_INT_NO_RXBUF    (1 << 2)
     65#define FTGMAC100_INT_RPKT_LOST   (1 << 3)
     66#define FTGMAC100_INT_XPKT_ETH    (1 << 4)
     67#define FTGMAC100_INT_XPKT_FIFO   (1 << 5)
     68#define FTGMAC100_INT_NO_NPTXBUF  (1 << 6)
     69#define FTGMAC100_INT_XPKT_LOST   (1 << 7)
     70#define FTGMAC100_INT_AHB_ERR     (1 << 8)
     71#define FTGMAC100_INT_PHYSTS_CHG  (1 << 9)
     72#define FTGMAC100_INT_NO_HPTXBUF  (1 << 10)
     73
     74/*
     75 * Automatic polling timer control register
     76 */
     77#define FTGMAC100_APTC_RXPOLL_CNT(x)        ((x) & 0xf)
     78#define FTGMAC100_APTC_RXPOLL_TIME_SEL      (1 << 4)
     79#define FTGMAC100_APTC_TXPOLL_CNT(x)        (((x) >> 8) & 0xf)
     80#define FTGMAC100_APTC_TXPOLL_TIME_SEL      (1 << 12)
     81
     82/*
     83 * DMA burst length and arbitration control register
     84 */
     85#define FTGMAC100_DBLAC_RXBURST_SIZE(x)     (((x) >> 8) & 0x3)
     86#define FTGMAC100_DBLAC_TXBURST_SIZE(x)     (((x) >> 10) & 0x3)
     87#define FTGMAC100_DBLAC_RXDES_SIZE(x)       ((((x) >> 12) & 0xf) * 8)
     88#define FTGMAC100_DBLAC_TXDES_SIZE(x)       ((((x) >> 16) & 0xf) * 8)
     89#define FTGMAC100_DBLAC_IFG_CNT(x)          (((x) >> 20) & 0x7)
     90#define FTGMAC100_DBLAC_IFG_INC             (1 << 23)
     91
     92/*
     93 * PHY control register
     94 */
     95#define FTGMAC100_PHYCR_MIIRD               (1 << 26)
     96#define FTGMAC100_PHYCR_MIIWR               (1 << 27)
     97
     98#define FTGMAC100_PHYCR_DEV(x)              (((x) >> 16) & 0x1f)
     99#define FTGMAC100_PHYCR_REG(x)              (((x) >> 21) & 0x1f)
    100
    101/*
    102 * PHY data register
    103 */
    104#define FTGMAC100_PHYDATA_MIIWDATA(x)       ((x) & 0xffff)
    105#define FTGMAC100_PHYDATA_MIIRDATA(x)       (((x) >> 16) & 0xffff)
    106
    107/*
    108 * PHY control register - New MDC/MDIO interface
    109 */
    110#define FTGMAC100_PHYCR_NEW_DATA(x)     (((x) >> 16) & 0xffff)
    111#define FTGMAC100_PHYCR_NEW_FIRE        (1 << 15)
    112#define FTGMAC100_PHYCR_NEW_ST_22       (1 << 12)
    113#define FTGMAC100_PHYCR_NEW_OP(x)       (((x) >> 10) & 3)
    114#define   FTGMAC100_PHYCR_NEW_OP_WRITE    0x1
    115#define   FTGMAC100_PHYCR_NEW_OP_READ     0x2
    116#define FTGMAC100_PHYCR_NEW_DEV(x)      (((x) >> 5) & 0x1f)
    117#define FTGMAC100_PHYCR_NEW_REG(x)      ((x) & 0x1f)
    118
    119/*
    120 * Feature Register
    121 */
    122#define FTGMAC100_REVR_NEW_MDIO_INTERFACE   (1 << 31)
    123
    124/*
    125 * MAC control register
    126 */
    127#define FTGMAC100_MACCR_TXDMA_EN         (1 << 0)
    128#define FTGMAC100_MACCR_RXDMA_EN         (1 << 1)
    129#define FTGMAC100_MACCR_TXMAC_EN         (1 << 2)
    130#define FTGMAC100_MACCR_RXMAC_EN         (1 << 3)
    131#define FTGMAC100_MACCR_RM_VLAN          (1 << 4)
    132#define FTGMAC100_MACCR_HPTXR_EN         (1 << 5)
    133#define FTGMAC100_MACCR_LOOP_EN          (1 << 6)
    134#define FTGMAC100_MACCR_ENRX_IN_HALFTX   (1 << 7)
    135#define FTGMAC100_MACCR_FULLDUP          (1 << 8)
    136#define FTGMAC100_MACCR_GIGA_MODE        (1 << 9)
    137#define FTGMAC100_MACCR_CRC_APD          (1 << 10) /* not needed */
    138#define FTGMAC100_MACCR_RX_RUNT          (1 << 12)
    139#define FTGMAC100_MACCR_JUMBO_LF         (1 << 13)
    140#define FTGMAC100_MACCR_RX_ALL           (1 << 14)
    141#define FTGMAC100_MACCR_HT_MULTI_EN      (1 << 15)
    142#define FTGMAC100_MACCR_RX_MULTIPKT      (1 << 16)
    143#define FTGMAC100_MACCR_RX_BROADPKT      (1 << 17)
    144#define FTGMAC100_MACCR_DISCARD_CRCERR   (1 << 18)
    145#define FTGMAC100_MACCR_FAST_MODE        (1 << 19)
    146#define FTGMAC100_MACCR_SW_RST           (1 << 31)
    147
    148/*
    149 * Transmit descriptor
    150 */
    151#define FTGMAC100_TXDES0_TXBUF_SIZE(x)   ((x) & 0x3fff)
    152#define FTGMAC100_TXDES0_EDOTR           (1 << 15)
    153#define FTGMAC100_TXDES0_CRC_ERR         (1 << 19)
    154#define FTGMAC100_TXDES0_LTS             (1 << 28)
    155#define FTGMAC100_TXDES0_FTS             (1 << 29)
    156#define FTGMAC100_TXDES0_EDOTR_ASPEED    (1 << 30)
    157#define FTGMAC100_TXDES0_TXDMA_OWN       (1 << 31)
    158
    159#define FTGMAC100_TXDES1_VLANTAG_CI(x)   ((x) & 0xffff)
    160#define FTGMAC100_TXDES1_INS_VLANTAG     (1 << 16)
