cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

pnv_lpc.c (27282B)


      1/*
      2 * QEMU PowerPC PowerNV LPC controller
      3 *
      4 * Copyright (c) 2016, IBM Corporation.
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21#include "target/ppc/cpu.h"
     22#include "qapi/error.h"
     23#include "qemu/log.h"
     24#include "qemu/module.h"
     25#include "hw/irq.h"
     26#include "hw/isa/isa.h"
     27#include "hw/qdev-properties.h"
     28#include "hw/ppc/pnv.h"
     29#include "hw/ppc/pnv_lpc.h"
     30#include "hw/ppc/pnv_xscom.h"
     31#include "hw/ppc/fdt.h"
     32
     33#include <libfdt.h>
     34
     35enum {
     36    ECCB_CTL    = 0,
     37    ECCB_RESET  = 1,
     38    ECCB_STAT   = 2,
     39    ECCB_DATA   = 3,
     40};
     41
     42/* OPB Master LS registers */
     43#define OPB_MASTER_LS_ROUTE0    0x8
     44#define OPB_MASTER_LS_ROUTE1    0xC
     45#define OPB_MASTER_LS_IRQ_STAT  0x50
     46#define   OPB_MASTER_IRQ_LPC            0x00000800
     47#define OPB_MASTER_LS_IRQ_MASK  0x54
     48#define OPB_MASTER_LS_IRQ_POL   0x58
     49#define OPB_MASTER_LS_IRQ_INPUT 0x5c
     50
     51/* LPC HC registers */
     52#define LPC_HC_FW_SEG_IDSEL     0x24
     53#define LPC_HC_FW_RD_ACC_SIZE   0x28
     54#define   LPC_HC_FW_RD_1B               0x00000000
     55#define   LPC_HC_FW_RD_2B               0x01000000
     56#define   LPC_HC_FW_RD_4B               0x02000000
     57#define   LPC_HC_FW_RD_16B              0x04000000
     58#define   LPC_HC_FW_RD_128B             0x07000000
     59#define LPC_HC_IRQSER_CTRL      0x30
     60#define   LPC_HC_IRQSER_EN              0x80000000
     61#define   LPC_HC_IRQSER_QMODE           0x40000000
     62#define   LPC_HC_IRQSER_START_MASK      0x03000000
     63#define   LPC_HC_IRQSER_START_4CLK      0x00000000
     64#define   LPC_HC_IRQSER_START_6CLK      0x01000000
     65#define   LPC_HC_IRQSER_START_8CLK      0x02000000
     66#define LPC_HC_IRQMASK          0x34    /* same bit defs as LPC_HC_IRQSTAT */
     67#define LPC_HC_IRQSTAT          0x38
     68#define   LPC_HC_IRQ_SERIRQ0            0x80000000 /* all bits down to ... */
     69#define   LPC_HC_IRQ_SERIRQ16           0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
     70#define   LPC_HC_IRQ_SERIRQ_ALL         0xffff8000
     71#define   LPC_HC_IRQ_LRESET             0x00000400
     72#define   LPC_HC_IRQ_SYNC_ABNORM_ERR    0x00000080
     73#define   LPC_HC_IRQ_SYNC_NORESP_ERR    0x00000040
     74#define   LPC_HC_IRQ_SYNC_NORM_ERR      0x00000020
     75#define   LPC_HC_IRQ_SYNC_TIMEOUT_ERR   0x00000010
     76#define   LPC_HC_IRQ_SYNC_TARG_TAR_ERR  0x00000008
     77#define   LPC_HC_IRQ_SYNC_BM_TAR_ERR    0x00000004
     78#define   LPC_HC_IRQ_SYNC_BM0_REQ       0x00000002
     79#define   LPC_HC_IRQ_SYNC_BM1_REQ       0x00000001
     80#define LPC_HC_ERROR_ADDRESS    0x40
     81
     82#define LPC_OPB_SIZE            0x100000000ull
     83
     84#define ISA_IO_SIZE             0x00010000
     85#define ISA_MEM_SIZE            0x10000000
     86#define ISA_FW_SIZE             0x10000000
     87#define LPC_IO_OPB_ADDR         0xd0010000
     88#define LPC_IO_OPB_SIZE         0x00010000
     89#define LPC_MEM_OPB_ADDR        0xe0000000
     90#define LPC_MEM_OPB_SIZE        0x10000000
     91#define LPC_FW_OPB_ADDR         0xf0000000
     92#define LPC_FW_OPB_SIZE         0x10000000
     93
     94#define LPC_OPB_REGS_OPB_ADDR   0xc0010000
     95#define LPC_OPB_REGS_OPB_SIZE   0x00000060
     96#define LPC_OPB_REGS_OPBA_ADDR  0xc0011000
     97#define LPC_OPB_REGS_OPBA_SIZE  0x00000008
     98#define LPC_HC_REGS_OPB_ADDR    0xc0012000
     99#define LPC_HC_REGS_OPB_SIZE    0x00000100
    100
    101static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
    102{
    103    const char compat[] = "ibm,power8-lpc\0ibm,lpc";
    104    char *name;
    105    int offset;
    106    uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
    107    uint32_t reg[] = {
    108        cpu_to_be32(lpc_pcba),
    109        cpu_to_be32(PNV_XSCOM_LPC_SIZE)
    110    };
    111
    112    name = g_strdup_printf("isa@%x", lpc_pcba);
    113    offset = fdt_add_subnode(fdt, xscom_offset, name);
    114    _FDT(offset);
    115    g_free(name);
    116
    117    _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
    118    _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
    119    _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
    120    _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
    121    return 0;
    122}
    123
    124/* POWER9 only */
    125int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
    126               uint64_t lpcm_size)
    127{
    128    const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
