ppc.c (42377B)
1/* 2 * QEMU generic PowerPC hardware System Emulator 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25#include "qemu/osdep.h" 26#include "hw/irq.h" 27#include "hw/ppc/ppc.h" 28#include "hw/ppc/ppc_e500.h" 29#include "qemu/timer.h" 30#include "sysemu/cpus.h" 31#include "qemu/log.h" 32#include "qemu/main-loop.h" 33#include "qemu/error-report.h" 34#include "sysemu/kvm.h" 35#include "sysemu/runstate.h" 36#include "kvm_ppc.h" 37#include "migration/vmstate.h" 38#include "trace.h" 39 40static void cpu_ppc_tb_stop (CPUPPCState *env); 41static void cpu_ppc_tb_start (CPUPPCState *env); 42 43void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level) 44{ 45 CPUState *cs = CPU(cpu); 46 CPUPPCState *env = &cpu->env; 47 unsigned int old_pending; 48 bool locked = false; 49 50 /* We may already have the BQL if coming from the reset path */ 51 if (!qemu_mutex_iothread_locked()) { 52 locked = true; 53 qemu_mutex_lock_iothread(); 54 } 55 56 old_pending = env->pending_interrupts; 57 58 if (level) { 59 env->pending_interrupts |= 1 << n_IRQ; 60 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 61 } else { 62 env->pending_interrupts &= ~(1 << n_IRQ); 63 if (env->pending_interrupts == 0) { 64 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 65 } 66 } 67 68 if (old_pending != env->pending_interrupts) { 69 kvmppc_set_interrupt(cpu, n_IRQ, level); 70 } 71 72 73 trace_ppc_irq_set_exit(env, n_IRQ, level, env->pending_interrupts, 74 CPU(cpu)->interrupt_request); 75 76 if (locked) { 77 qemu_mutex_unlock_iothread(); 78 } 79} 80 81/* PowerPC 6xx / 7xx internal IRQ controller */ 82static void ppc6xx_set_irq(void *opaque, int pin, int level) 83{ 84 PowerPCCPU *cpu = opaque; 85 CPUPPCState *env = &cpu->env; 86 int cur_level; 87 88 trace_ppc_irq_set(env, pin, level); 89 90 cur_level = (env->irq_input_state >> pin) & 1; 91 /* Don't generate spurious events */ 92 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 93 CPUState *cs = CPU(cpu); 94 95 switch (pin) { 96 case PPC6xx_INPUT_TBEN: 97 /* Level sensitive - active high */ 98 trace_ppc_irq_set_state("time base", level); 99 if (level) { 100 cpu_ppc_tb_start(env); 101 } else { 102 cpu_ppc_tb_stop(env); 103 } 104 break; 105 case PPC6xx_INPUT_INT: 106 /* Level sensitive - active high */ 107 trace_ppc_irq_set_state("external IRQ", level); 108 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 109 break; 110 case PPC6xx_INPUT_SMI: 111 /* Level sensitive - active high */ 112 trace_ppc_irq_set_state("SMI IRQ", level); 113 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); 114 break; 115 case PPC6xx_INPUT_MCP: 116 /* Negative edge sensitive */ 117 /* XXX: TODO: actual reaction may depends on HID0 status 118 * 603/604/740/750: check HID0[EMCP] 119 */ 120 if (cur_level == 1 && level == 0) { 121 trace_ppc_irq_set_state("machine check", 1); 122 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 123 } 124 break; 125 case PPC6xx_INPUT_CKSTP_IN: 126 /* Level sensitive - active low */ 127 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 128 /* XXX: Note that the only way to restart the CPU is to reset it */ 129 if (level) { 130 trace_ppc_irq_cpu("stop"); 131 cs->halted = 1; 132 } 133 break; 134 case PPC6xx_INPUT_HRESET: 135 /* Level sensitive - active low */ 136 if (level) { 137 trace_ppc_irq_reset("CPU"); 138 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 