    161#define FTGMAC100_TXDES1_TCP_CHKSUM      (1 << 17)
    162#define FTGMAC100_TXDES1_UDP_CHKSUM      (1 << 18)
    163#define FTGMAC100_TXDES1_IP_CHKSUM       (1 << 19)
    164#define FTGMAC100_TXDES1_LLC             (1 << 22)
    165#define FTGMAC100_TXDES1_TX2FIC          (1 << 30)
    166#define FTGMAC100_TXDES1_TXIC            (1 << 31)
    167
    168/*
    169 * Receive descriptor
    170 */
    171#define FTGMAC100_RXDES0_VDBC            0x3fff
    172#define FTGMAC100_RXDES0_EDORR           (1 << 15)
    173#define FTGMAC100_RXDES0_MULTICAST       (1 << 16)
    174#define FTGMAC100_RXDES0_BROADCAST       (1 << 17)
    175#define FTGMAC100_RXDES0_RX_ERR          (1 << 18)
    176#define FTGMAC100_RXDES0_CRC_ERR         (1 << 19)
    177#define FTGMAC100_RXDES0_FTL             (1 << 20)
    178#define FTGMAC100_RXDES0_RUNT            (1 << 21)
    179#define FTGMAC100_RXDES0_RX_ODD_NB       (1 << 22)
    180#define FTGMAC100_RXDES0_FIFO_FULL       (1 << 23)
    181#define FTGMAC100_RXDES0_PAUSE_OPCODE    (1 << 24)
    182#define FTGMAC100_RXDES0_PAUSE_FRAME     (1 << 25)
    183#define FTGMAC100_RXDES0_LRS             (1 << 28)
    184#define FTGMAC100_RXDES0_FRS             (1 << 29)
    185#define FTGMAC100_RXDES0_EDORR_ASPEED    (1 << 30)
    186#define FTGMAC100_RXDES0_RXPKT_RDY       (1 << 31)
    187
    188#define FTGMAC100_RXDES1_VLANTAG_CI      0xffff
    189#define FTGMAC100_RXDES1_PROT_MASK       (0x3 << 20)
    190#define FTGMAC100_RXDES1_PROT_NONIP      (0x0 << 20)
    191#define FTGMAC100_RXDES1_PROT_IP         (0x1 << 20)
    192#define FTGMAC100_RXDES1_PROT_TCPIP      (0x2 << 20)
    193#define FTGMAC100_RXDES1_PROT_UDPIP      (0x3 << 20)
    194#define FTGMAC100_RXDES1_LLC             (1 << 22)
    195#define FTGMAC100_RXDES1_DF              (1 << 23)
    196#define FTGMAC100_RXDES1_VLANTAG_AVAIL   (1 << 24)
    197#define FTGMAC100_RXDES1_TCP_CHKSUM_ERR  (1 << 25)
    198#define FTGMAC100_RXDES1_UDP_CHKSUM_ERR  (1 << 26)
    199#define FTGMAC100_RXDES1_IP_CHKSUM_ERR   (1 << 27)
    200
    201/*
    202 * Receive and transmit Buffer Descriptor
    203 */
    204typedef struct {
    205    uint32_t        des0;
    206    uint32_t        des1;
    207    uint32_t        des2;        /* not used by HW */
    208    uint32_t        des3;
    209} FTGMAC100Desc;
    210
    211#define FTGMAC100_DESC_ALIGNMENT 16
    212
    213/*
    214 * Specific RTL8211E MII Registers
    215 */
    216#define RTL8211E_MII_PHYCR        16 /* PHY Specific Control */
    217#define RTL8211E_MII_PHYSR        17 /* PHY Specific Status */
    218#define RTL8211E_MII_INER         18 /* Interrupt Enable */
    219#define RTL8211E_MII_INSR         19 /* Interrupt Status */
    220#define RTL8211E_MII_RXERC        24 /* Receive Error Counter */
    221#define RTL8211E_MII_LDPSR        27 /* Link Down Power Saving */
    222#define RTL8211E_MII_EPAGSR       30 /* Extension Page Select */
    223#define RTL8211E_MII_PAGSEL       31 /* Page Select */
    224
    225/*
    226 * RTL8211E Interrupt Status
    227 */
    228#define PHY_INT_AUTONEG_ERROR       (1 << 15)
    229#define PHY_INT_PAGE_RECV           (1 << 12)
    230#define PHY_INT_AUTONEG_COMPLETE    (1 << 11)
    231#define PHY_INT_LINK_STATUS         (1 << 10)
    232#define PHY_INT_ERROR               (1 << 9)
    233#define PHY_INT_DOWN                (1 << 8)
    234#define PHY_INT_JABBER              (1 << 0)
    235
    236/*
    237 * Max frame size for the receiving buffer
    238 */
    239#define FTGMAC100_MAX_FRAME_SIZE    9220
    240
    241/* Limits depending on the type of the frame
    242 *
    243 *   9216 for Jumbo frames (+ 4 for VLAN)
    244 *   1518 for other frames (+ 4 for VLAN)
    245 */
    246static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto)
    247{
    248    int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518);
    249
    250    return max + (proto == ETH_P_VLAN ? 4 : 0);
    251}
    252
    253static void ftgmac100_update_irq(FTGMAC100State *s)
    254{
    255    qemu_set_irq(s->irq, s->isr & s->ier);
    256}
    257
    258/*
    259 * The MII phy could raise a GPIO to the processor which in turn
    260 * could be handled as an interrpt by the OS.
    261 * For now we don't handle any GPIO/interrupt line, so the OS will
    262 * have to poll for the PHY status.