    129    const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
    130    char *name;
    131    int offset, lpcm_offset;
    132    uint32_t opb_ranges[8] = { 0,
    133                               cpu_to_be32(lpcm_addr >> 32),
    134                               cpu_to_be32((uint32_t)lpcm_addr),
    135                               cpu_to_be32(lpcm_size / 2),
    136                               cpu_to_be32(lpcm_size / 2),
    137                               cpu_to_be32(lpcm_addr >> 32),
    138                               cpu_to_be32(lpcm_size / 2),
    139                               cpu_to_be32(lpcm_size / 2),
    140    };
    141    uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
    142                            cpu_to_be32((uint32_t)lpcm_addr),
    143                            cpu_to_be32(lpcm_size >> 32),
    144                            cpu_to_be32((uint32_t)lpcm_size),
    145    };
    146    uint32_t lpc_ranges[12] = { 0, 0,
    147                                cpu_to_be32(LPC_MEM_OPB_ADDR),
    148                                cpu_to_be32(LPC_MEM_OPB_SIZE),
    149                                cpu_to_be32(1), 0,
    150                                cpu_to_be32(LPC_IO_OPB_ADDR),
    151                                cpu_to_be32(LPC_IO_OPB_SIZE),
    152                                cpu_to_be32(3), 0,
    153                                cpu_to_be32(LPC_FW_OPB_ADDR),
    154                                cpu_to_be32(LPC_FW_OPB_SIZE),
    155    };
    156    uint32_t reg[2];
    157
    158    /*
    159     * OPB bus
    160     */
    161    name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
    162    lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
    163    _FDT(lpcm_offset);
    164    g_free(name);
    165
    166    _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
    167    _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
    168    _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
    169    _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
    170    _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
    171    _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
    172                      sizeof(opb_ranges))));
    173
    174    /*
    175     * OPB Master registers
    176     */
    177    name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
    178    offset = fdt_add_subnode(fdt, lpcm_offset, name);
    179    _FDT(offset);
    180    g_free(name);
    181
    182    reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
    183    reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
    184    _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
    185    _FDT((fdt_setprop_string(fdt, offset, "compatible",
    186                             "ibm,power9-lpcm-opb-master")));
    187
    188    /*
    189     * OPB arbitrer registers
    190     */
    191    name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
    192    offset = fdt_add_subnode(fdt, lpcm_offset, name);
    193    _FDT(offset);
    194    g_free(name);
    195
    196    reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
    197    reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
    198    _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
    199    _FDT((fdt_setprop_string(fdt, offset, "compatible",
    200                             "ibm,power9-lpcm-opb-arbiter")));
    201
    202    /*
    203     * LPC Host Controller registers
    204     */
    205    name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
    206    offset = fdt_add_subnode(fdt, lpcm_offset, name);
    207    _FDT(offset);
    208    g_free(name);
    209
    210    reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
    211    reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
    212    _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
    213    _FDT((fdt_setprop_string(fdt, offset, "compatible",
    214                             "ibm,power9-lpc-controller")));
    215
    216    name = g_strdup_printf("lpc@0");
    217    offset = fdt_add_subnode(fdt, lpcm_offset, name);
    218    _FDT(offset);
    219    g_free(name);
    220    _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
    221    _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
    222    _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
    223                      sizeof(lpc_compat))));
    224    _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
    225                      sizeof(lpc_ranges))));
    226
    227    return 0;
    228}
    229
    230/*
    231 * These read/write handlers of the OPB address space should be common
    232 * with the P9 LPC Controller which uses direct MMIOs.