139 } 140 break; 141 case PPC6xx_INPUT_SRESET: 142 trace_ppc_irq_set_state("RESET IRQ", level); 143 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 144 break; 145 default: 146 g_assert_not_reached(); 147 } 148 if (level) 149 env->irq_input_state |= 1 << pin; 150 else 151 env->irq_input_state &= ~(1 << pin); 152 } 153} 154 155void ppc6xx_irq_init(PowerPCCPU *cpu) 156{ 157 CPUPPCState *env = &cpu->env; 158 159 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu, 160 PPC6xx_INPUT_NB); 161} 162 163#if defined(TARGET_PPC64) 164/* PowerPC 970 internal IRQ controller */ 165static void ppc970_set_irq(void *opaque, int pin, int level) 166{ 167 PowerPCCPU *cpu = opaque; 168 CPUPPCState *env = &cpu->env; 169 int cur_level; 170 171 trace_ppc_irq_set(env, pin, level); 172 173 cur_level = (env->irq_input_state >> pin) & 1; 174 /* Don't generate spurious events */ 175 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 176 CPUState *cs = CPU(cpu); 177 178 switch (pin) { 179 case PPC970_INPUT_INT: 180 /* Level sensitive - active high */ 181 trace_ppc_irq_set_state("external IRQ", level); 182 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 183 break; 184 case PPC970_INPUT_THINT: 185 /* Level sensitive - active high */ 186 trace_ppc_irq_set_state("SMI IRQ", level); 187 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); 188 break; 189 case PPC970_INPUT_MCP: 190 /* Negative edge sensitive */ 191 /* XXX: TODO: actual reaction may depends on HID0 status 192 * 603/604/740/750: check HID0[EMCP] 193 */ 194 if (cur_level == 1 && level == 0) { 195 trace_ppc_irq_set_state("machine check", 1); 196 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); 197 } 198 break; 199 case PPC970_INPUT_CKSTP: 200 /* Level sensitive - active low */ 201 /* XXX: TODO: relay the signal to CKSTP_OUT pin */ 202 if (level) { 203 trace_ppc_irq_cpu("stop"); 204 cs->halted = 1; 205 } else { 206 trace_ppc_irq_cpu("restart"); 207 cs->halted = 0; 208 qemu_cpu_kick(cs); 209 } 210 break; 211 case PPC970_INPUT_HRESET: 212 /* Level sensitive - active low */ 213 if (level) { 214 cpu_interrupt(cs, CPU_INTERRUPT_RESET); 215 } 216 break; 217 case PPC970_INPUT_SRESET: 218 trace_ppc_irq_set_state("RESET IRQ", level); 219 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); 220 break; 221 case PPC970_INPUT_TBEN: 222 trace_ppc_irq_set_state("TBEN IRQ", level); 223 /* XXX: TODO */ 224 break; 225 default: 226 g_assert_not_reached(); 227 } 228 if (level) 229 env->irq_input_state |= 1 << pin; 230 else 231 env->irq_input_state &= ~(1 << pin); 232 } 233} 234 235void ppc970_irq_init(PowerPCCPU *cpu) 236{ 237 CPUPPCState *env = &cpu->env; 238 239 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu, 240 PPC970_INPUT_NB); 241} 242 243/* POWER7 internal IRQ controller */ 244static void power7_set_irq(void *opaque, int pin, int level) 245{ 246 PowerPCCPU *cpu = opaque; 247 248 trace_ppc_irq_set(&cpu->env, pin, level); 249 250 switch (pin) { 251 case POWER7_INPUT_INT: 252 /* Level sensitive - active high */ 253 trace_ppc_irq_set_state("external IRQ", level); 254 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 255 break; 256 default: 257 g_assert_not_reached(); 258 } 259} 260 261void ppcPOWER7_irq_init(PowerPCCPU *cpu) 262{ 263 CPUPPCState *env = &cpu->env; 264 265 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu, 