    263 */
    264static void phy_update_irq(FTGMAC100State *s)
    265{
    266    ftgmac100_update_irq(s);
    267}
    268
    269static void phy_update_link(FTGMAC100State *s)
    270{
    271    /* Autonegotiation status mirrors link status.  */
    272    if (qemu_get_queue(s->nic)->link_down) {
    273        s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
    274        s->phy_int |= PHY_INT_DOWN;
    275    } else {
    276        s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
    277        s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
    278    }
    279    phy_update_irq(s);
    280}
    281
    282static void ftgmac100_set_link(NetClientState *nc)
    283{
    284    phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc)));
    285}
    286
    287static void phy_reset(FTGMAC100State *s)
    288{
    289    s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
    290                     MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS |
    291                     MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST |
    292                     MII_BMSR_EXTCAP);
    293    s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000);
    294    s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD |
    295                        MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
    296                        MII_ANAR_CSMACD);
    297    s->phy_int_mask = 0;
    298    s->phy_int = 0;
    299}
    300
    301static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg)
    302{
    303    uint16_t val;
    304
    305    switch (reg) {
    306    case MII_BMCR: /* Basic Control */
    307        val = s->phy_control;
    308        break;
    309    case MII_BMSR: /* Basic Status */
    310        val = s->phy_status;
    311        break;
    312    case MII_PHYID1: /* ID1 */
    313        val = RTL8211E_PHYID1;
    314        break;
    315    case MII_PHYID2: /* ID2 */
    316        val = RTL8211E_PHYID2;
    317        break;
    318    case MII_ANAR: /* Auto-neg advertisement */
    319        val = s->phy_advertise;
    320        break;
    321    case MII_ANLPAR: /* Auto-neg Link Partner Ability */
    322        val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD |
    323               MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 |
    324               MII_ANLPAR_CSMACD);
    325        break;
    326    case MII_ANER: /* Auto-neg Expansion */
    327        val = MII_ANER_NWAY;
    328        break;
    329    case MII_CTRL1000: /* 1000BASE-T control  */
    330        val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL);
    331        break;
    332    case MII_STAT1000: /* 1000BASE-T status  */
    333        val = MII_STAT1000_FULL;
    334        break;
    335    case RTL8211E_MII_INSR:  /* Interrupt status.  */
    336        val = s->phy_int;
    337        s->phy_int = 0;
    338        phy_update_irq(s);
    339        break;
    340    case RTL8211E_MII_INER:  /* Interrupt enable */
    341        val = s->phy_int_mask;
    342        break;
    343    case RTL8211E_MII_PHYCR:
    344    case RTL8211E_MII_PHYSR:
    345    case RTL8211E_MII_RXERC:
    346    case RTL8211E_MII_LDPSR:
    347    case RTL8211E_MII_EPAGSR:
    348    case RTL8211E_MII_PAGSEL:
    349        qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
    350                      __func__, reg);
    351        val = 0;
    352        break;
    353    default:
    354        qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
    355                      __func__, reg);
    356        val = 0;
    357        break;
    358    }
    359
    360    return val;
    361}
    362
    363#define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 |          \
    364                       MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \
    365                       MII_BMCR_FD | MII_BMCR_CTST)
    366#define MII_ANAR_MASK 0x2d7f
    367
    368static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val)
    369{
    370    switch (reg) {
    371    case MII_BMCR:     /* Basic Control */
    372        if (val & MII_BMCR_RESET) {
    373            phy_reset(s);
    374        } else {
    375            s->phy_control = val & MII_BMCR_MASK;
    376            /* Complete autonegotiation immediately.  */
    377            if (val & MII_BMCR_AUTOEN) {
    378                s->phy_status |= MII_BMSR_AN_COMP;
    379            }
    380        }
    381        break;
    382    case MII_ANAR:     /* Auto-neg advertisement */
    383        s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX;
    384        break;
    385    case RTL8211E_MII_INER: /* Interrupt enable */
    386        s->phy_int_mask = val & 0xff;
    387        phy_update_irq(s);
    388        break;
    389    case RTL8211E_MII_PHYCR:
    390    case RTL8211E_MII_PHYSR:
    391    case RTL8211E_MII_RXERC:
    392    case RTL8211E_MII_LDPSR:
    393    case RTL8211E_MII_EPAGSR:
    394    case RTL8211E_MII_PAGSEL:
    395        qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
    396                      __func__, reg);
    397        break;
    398    default:
    399        qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
    400                      __func__, reg);
    401        break;
    402    }
    403}
    404
    405static void do_phy_new_ctl(FTGMAC100State *s)
    406{
    407    uint8_t reg;
    408    uint16_t data;
    409
    410    if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) {
    411        qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
    412        return;
    413    }
    414
    415    /* Nothing to do */
    416    if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) {
    417        return;
    418    }
    419
    420    reg = FTGMAC100_PHYCR_NEW_REG(s->phycr);
    421    data = FTGMAC100_PHYCR_NEW_DATA(s->phycr);
    422
    423    switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) {
    424    case FTGMAC100_PHYCR_NEW_OP_WRITE:
    425        do_phy_write(s, reg, data);
    426        break;
    427    case FTGMAC100_PHYCR_NEW_OP_READ:
    428        s->phydata = do_phy_read(s, reg) & 0xffff;
    429        break;
    430    default:
    431        qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
    432                      __func__, s->phycr);
    433    }
    434
    435    s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE;
    436}
    437
    438static void do_phy_ctl(FTGMAC100State *s)
    439{
    440    uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr);
    441
    442    if (s->phycr & FTGMAC100_PHYCR_MIIWR) {
    443        do_phy_write(s, reg, s->phydata & 0xffff);
    444        s->phycr &= ~FTGMAC100_PHYCR_MIIWR;
    445    } else if (s->phycr & FTGMAC100_PHYCR_MIIRD) {
    446        s->phydata = do_phy_read(s, reg) << 16;
    447        s->phycr &= ~FTGMAC100_PHYCR_MIIRD;
    448    } else {
    449        qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n",
    450                      __func__, s->phycr);
    451    }