    233 *
    234 * TODO: rework to use address_space_stq() and address_space_ldq()
    235 * instead.
    236 */
    237static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
    238                     int sz)
    239{
    240    /* XXX Handle access size limits and FW read caching here */
    241    return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
    242                               data, sz);
    243}
    244
    245static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
    246                      int sz)
    247{
    248    /* XXX Handle access size limits here */
    249    return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
    250                                data, sz);
    251}
    252
    253#define ECCB_CTL_READ           PPC_BIT(15)
    254#define ECCB_CTL_SZ_LSH         (63 - 7)
    255#define ECCB_CTL_SZ_MASK        PPC_BITMASK(4, 7)
    256#define ECCB_CTL_ADDR_MASK      PPC_BITMASK(32, 63)
    257
    258#define ECCB_STAT_OP_DONE       PPC_BIT(52)
    259#define ECCB_STAT_OP_ERR        PPC_BIT(52)
    260#define ECCB_STAT_RD_DATA_LSH   (63 - 37)
    261#define ECCB_STAT_RD_DATA_MASK  (0xffffffff << ECCB_STAT_RD_DATA_LSH)
    262
    263static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
    264{
    265    /* XXX Check for magic bits at the top, addr size etc... */
    266    unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
    267    uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
    268    uint8_t data[8];
    269    bool success;
    270
    271    if (sz > sizeof(data)) {
    272        qemu_log_mask(LOG_GUEST_ERROR,
    273            "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
    274        return;
    275    }
    276
    277    if (cmd & ECCB_CTL_READ) {
    278        success = opb_read(lpc, opb_addr, data, sz);
    279        if (success) {
    280            lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
    281                    (((uint64_t)data[0]) << 24 |
    282                     ((uint64_t)data[1]) << 16 |
    283                     ((uint64_t)data[2]) <<  8 |
    284                     ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
    285        } else {
    286            lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
    287                    (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
    288        }
    289    } else {
    290        data[0] = lpc->eccb_data_reg >> 24;
    291        data[1] = lpc->eccb_data_reg >> 16;
    292        data[2] = lpc->eccb_data_reg >>  8;
    293        data[3] = lpc->eccb_data_reg;
    294
    295        success = opb_write(lpc, opb_addr, data, sz);
    296        lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
    297    }
    298    /* XXX Which error bit (if any) to signal OPB error ? */
    299}
    300
    301static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
    302{
    303    PnvLpcController *lpc = PNV_LPC(opaque);
    304    uint32_t offset = addr >> 3;
    305    uint64_t val = 0;
    306
    307    switch (offset & 3) {
    308    case ECCB_CTL:
    309    case ECCB_RESET:
    310        val = 0;
    311        break;
    312    case ECCB_STAT:
    313        val = lpc->eccb_stat_reg;
    314        lpc->eccb_stat_reg = 0;
    315        break;
    316    case ECCB_DATA:
    317        val = ((uint64_t)lpc->eccb_data_reg) << 32;
    318        break;
    319    }
    320    return val;
    321}
    322
    323static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
    324                                uint64_t val, unsigned size)
    325{
    326    PnvLpcController *lpc = PNV_LPC(opaque);
    327    uint32_t offset = addr >> 3;
    328
    329    switch (offset & 3) {
    330    case ECCB_CTL:
    331        pnv_lpc_do_eccb(lpc, val);
    332        break;
    333    case ECCB_RESET:
    334        /*  XXXX  */
    335        break;
    336    case ECCB_STAT:
    337        break;
    338    case ECCB_DATA:
    339        lpc->eccb_data_reg = val >> 32;
    340        break;
    341    }
    342}
    343
    344static const MemoryRegionOps pnv_lpc_xscom_ops = {
    345    .read = pnv_lpc_xscom_read,
    346    .write = pnv_lpc_xscom_write,
    347    .valid.min_access_size = 8,
    348    .valid.max_access_size = 8,