    452}
    453
    454static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr)
    455{
    456    if (dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd))) {
    457        qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%"
    458                      HWADDR_PRIx "\n", __func__, addr);
    459        return -1;
    460    }
    461    bd->des0 = le32_to_cpu(bd->des0);
    462    bd->des1 = le32_to_cpu(bd->des1);
    463    bd->des2 = le32_to_cpu(bd->des2);
    464    bd->des3 = le32_to_cpu(bd->des3);
    465    return 0;
    466}
    467
    468static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr)
    469{
    470    FTGMAC100Desc lebd;
    471
    472    lebd.des0 = cpu_to_le32(bd->des0);
    473    lebd.des1 = cpu_to_le32(bd->des1);
    474    lebd.des2 = cpu_to_le32(bd->des2);
    475    lebd.des3 = cpu_to_le32(bd->des3);
    476    if (dma_memory_write(&address_space_memory, addr, &lebd, sizeof(lebd))) {
    477        qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%"
    478                      HWADDR_PRIx "\n", __func__, addr);
    479        return -1;
    480    }
    481    return 0;
    482}
    483
    484static int ftgmac100_insert_vlan(FTGMAC100State *s, int frame_size,
    485                                  uint8_t vlan_tci)
    486{
    487    uint8_t *vlan_hdr = s->frame + (ETH_ALEN * 2);
    488    uint8_t *payload = vlan_hdr + sizeof(struct vlan_header);
    489
    490    if (frame_size < sizeof(struct eth_header)) {
    491        qemu_log_mask(LOG_GUEST_ERROR,
    492                      "%s: frame too small for VLAN insertion : %d bytes\n",
    493                      __func__, frame_size);
    494        s->isr |= FTGMAC100_INT_XPKT_LOST;
    495        goto out;
    496    }
    497
    498    if (frame_size + sizeof(struct vlan_header) > sizeof(s->frame)) {
    499        qemu_log_mask(LOG_GUEST_ERROR,
    500                      "%s: frame too big : %d bytes\n",
    501                      __func__, frame_size);
    502        s->isr |= FTGMAC100_INT_XPKT_LOST;
    503        frame_size -= sizeof(struct vlan_header);
    504    }
    505
    506    memmove(payload, vlan_hdr, frame_size - (ETH_ALEN * 2));
    507    stw_be_p(vlan_hdr, ETH_P_VLAN);
    508    stw_be_p(vlan_hdr + 2, vlan_tci);
    509    frame_size += sizeof(struct vlan_header);
    510
    511out:
    512    return frame_size;
    513}
    514
    515static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring,
    516                            uint32_t tx_descriptor)
    517{
    518    int frame_size = 0;
    519    uint8_t *ptr = s->frame;
    520    uint32_t addr = tx_descriptor;
    521    uint32_t flags = 0;
    522
    523    while (1) {
    524        FTGMAC100Desc bd;
    525        int len;
    526
    527        if (ftgmac100_read_bd(&bd, addr) ||
    528            ((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) {
    529            /* Run out of descriptors to transmit.  */
    530            s->isr |= FTGMAC100_INT_NO_NPTXBUF;
    531            break;
    532        }
    533
    534        /* record transmit flags as they are valid only on the first
    535         * segment */
    536        if (bd.des0 & FTGMAC100_TXDES0_FTS) {
    537            flags = bd.des1;
    538        }
    539
    540        len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0);
    541        if (!len) {
    542            /*
    543             * 0 is an invalid size, however the HW does not raise any
    544             * interrupt. Flag an error because the guest is buggy.
    545             */
    546            qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid segment size\n",
    547                          __func__);
    548        }
    549
    550        if (frame_size + len > sizeof(s->frame)) {
    551            qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
    552                          __func__, len);
    553            s->isr |= FTGMAC100_INT_XPKT_LOST;
    554            len =  sizeof(s->frame) - frame_size;
    555        }
    556
    557        if (dma_memory_read(&address_space_memory, bd.des3, ptr, len)) {
    558            qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n",
    559                          __func__, bd.des3);
    560            s->isr |= FTGMAC100_INT_AHB_ERR;
    561            break;
    562        }
    563
    564        ptr += len;
    565        frame_size += len;
    566        if (bd.des0 & FTGMAC100_TXDES0_LTS) {
    567            int csum = 0;
    568
    569            /* Check for VLAN */
    570            if (flags & FTGMAC100_TXDES1_INS_VLANTAG &&
    571                be16_to_cpu(PKT_GET_ETH_HDR(s->frame)->h_proto) != ETH_P_VLAN) {
    572                frame_size = ftgmac100_insert_vlan(s, frame_size,
    573                                            FTGMAC100_TXDES1_VLANTAG_CI(flags));
    574            }
    575
    576            if (flags & FTGMAC100_TXDES1_IP_CHKSUM) {
    577                csum |= CSUM_IP;
    578            }
    579            if (flags & FTGMAC100_TXDES1_TCP_CHKSUM) {
    580                csum |= CSUM_TCP;
    581            }
    582            if (flags & FTGMAC100_TXDES1_UDP_CHKSUM) {
    583                csum |= CSUM_UDP;
    584            }
    585            if (csum) {
    586                net_checksum_calculate(s->frame, frame_size, csum);
    587            }
    588
    589            /* Last buffer in frame.  */
    590            qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
    591            ptr = s->frame;
    592            frame_size = 0;
    593            s->isr |= FTGMAC100_INT_XPKT_ETH;
    594        }
    595
    596        if (flags & FTGMAC100_TXDES1_TX2FIC) {
    597            s->isr |= FTGMAC100_INT_XPKT_FIFO;
    598        }
    599        bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN;
    600
    601        /* Write back the modified descriptor.  */
    602        ftgmac100_write_bd(&bd, addr);
    603        /* Advance to the next descriptor.  */
    604        if (bd.des0 & s->txdes0_edotr) {
    605            addr = tx_ring;
    606        } else {
    607            addr += FTGMAC100_DBLAC_TXDES_SIZE(s->dblac);
    608        }
    609    }
    610
    611    s->tx_descriptor = addr;
    612
    613    ftgmac100_update_irq(s);
    614}
    615
    616static bool ftgmac100_can_receive(NetClientState *nc)
    617{
    618    FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
    619    FTGMAC100Desc bd;
    620
    621    if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
    622         != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
    623        return false;
    624    }
    625
    626    if (ftgmac100_read_bd(&bd, s->rx_descriptor)) {
    627        return false;
    628    }
    629    return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY);
    630}
    631
    632/*
    633 * This is purely informative. The HW can poll the RW (and RX) ring
    634 * buffers for available descriptors but we don't need to trigger a
    635 * timer for that in qemu.
    636 */
    637static uint32_t ftgmac100_rxpoll(FTGMAC100State *s)
    638{
    639    /* Polling times :
    640     *
    641     * Speed      TIME_SEL=0    TIME_SEL=1
    642     *
    643     *    10         51.2 ms      819.2 ms
    644     *   100         5.12 ms      81.92 ms
    645     *  1000        1.024 ms     16.384 ms
    646     */
    647    static const int div[] = { 20, 200, 1000 };
    648
    649    uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr);
    650    uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0;
    651
    652    if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) {
    653        cnt <<= 4;
    654    }
    655
    656    if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) {
    657        speed = 2;
    658    }
    659
    660    return cnt / div[speed];
    661}
    662
    663static void ftgmac100_do_reset(FTGMAC100State *s, bool sw_reset)
    664{
    665    /* Reset the FTGMAC100 */
    666    s->isr = 0;
    667    s->ier = 0;
    668    s->rx_enabled = 0;
    669    s->rx_ring = 0;
    670    s->rbsr = 0x640;
    671    s->rx_descriptor = 0;
    672    s->tx_ring = 0;
    673    s->tx_descriptor = 0;
    674    s->math[0] = 0;
    675    s->math[1] = 0;
    676    s->itc = 0;
    677    s->aptcr = 1;
    678    s->dblac = 0x00022f00;
    679    s->revr = 0;
    680    s->fear1 = 0;
    681    s->tpafcr = 0xf1;
    682
    683    if (sw_reset) {
    684        s->maccr &= FTGMAC100_MACCR_GIGA_MODE | FTGMAC100_MACCR_FAST_MODE;
    685    } else {
    686        s->maccr = 0;
    687    }
    688
    689    s->phycr = 0;
    690    s->phydata = 0;
    691    s->fcr = 0x400;
    692
    693    /* and the PHY */
    694    phy_reset(s);
    695}
    696
    697static void ftgmac100_reset(DeviceState *d)
    698{
    699    ftgmac100_do_reset(FTGMAC100(d), false);
    700}
    701
    702static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size)
    703{
    704    FTGMAC100State *s = FTGMAC100(opaque);
    705
    706    switch (addr & 0xff) {
    707    case FTGMAC100_ISR:
    708        return s->isr;
    709    case FTGMAC100_IER:
    710        return s->ier;
    711    case FTGMAC100_MAC_MADR:
    712        return (s->conf.macaddr.a[0] << 8)  | s->conf.macaddr.a[1];
    713    case FTGMAC100_MAC_LADR:
    714        return ((uint32_t) s->conf.macaddr.a[2] << 24) |
    715            (s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) |
    716            s->conf.macaddr.a[5];
    717    case FTGMAC100_MATH0:
    718        return s->math[0];
    719    case FTGMAC100_MATH1:
    720        return s->math[1];
    721    case FTGMAC100_RXR_BADR:
    722        return s->rx_ring;
    723    case FTGMAC100_NPTXR_BADR:
    724        return s->tx_ring;
    725    case FTGMAC100_ITC:
    726        return s->itc;
    727    case FTGMAC100_DBLAC:
    728        return s->dblac;
    729    case FTGMAC100_REVR:
    730        return s->revr;
    731    case FTGMAC100_FEAR1:
    732        return s->fear1;
    733    case FTGMAC100_TPAFCR:
    734        return s->tpafcr;
    735    case FTGMAC100_FCR:
    736        return s->fcr;
    737    case FTGMAC100_MACCR:
    738        return s->maccr;
    739    case FTGMAC100_PHYCR:
    740        return s->phycr;
    741    case FTGMAC100_PHYDATA:
    742        return s->phydata;
    743
    744        /* We might want to support these one day */
    745    case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
    746    case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
    747    case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
    748        qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%"
    749                      HWADDR_PRIx "\n", __func__, addr);
    750        return 0;
    751    default:
    752        qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
    753                      HWADDR_PRIx "\n", __func__, addr);
    754        return 0;
    755    }
    756}
    757
    758static void ftgmac100_write(void *opaque, hwaddr addr,
    759                          uint64_t value, unsigned size)
    760{
    761    FTGMAC100State *s = FTGMAC100(opaque);
    762
    763    switch (addr & 0xff) {
    764    case FTGMAC100_ISR: /* Interrupt status */
    765        s->isr &= ~value;
    766        break;
    767    case FTGMAC100_IER: /* Interrupt control */
    768        s->ier = value;
    769        break;
    770    case FTGMAC100_MAC_MADR: /* MAC */
    771        s->conf.macaddr.a[0] = value >> 8;
    772        s->conf.macaddr.a[1] = value;
    773        break;
    774    case FTGMAC100_MAC_LADR:
    775        s->conf.macaddr.a[2] = value >> 24;
    776        s->conf.macaddr.a[3] = value >> 16;
    777        s->conf.macaddr.a[4] = value >> 8;
    778        s->conf.macaddr.a[5] = value;
    779        break;
    780    case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */
    781        s->math[0] = value;
    782        break;
    783    case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */
    784        s->math[1] = value;
    785        break;
    786    case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */
    787        s->itc = value;
    788        break;
    789    case FTGMAC100_RXR_BADR: /* Ring buffer address */
    790        if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
    791            qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad RX buffer alignment 0x%"
    792                          HWADDR_PRIx "\n", __func__, value);
    793            return;
    794        }
    795
    796        s->rx_ring = value;
    797        s->rx_descriptor = s->rx_ring;
    798        break;
    799
    800    case FTGMAC100_RBSR: /* DMA buffer size */
    801        s->rbsr = value;
    802        break;
    803
    804    case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */
    805        if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
    806            qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad TX buffer alignment 0x%"
    807                          HWADDR_PRIx "\n", __func__, value);
    808            return;
    809        }
    810        s->tx_ring = value;
    811        s->tx_descriptor = s->tx_ring;
    812        break;
    813
    814    case FTGMAC100_NPTXPD: /* Trigger transmit */
    815        if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN))
    816            == (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) {
    817            /* TODO: high priority tx ring */
    818            ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor);