    349    .impl.min_access_size = 8,
    350    .impl.max_access_size = 8,
    351    .endianness = DEVICE_BIG_ENDIAN,
    352};
    353
    354static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
    355{
    356    PnvLpcController *lpc = PNV_LPC(opaque);
    357    uint64_t val = 0;
    358    uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
    359    MemTxResult result;
    360
    361    switch (size) {
    362    case 4:
    363        val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
    364                                &result);
    365        break;
    366    case 1:
    367        val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
    368                                 &result);
    369        break;
    370    default:
    371        qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
    372                      HWADDR_PRIx " invalid size %d\n", addr, size);
    373        return 0;
    374    }
    375
    376    if (result != MEMTX_OK) {
    377        qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
    378                      HWADDR_PRIx "\n", addr);
    379    }
    380
    381    return val;
    382}
    383
    384static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
    385                                uint64_t val, unsigned size)
    386{
    387    PnvLpcController *lpc = PNV_LPC(opaque);
    388    uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
    389    MemTxResult result;
    390
    391    switch (size) {
    392    case 4:
    393        address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
    394                          &result);
    395         break;
    396    case 1:
    397        address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
    398                          &result);
    399        break;
    400    default:
    401        qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
    402                      HWADDR_PRIx " invalid size %d\n", addr, size);
    403        return;
    404    }
    405
    406    if (result != MEMTX_OK) {
    407        qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
    408                      HWADDR_PRIx "\n", addr);
    409    }
    410}
    411
    412static const MemoryRegionOps pnv_lpc_mmio_ops = {
    413    .read = pnv_lpc_mmio_read,
    414    .write = pnv_lpc_mmio_write,
    415    .impl = {
    416        .min_access_size = 1,
    417        .max_access_size = 4,
    418    },
    419    .endianness = DEVICE_BIG_ENDIAN,
    420};
    421
    422static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
    423{
    424    bool lpc_to_opb_irq = false;
    425    PnvLpcClass *plc = PNV_LPC_GET_CLASS(lpc);
    426
    427    /* Update LPC controller to OPB line */
    428    if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
    429        uint32_t irqs;
    430
    431        irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
    432        lpc_to_opb_irq = (irqs != 0);
    433    }
    434
    435    /* We don't honor the polarity register, it's pointless and unused
    436     * anyway
    437     */
    438    if (lpc_to_opb_irq) {
    439        lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
    440    } else {
    441        lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
    442    }
    443
    444    /* Update OPB internal latch */
    445    lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
    446
    447    /* Reflect the interrupt */
    448    pnv_psi_irq_set(lpc->psi, plc->psi_irq, lpc->opb_irq_stat != 0);
    449}
    450
    451static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
    452{
    453    PnvLpcController *lpc = opaque;
    454    uint64_t val = 0xfffffffffffffffful;
    455
    456    switch (addr) {
    457    case LPC_HC_FW_SEG_IDSEL:
    458        val =  lpc->lpc_hc_fw_seg_idsel;
    459        break;
    460    case LPC_HC_FW_RD_ACC_SIZE:
    461        val =  lpc->lpc_hc_fw_rd_acc_size;
    462        break;
    463    case LPC_HC_IRQSER_CTRL:
    464        val =  lpc->lpc_hc_irqser_ctrl;
    465        break;
    466    case LPC_HC_IRQMASK:
    467        val =  lpc->lpc_hc_irqmask;
    468        break;
    469    case LPC_HC_IRQSTAT:
    470        val =  lpc->lpc_hc_irqstat;