    819        }
    820        if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
    821            qemu_flush_queued_packets(qemu_get_queue(s->nic));
    822        }
    823        break;
    824
    825    case FTGMAC100_RXPD: /* Receive Poll Demand Register */
    826        if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
    827            qemu_flush_queued_packets(qemu_get_queue(s->nic));
    828        }
    829        break;
    830
    831    case FTGMAC100_APTC: /* Automatic polling */
    832        s->aptcr = value;
    833
    834        if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) {
    835            ftgmac100_rxpoll(s);
    836        }
    837
    838        if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) {
    839            qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__);
    840        }
    841        break;
    842
    843    case FTGMAC100_MACCR: /* MAC Device control */
    844        s->maccr = value;
    845        if (value & FTGMAC100_MACCR_SW_RST) {
    846            ftgmac100_do_reset(s, true);
    847        }
    848
    849        if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
    850            qemu_flush_queued_packets(qemu_get_queue(s->nic));
    851        }
    852        break;
    853
    854    case FTGMAC100_PHYCR:  /* PHY Device control */
    855        s->phycr = value;
    856        if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) {
    857            do_phy_new_ctl(s);
    858        } else {
    859            do_phy_ctl(s);
    860        }
    861        break;
    862    case FTGMAC100_PHYDATA:
    863        s->phydata = value & 0xffff;
    864        break;
    865    case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */
    866        if (FTGMAC100_DBLAC_TXDES_SIZE(value) < sizeof(FTGMAC100Desc)) {
    867            qemu_log_mask(LOG_GUEST_ERROR,
    868                          "%s: transmit descriptor too small: %" PRIx64
    869                          " bytes\n", __func__,
    870                          FTGMAC100_DBLAC_TXDES_SIZE(value));
    871            break;
    872        }
    873        if (FTGMAC100_DBLAC_RXDES_SIZE(value) < sizeof(FTGMAC100Desc)) {
    874            qemu_log_mask(LOG_GUEST_ERROR,
    875                          "%s: receive descriptor too small : %" PRIx64
    876                          " bytes\n", __func__,
    877                          FTGMAC100_DBLAC_RXDES_SIZE(value));
    878            break;
    879        }
    880        s->dblac = value;
    881        break;
    882    case FTGMAC100_REVR:  /* Feature Register */
    883        s->revr = value;
    884        break;
    885    case FTGMAC100_FEAR1: /* Feature Register 1 */
    886        s->fear1 = value;
    887        break;
    888    case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */
    889        s->tpafcr = value;
    890        break;
    891    case FTGMAC100_FCR: /* Flow Control  */
    892        s->fcr  = value;
    893        break;
    894
    895    case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
    896    case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
    897    case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
    898        qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%"
    899                      HWADDR_PRIx "\n", __func__, addr);
    900        break;
    901    default:
    902        qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
    903                      HWADDR_PRIx "\n", __func__, addr);
    904        break;
    905    }
    906
    907    ftgmac100_update_irq(s);
    908}
    909
    910static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len)
    911{
    912    unsigned mcast_idx;
    913
    914    if (s->maccr & FTGMAC100_MACCR_RX_ALL) {
    915        return 1;
    916    }
    917
    918    switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
    919    case ETH_PKT_BCAST:
    920        if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) {
    921            return 0;
    922        }
    923        break;
    924    case ETH_PKT_MCAST:
    925        if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) {
    926            if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) {
    927                return 0;
    928            }
    929
    930            mcast_idx = net_crc32_le(buf, ETH_ALEN);
    931            mcast_idx = (~(mcast_idx >> 2)) & 0x3f;
    932            if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) {
    933                return 0;
    934            }
    935        }
    936        break;
    937    case ETH_PKT_UCAST:
    938        if (memcmp(s->conf.macaddr.a, buf, 6)) {
    939            return 0;
    940        }
    941        break;
    942    }
    943
    944    return 1;
    945}
    946
    947static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf,
    948                                 size_t len)
    949{
    950    FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
    951    FTGMAC100Desc bd;
    952    uint32_t flags = 0;
    953    uint32_t addr;
    954    uint32_t crc;
    955    uint32_t buf_addr;
    956    uint8_t *crc_ptr;
    957    uint32_t buf_len;
    958    size_t size = len;
    959    uint32_t first = FTGMAC100_RXDES0_FRS;
    960    uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto);
    961    int max_frame_size = ftgmac100_max_frame_size(s, proto);
    962
    963    if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
    964         != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
    965        return -1;
    966    }
    967
    968    /* TODO : Pad to minimum Ethernet frame length */
    969    /* handle small packets.  */
    970    if (size < 10) {
    971        qemu_log_mask(LOG_GUEST_ERROR, "%s: dropped frame of %zd bytes\n",
    972                      __func__, size);
    973        return size;
    974    }
    975
    976    if (!ftgmac100_filter(s, buf, size)) {
    977        return size;
    978    }
    979
    980    /* 4 bytes for the CRC.  */
    981    size += 4;
    982    crc = cpu_to_be32(crc32(~0, buf, size));
    983    crc_ptr = (uint8_t *) &crc;
    984
    985    /* Huge frames are truncated.  */
    986    if (size > max_frame_size) {
    987        qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n",
    988                      __func__, size);
    989        size = max_frame_size;
    990        flags |= FTGMAC100_RXDES0_FTL;
    991    }
    992
    993    switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