    471        break;
    472    case LPC_HC_ERROR_ADDRESS:
    473        val =  lpc->lpc_hc_error_addr;
    474        break;
    475    default:
    476        qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
    477                      HWADDR_PRIx "\n", addr);
    478    }
    479    return val;
    480}
    481
    482static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
    483                         unsigned size)
    484{
    485    PnvLpcController *lpc = opaque;
    486
    487    /* XXX Filter out reserved bits */
    488
    489    switch (addr) {
    490    case LPC_HC_FW_SEG_IDSEL:
    491        /* XXX Actually figure out how that works as this impact
    492         * memory regions/aliases
    493         */
    494        lpc->lpc_hc_fw_seg_idsel = val;
    495        break;
    496    case LPC_HC_FW_RD_ACC_SIZE:
    497        lpc->lpc_hc_fw_rd_acc_size = val;
    498        break;
    499    case LPC_HC_IRQSER_CTRL:
    500        lpc->lpc_hc_irqser_ctrl = val;
    501        pnv_lpc_eval_irqs(lpc);
    502        break;
    503    case LPC_HC_IRQMASK:
    504        lpc->lpc_hc_irqmask = val;
    505        pnv_lpc_eval_irqs(lpc);
    506        break;
    507    case LPC_HC_IRQSTAT:
    508        lpc->lpc_hc_irqstat &= ~val;
    509        pnv_lpc_eval_irqs(lpc);
    510        break;
    511    case LPC_HC_ERROR_ADDRESS:
    512        break;
    513    default:
    514        qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
    515                      HWADDR_PRIx "\n", addr);
    516    }
    517}
    518
    519static const MemoryRegionOps lpc_hc_ops = {
    520    .read = lpc_hc_read,
    521    .write = lpc_hc_write,
    522    .endianness = DEVICE_BIG_ENDIAN,
    523    .valid = {
    524        .min_access_size = 4,
    525        .max_access_size = 4,
    526    },
    527    .impl = {
    528        .min_access_size = 4,
    529        .max_access_size = 4,
    530    },
    531};
    532
    533static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
    534{
    535    PnvLpcController *lpc = opaque;
    536    uint64_t val = 0xfffffffffffffffful;
    537
    538    switch (addr) {
    539    case OPB_MASTER_LS_ROUTE0: /* TODO */
    540        val = lpc->opb_irq_route0;
    541        break;
    542    case OPB_MASTER_LS_ROUTE1: /* TODO */
    543        val = lpc->opb_irq_route1;
    544        break;
    545    case OPB_MASTER_LS_IRQ_STAT:
    546        val = lpc->opb_irq_stat;
    547        break;
    548    case OPB_MASTER_LS_IRQ_MASK:
    549        val = lpc->opb_irq_mask;
    550        break;
    551    case OPB_MASTER_LS_IRQ_POL:
    552        val = lpc->opb_irq_pol;
    553        break;
    554    case OPB_MASTER_LS_IRQ_INPUT:
    555        val = lpc->opb_irq_input;
    556        break;
    557    default:
    558        qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
    559                      HWADDR_PRIx "\n", addr);
    560    }
    561
    562    return val;
    563}
    564
    565static void opb_master_write(void *opaque, hwaddr addr,
    566                             uint64_t val, unsigned size)
    567{
    568    PnvLpcController *lpc = opaque;
    569
    570    switch (addr) {
    571    case OPB_MASTER_LS_ROUTE0: /* TODO */
    572        lpc->opb_irq_route0 = val;
    573        break;
    574    case OPB_MASTER_LS_ROUTE1: /* TODO */
    575        lpc->opb_irq_route1 = val;
    576        break;
    577    case OPB_MASTER_LS_IRQ_STAT:
    578        lpc->opb_irq_stat &= ~val;
    579        pnv_lpc_eval_irqs(lpc);
    580        break;
    581    case OPB_MASTER_LS_IRQ_MASK:
    582        lpc->opb_irq_mask = val;
    583        pnv_lpc_eval_irqs(lpc);
    584        break;
    585    case OPB_MASTER_LS_IRQ_POL:
    586        lpc->opb_irq_pol = val;
    587        pnv_lpc_eval_irqs(lpc);
    588        break;
    589    case OPB_MASTER_LS_IRQ_INPUT:
    590        /* Read only */
    591        break;
    592    default:
    593        qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
    594                      HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
    595    }
    596}
    597
    598static const MemoryRegionOps opb_master_ops = {
    599    .read = opb_master_read,