    994    case ETH_PKT_BCAST:
    995        flags |= FTGMAC100_RXDES0_BROADCAST;
    996        break;
    997    case ETH_PKT_MCAST:
    998        flags |= FTGMAC100_RXDES0_MULTICAST;
    999        break;
   1000    case ETH_PKT_UCAST:
   1001        break;
   1002    }
   1003
   1004    s->isr |= FTGMAC100_INT_RPKT_FIFO;
   1005    addr = s->rx_descriptor;
   1006    while (size > 0) {
   1007        if (!ftgmac100_can_receive(nc)) {
   1008            qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__);
   1009            return -1;
   1010        }
   1011
   1012        if (ftgmac100_read_bd(&bd, addr) ||
   1013            (bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) {
   1014            /* No descriptors available.  Bail out.  */
   1015            qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n",
   1016                          __func__);
   1017            s->isr |= FTGMAC100_INT_NO_RXBUF;
   1018            break;
   1019        }
   1020        buf_len = (size <= s->rbsr) ? size : s->rbsr;
   1021        bd.des0 |= buf_len & 0x3fff;
   1022        size -= buf_len;
   1023
   1024        /* The last 4 bytes are the CRC.  */
   1025        if (size < 4) {
   1026            buf_len += size - 4;
   1027        }
   1028        buf_addr = bd.des3;
   1029        if (first && proto == ETH_P_VLAN && buf_len >= 18) {
   1030            bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL;
   1031
   1032            if (s->maccr & FTGMAC100_MACCR_RM_VLAN) {
   1033                dma_memory_write(&address_space_memory, buf_addr, buf, 12);
   1034                dma_memory_write(&address_space_memory, buf_addr + 12, buf + 16,
   1035                                 buf_len - 16);
   1036            } else {
   1037                dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
   1038            }
   1039        } else {
   1040            bd.des1 = 0;
   1041            dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
   1042        }
   1043        buf += buf_len;
   1044        if (size < 4) {
   1045            dma_memory_write(&address_space_memory, buf_addr + buf_len,
   1046                             crc_ptr, 4 - size);
   1047            crc_ptr += 4 - size;
   1048        }
   1049
   1050        bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY;
   1051        first = 0;
   1052        if (size == 0) {
   1053            /* Last buffer in frame.  */
   1054            bd.des0 |= flags | FTGMAC100_RXDES0_LRS;
   1055            s->isr |= FTGMAC100_INT_RPKT_BUF;
   1056        }
   1057        ftgmac100_write_bd(&bd, addr);
   1058        if (bd.des0 & s->rxdes0_edorr) {
   1059            addr = s->rx_ring;
   1060        } else {
   1061            addr += FTGMAC100_DBLAC_RXDES_SIZE(s->dblac);
   1062        }
   1063    }
   1064    s->rx_descriptor = addr;
   1065
   1066    ftgmac100_update_irq(s);
   1067    return len;
   1068}
   1069
   1070static const MemoryRegionOps ftgmac100_ops = {
   1071    .read = ftgmac100_read,
   1072    .write = ftgmac100_write,
   1073    .valid.min_access_size = 4,
   1074    .valid.max_access_size = 4,
   1075    .endianness = DEVICE_LITTLE_ENDIAN,
   1076};
   1077
   1078static void ftgmac100_cleanup(NetClientState *nc)
   1079{
   1080    FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
   1081
   1082    s->nic = NULL;
   1083}
   1084
   1085static NetClientInfo net_ftgmac100_info = {
   1086    .type = NET_CLIENT_DRIVER_NIC,
   1087    .size = sizeof(NICState),
   1088    .can_receive = ftgmac100_can_receive,
   1089    .receive = ftgmac100_receive,
   1090    .cleanup = ftgmac100_cleanup,
   1091    .link_status_changed = ftgmac100_set_link,
   1092};
   1093
   1094static void ftgmac100_realize(DeviceState *dev, Error **errp)
   1095{
   1096    FTGMAC100State *s = FTGMAC100(dev);
   1097    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
   1098
   1099    if (s->aspeed) {
   1100        s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED;
   1101        s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED;
   1102    } else {
   1103        s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR;
   1104        s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR;
   1105    }
   1106
   1107    memory_region_init_io(&s->iomem, OBJECT(dev), &ftgmac100_ops, s,
   1108                          TYPE_FTGMAC100, 0x2000);
   1109    sysbus_init_mmio(sbd, &s->iomem);
   1110    sysbus_init_irq(sbd, &s->irq);
   1111    qemu_macaddr_default_if_unset(&s->conf.macaddr);
   1112
   1113    s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf,
   1114                          object_get_typename(OBJECT(dev)), dev->id, s);
   1115    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
   1116}
   1117
   1118static const VMStateDescription vmstate_ftgmac100 = {
   1119    .name = TYPE_FTGMAC100,
   1120    .version_id = 1,
   1121    .minimum_version_id = 1,
   1122    .fields = (VMStateField[]) {
   1123        VMSTATE_UINT32(irq_state, FTGMAC100State),
   1124        VMSTATE_UINT32(isr, FTGMAC100State),
   1125        VMSTATE_UINT32(ier, FTGMAC100State),
   1126        VMSTATE_UINT32(rx_enabled, FTGMAC100State),
   1127        VMSTATE_UINT32(rx_ring, FTGMAC100State),
   1128        VMSTATE_UINT32(rbsr, FTGMAC100State),
   1129        VMSTATE_UINT32(tx_ring, FTGMAC100State),
   1130        VMSTATE_UINT32(rx_descriptor, FTGMAC100State),
   1131        VMSTATE_UINT32(tx_descriptor, FTGMAC100State),
   1132        VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2),
   1133        VMSTATE_UINT32(itc, FTGMAC100State),
   1134        VMSTATE_UINT32(aptcr, FTGMAC100State),
   1135        VMSTATE_UINT32(dblac, FTGMAC100State),
   1136        VMSTATE_UINT32(revr, FTGMAC100State),
   1137        VMSTATE_UINT32(fear1, FTGMAC100State),
   1138        VMSTATE_UINT32(tpafcr, FTGMAC100State),
   1139        VMSTATE_UINT32(maccr, FTGMAC100State),
   1140        VMSTATE_UINT32(phycr, FTGMAC100State),
   1141        VMSTATE_UINT32(phydata, FTGMAC100State),
   1142        VMSTATE_UINT32(fcr, FTGMAC100State),
   1143        VMSTATE_UINT32(phy_status, FTGMAC100State),
   1144        VMSTATE_UINT32(phy_control, FTGMAC100State),
   1145        VMSTATE_UINT32(phy_advertise, FTGMAC100State),
   1146        VMSTATE_UINT32(phy_int, FTGMAC100State),
   1147        VMSTATE_UINT32(phy_int_mask, FTGMAC100State),
   1148        VMSTATE_UINT32(txdes0_edotr, FTGMAC100State),
   1149        VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State),
   1150        VMSTATE_END_OF_LIST()
   1151    }