    600    .write = opb_master_write,
    601    .endianness = DEVICE_BIG_ENDIAN,
    602    .valid = {
    603        .min_access_size = 4,
    604        .max_access_size = 4,
    605    },
    606    .impl = {
    607        .min_access_size = 4,
    608        .max_access_size = 4,
    609    },
    610};
    611
    612static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
    613{
    614    PnvLpcController *lpc = PNV_LPC(dev);
    615    PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
    616    Error *local_err = NULL;
    617
    618    plc->parent_realize(dev, &local_err);
    619    if (local_err) {
    620        error_propagate(errp, local_err);
    621        return;
    622    }
    623
    624    /* P8 uses a XSCOM region for LPC registers */
    625    pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
    626                          &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
    627                          PNV_XSCOM_LPC_SIZE);
    628}
    629
    630static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
    631{
    632    DeviceClass *dc = DEVICE_CLASS(klass);
    633    PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
    634    PnvLpcClass *plc = PNV_LPC_CLASS(klass);
    635
    636    dc->desc = "PowerNV LPC Controller POWER8";
    637
    638    xdc->dt_xscom = pnv_lpc_dt_xscom;
    639
    640    plc->psi_irq = PSIHB_IRQ_LPC_I2C;
    641
    642    device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
    643                                    &plc->parent_realize);
    644}
    645
    646static const TypeInfo pnv_lpc_power8_info = {
    647    .name          = TYPE_PNV8_LPC,
    648    .parent        = TYPE_PNV_LPC,
    649    .class_init    = pnv_lpc_power8_class_init,
    650    .interfaces = (InterfaceInfo[]) {
    651        { TYPE_PNV_XSCOM_INTERFACE },
    652        { }
    653    }
    654};
    655
    656static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
    657{
    658    PnvLpcController *lpc = PNV_LPC(dev);
    659    PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
    660    Error *local_err = NULL;
    661
    662    plc->parent_realize(dev, &local_err);
    663    if (local_err) {
    664        error_propagate(errp, local_err);
    665        return;
    666    }
    667
    668    /* P9 uses a MMIO region */
    669    memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
    670                          lpc, "lpcm", PNV9_LPCM_SIZE);
    671}
    672
    673static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
    674{
    675    DeviceClass *dc = DEVICE_CLASS(klass);
    676    PnvLpcClass *plc = PNV_LPC_CLASS(klass);
    677
    678    dc->desc = "PowerNV LPC Controller POWER9";
    679
    680    plc->psi_irq = PSIHB9_IRQ_LPCHC;
    681
    682    device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
    683                                    &plc->parent_realize);
    684}
    685
    686static const TypeInfo pnv_lpc_power9_info = {
    687    .name          = TYPE_PNV9_LPC,
    688    .parent        = TYPE_PNV_LPC,
    689    .class_init    = pnv_lpc_power9_class_init,
    690};
    691
    692static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
    693{
    694    DeviceClass *dc = DEVICE_CLASS(klass);
    695
    696    dc->desc = "PowerNV LPC Controller POWER10";
    697}
    698
    699static const TypeInfo pnv_lpc_power10_info = {
    700    .name          = TYPE_PNV10_LPC,
    701    .parent        = TYPE_PNV9_LPC,
    702    .class_init    = pnv_lpc_power10_class_init,
    703};
    704
    705static void pnv_lpc_realize(DeviceState *dev, Error **errp)
    706{
    707    PnvLpcController *lpc = PNV_LPC(dev);
    708
    709    assert(lpc->psi);
    710
    711    /* Reg inits */
    712    lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
    713
    714    /* Create address space and backing MR for the OPB bus */
    715    memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
    716    address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
    717
    718    /* Create ISA IO and Mem space regions which are the root of
    719     * the ISA bus (ie, ISA address spaces). We don't create a
    720     * separate one for FW which we alias to memory.