   1152};
   1153
   1154static Property ftgmac100_properties[] = {
   1155    DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false),
   1156    DEFINE_NIC_PROPERTIES(FTGMAC100State, conf),
   1157    DEFINE_PROP_END_OF_LIST(),
   1158};
   1159
   1160static void ftgmac100_class_init(ObjectClass *klass, void *data)
   1161{
   1162    DeviceClass *dc = DEVICE_CLASS(klass);
   1163
   1164    dc->vmsd = &vmstate_ftgmac100;
   1165    dc->reset = ftgmac100_reset;
   1166    device_class_set_props(dc, ftgmac100_properties);
   1167    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
   1168    dc->realize = ftgmac100_realize;
   1169    dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation";
   1170}
   1171
   1172static const TypeInfo ftgmac100_info = {
   1173    .name = TYPE_FTGMAC100,
   1174    .parent = TYPE_SYS_BUS_DEVICE,
   1175    .instance_size = sizeof(FTGMAC100State),
   1176    .class_init = ftgmac100_class_init,
   1177};
   1178
   1179/*
   1180 * AST2600 MII controller
   1181 */
   1182#define ASPEED_MII_PHYCR_FIRE        BIT(31)
   1183#define ASPEED_MII_PHYCR_ST_22       BIT(28)
   1184#define ASPEED_MII_PHYCR_OP(x)       ((x) & (ASPEED_MII_PHYCR_OP_WRITE | \
   1185                                             ASPEED_MII_PHYCR_OP_READ))
   1186#define ASPEED_MII_PHYCR_OP_WRITE    BIT(26)
   1187#define ASPEED_MII_PHYCR_OP_READ     BIT(27)
   1188#define ASPEED_MII_PHYCR_DATA(x)     (x & 0xffff)
   1189#define ASPEED_MII_PHYCR_PHY(x)      (((x) >> 21) & 0x1f)
   1190#define ASPEED_MII_PHYCR_REG(x)      (((x) >> 16) & 0x1f)
   1191
   1192#define ASPEED_MII_PHYDATA_IDLE      BIT(16)
   1193
   1194static void aspeed_mii_transition(AspeedMiiState *s, bool fire)
   1195{
   1196    if (fire) {
   1197        s->phycr |= ASPEED_MII_PHYCR_FIRE;
   1198        s->phydata &= ~ASPEED_MII_PHYDATA_IDLE;
   1199    } else {
   1200        s->phycr &= ~ASPEED_MII_PHYCR_FIRE;
   1201        s->phydata |= ASPEED_MII_PHYDATA_IDLE;
   1202    }
   1203}
   1204
   1205static void aspeed_mii_do_phy_ctl(AspeedMiiState *s)
   1206{
   1207    uint8_t reg;
   1208    uint16_t data;
   1209
   1210    if (!(s->phycr & ASPEED_MII_PHYCR_ST_22)) {
   1211        aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
   1212        qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
   1213        return;
   1214    }
   1215
   1216    /* Nothing to do */
   1217    if (!(s->phycr & ASPEED_MII_PHYCR_FIRE)) {
   1218        return;
   1219    }
   1220
   1221    reg = ASPEED_MII_PHYCR_REG(s->phycr);
   1222    data = ASPEED_MII_PHYCR_DATA(s->phycr);
   1223
   1224    switch (ASPEED_MII_PHYCR_OP(s->phycr)) {
   1225    case ASPEED_MII_PHYCR_OP_WRITE:
   1226        do_phy_write(s->nic, reg, data);
   1227        break;
   1228    case ASPEED_MII_PHYCR_OP_READ:
   1229        s->phydata = (s->phydata & ~0xffff) | do_phy_read(s->nic, reg);
   1230        break;
   1231    default:
   1232        qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
   1233                      __func__, s->phycr);
   1234    }
   1235
   1236    aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
   1237}
   1238
   1239static uint64_t aspeed_mii_read(void *opaque, hwaddr addr, unsigned size)
   1240{
   1241    AspeedMiiState *s = ASPEED_MII(opaque);
   1242
   1243    switch (addr) {
   1244    case 0x0:
   1245        return s->phycr;
   1246    case 0x4:
   1247        return s->phydata;
   1248    default:
   1249        g_assert_not_reached();
   1250    }
   1251}
   1252
   1253static void aspeed_mii_write(void *opaque, hwaddr addr,
   1254                             uint64_t value, unsigned size)
   1255{
   1256    AspeedMiiState *s = ASPEED_MII(opaque);
   1257
   1258    switch (addr) {
   1259    case 0x0:
   1260        s->phycr = value & ~(s->phycr & ASPEED_MII_PHYCR_FIRE);
   1261        break;
   1262    case 0x4:
   1263        s->phydata = value & ~(0xffff | ASPEED_MII_PHYDATA_IDLE);
   1264        break;
   1265    default:
   1266        g_assert_not_reached();
   1267    }
   1268
   1269    aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
   1270    aspeed_mii_do_phy_ctl(s);
   1271}
   1272
   1273static const MemoryRegionOps aspeed_mii_ops = {
   1274    .read = aspeed_mii_read,
   1275    .write = aspeed_mii_write,
   1276    .valid.min_access_size = 4,
   1277    .valid.max_access_size = 4,
   1278    .endianness = DEVICE_LITTLE_ENDIAN,
   1279};
   1280
   1281static void aspeed_mii_reset(DeviceState *dev)
   1282{
   1283    AspeedMiiState *s = ASPEED_MII(dev);
   1284
   1285    s->phycr = 0;
   1286    s->phydata = 0;
   1287
   1288    aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
   1289};
   1290
   1291static void aspeed_mii_realize(DeviceState *dev, Error **errp)
   1292{
   1293    AspeedMiiState *s = ASPEED_MII(dev);
   1294    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
   1295
   1296    assert(s->nic);
   1297
   1298    memory_region_init_io(&s->iomem, OBJECT(dev), &aspeed_mii_ops, s,
   1299                          TYPE_ASPEED_MII, 0x8);
   1300    sysbus_init_mmio(sbd, &s->iomem);
   1301}
   1302
   1303static const VMStateDescription vmstate_aspeed_mii = {
   1304    .name = TYPE_ASPEED_MII,
   1305    .version_id = 1,
   1306    .minimum_version_id = 1,
   1307    .fields = (VMStateField[]) {
   1308        VMSTATE_UINT32(phycr, FTGMAC100State),
   1309        VMSTATE_UINT32(phydata, FTGMAC100State),
   1310        VMSTATE_END_OF_LIST()
   1311    }
   1312};
   1313
   1314static Property aspeed_mii_properties[] = {
   1315    DEFINE_PROP_LINK("nic", AspeedMiiState, nic, TYPE_FTGMAC100,
   1316                     FTGMAC100State *),
   1317    DEFINE_PROP_END_OF_LIST(),
   1318};
   1319
   1320static void aspeed_mii_class_init(ObjectClass *klass, void *data)
   1321{
   1322    DeviceClass *dc = DEVICE_CLASS(klass);
   1323
   1324    dc->vmsd = &vmstate_aspeed_mii;
   1325    dc->reset = aspeed_mii_reset;
   1326    dc->realize = aspeed_mii_realize;
   1327    dc->desc = "Aspeed MII controller";
   1328    device_class_set_props(dc, aspeed_mii_properties);
   1329}
   1330
   1331static const TypeInfo aspeed_mii_info = {
   1332    .name = TYPE_ASPEED_MII,
   1333    .parent = TYPE_SYS_BUS_DEVICE,
   1334    .instance_size = sizeof(AspeedMiiState),
   1335    .class_init = aspeed_mii_class_init,
   1336};
   1337
   1338static void ftgmac100_register_types(void)
   1339{
   1340    type_register_static(&ftgmac100_info);
   1341    type_register_static(&aspeed_mii_info);
   1342}
   1343
   1344type_init(ftgmac100_register_types)