    721     */
    722    memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
    723    memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
    724    memory_region_init(&lpc->isa_fw, OBJECT(dev),  "isa-fw", ISA_FW_SIZE);
    725
    726    /* Create windows from the OPB space to the ISA space */
    727    memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
    728                             &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
    729    memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
    730                                &lpc->opb_isa_io);
    731    memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
    732                             &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
    733    memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
    734                                &lpc->opb_isa_mem);
    735    memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
    736                             &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
    737    memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
    738                                &lpc->opb_isa_fw);
    739
    740    /* Create MMIO regions for LPC HC and OPB registers */
    741    memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
    742                          lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
    743    memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
    744                                &lpc->opb_master_regs);
    745    memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
    746                          "lpc-hc", LPC_HC_REGS_OPB_SIZE);
    747    memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
    748                                &lpc->lpc_hc_regs);
    749}
    750
    751static Property pnv_lpc_properties[] = {
    752    DEFINE_PROP_LINK("psi", PnvLpcController, psi, TYPE_PNV_PSI, PnvPsi *),
    753    DEFINE_PROP_END_OF_LIST(),
    754};
    755
    756static void pnv_lpc_class_init(ObjectClass *klass, void *data)
    757{
    758    DeviceClass *dc = DEVICE_CLASS(klass);
    759
    760    dc->realize = pnv_lpc_realize;
    761    dc->desc = "PowerNV LPC Controller";
    762    device_class_set_props(dc, pnv_lpc_properties);
    763    dc->user_creatable = false;
    764}
    765
    766static const TypeInfo pnv_lpc_info = {
    767    .name          = TYPE_PNV_LPC,
    768    .parent        = TYPE_DEVICE,
    769    .instance_size = sizeof(PnvLpcController),
    770    .class_init    = pnv_lpc_class_init,
    771    .class_size    = sizeof(PnvLpcClass),
    772    .abstract      = true,
    773};
    774
    775static void pnv_lpc_register_types(void)
    776{
    777    type_register_static(&pnv_lpc_info);
    778    type_register_static(&pnv_lpc_power8_info);
    779    type_register_static(&pnv_lpc_power9_info);
    780    type_register_static(&pnv_lpc_power10_info);
    781}
    782
    783type_init(pnv_lpc_register_types)
    784
    785/* If we don't use the built-in LPC interrupt deserializer, we need
    786 * to provide a set of qirqs for the ISA bus or things will go bad.
    787 *
    788 * Most machines using pre-Naples chips (without said deserializer)
    789 * have a CPLD that will collect the SerIRQ and shoot them as a
    790 * single level interrupt to the P8 chip. So let's setup a hook
    791 * for doing just that.
    792 */
    793static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
    794{
    795    PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
    796    uint32_t old_state = pnv->cpld_irqstate;
    797    PnvLpcController *lpc = PNV_LPC(opaque);
    798
    799    if (level) {
    800        pnv->cpld_irqstate |= 1u << n;
    801    } else {
    802        pnv->cpld_irqstate &= ~(1u << n);
    803    }
    804
    805    if (pnv->cpld_irqstate != old_state) {
    806        pnv_psi_irq_set(lpc->psi, PSIHB_IRQ_EXTERNAL, pnv->cpld_irqstate != 0);
    807    }
    808}
    809
    810static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
    811{
    812    PnvLpcController *lpc = PNV_LPC(opaque);
    813
    814    /* The Naples HW latches the 1 levels, clearing is done by SW */
    815    if (level) {
    816        lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n;
    817        pnv_lpc_eval_irqs(lpc);
    818    }
    819}
    820
    821ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
    822{
    823    Error *local_err = NULL;
    824    ISABus *isa_bus;
    825    qemu_irq *irqs;
    826    qemu_irq_handler handler;
    827
    828    /* let isa_bus_new() create its own bridge on SysBus otherwise
    829     * devices specified on the command line won't find the bus and
    830     * will fail to create.
    831     */
    832    isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
    833    if (local_err) {
    834        error_propagate(errp, local_err);
    835        return NULL;
    836    }
    837
    838    /* Not all variants have a working serial irq decoder. If not,
    839     * handling of LPC interrupts becomes a platform issue (some
    840     * platforms have a CPLD to do it).
    841     */
    842    if (use_cpld) {
    843        handler = pnv_lpc_isa_irq_handler_cpld;
    844    } else {
    845        handler = pnv_lpc_isa_irq_handler;
    846    }
    847
    848    irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
    849
    850    isa_bus_irqs(isa_bus, irqs);
    851
    852    return isa_bus;
    853}