266 POWER7_INPUT_NB); 267} 268 269/* POWER9 internal IRQ controller */ 270static void power9_set_irq(void *opaque, int pin, int level) 271{ 272 PowerPCCPU *cpu = opaque; 273 274 trace_ppc_irq_set(&cpu->env, pin, level); 275 276 switch (pin) { 277 case POWER9_INPUT_INT: 278 /* Level sensitive - active high */ 279 trace_ppc_irq_set_state("external IRQ", level); 280 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 281 break; 282 case POWER9_INPUT_HINT: 283 /* Level sensitive - active high */ 284 trace_ppc_irq_set_state("HV external IRQ", level); 285 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); 286 break; 287 default: 288 g_assert_not_reached(); 289 return; 290 } 291} 292 293void ppcPOWER9_irq_init(PowerPCCPU *cpu) 294{ 295 CPUPPCState *env = &cpu->env; 296 297 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu, 298 POWER9_INPUT_NB); 299} 300#endif /* defined(TARGET_PPC64) */ 301 302void ppc40x_core_reset(PowerPCCPU *cpu) 303{ 304 CPUPPCState *env = &cpu->env; 305 target_ulong dbsr; 306 307 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); 308 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 309 dbsr = env->spr[SPR_40x_DBSR]; 310 dbsr &= ~0x00000300; 311 dbsr |= 0x00000100; 312 env->spr[SPR_40x_DBSR] = dbsr; 313} 314 315void ppc40x_chip_reset(PowerPCCPU *cpu) 316{ 317 CPUPPCState *env = &cpu->env; 318 target_ulong dbsr; 319 320 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); 321 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); 322 /* XXX: TODO reset all internal peripherals */ 323 dbsr = env->spr[SPR_40x_DBSR]; 324 dbsr &= ~0x00000300; 325 dbsr |= 0x00000200; 326 env->spr[SPR_40x_DBSR] = dbsr; 327} 328 329void ppc40x_system_reset(PowerPCCPU *cpu) 330{ 331 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); 332 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 333} 334 335void store_40x_dbcr0(CPUPPCState *env, uint32_t val) 336{ 337 PowerPCCPU *cpu = env_archcpu(env); 338 339 switch ((val >> 28) & 0x3) { 340 case 0x0: 341 /* No action */ 342 break; 343 case 0x1: 344 /* Core reset */ 345 ppc40x_core_reset(cpu); 346 break; 347 case 0x2: 348 /* Chip reset */ 349 ppc40x_chip_reset(cpu); 350 break; 351 case 0x3: 352 /* System reset */ 353 ppc40x_system_reset(cpu); 354 break; 355 } 356} 357 358/* PowerPC 40x internal IRQ controller */ 359static void ppc40x_set_irq(void *opaque, int pin, int level) 360{ 361 PowerPCCPU *cpu = opaque; 362 CPUPPCState *env = &cpu->env; 363 int cur_level; 364 365 trace_ppc_irq_set(env, pin, level); 366 367 cur_level = (env->irq_input_state >> pin) & 1; 368 /* Don't generate spurious events */ 369 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 370 CPUState *cs = CPU(cpu); 371 372 switch (pin) { 373 case PPC40x_INPUT_RESET_SYS: 374 if (level) { 375 trace_ppc_irq_reset("system"); 376 ppc40x_system_reset(cpu); 377 } 378 break; 379 case PPC40x_INPUT_RESET_CHIP: 380 if (level) { 381 trace_ppc_irq_reset("chip"); 382 ppc40x_chip_reset(cpu); 383 } 384 break; 385 case PPC40x_INPUT_RESET_CORE: 386 /* XXX: TODO: update DBSR[MRR] */ 387 if (level) { 388 trace_ppc_irq_reset("core"); 389 ppc40x_core_reset(cpu); 390 } 391 break; 392 case PPC40x_INPUT_CINT: 393 /* Level sensitive - active high */ 394 trace_ppc_irq_set_state("critical IRQ", level); 395 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 396 break; 397 case PPC40x_INPUT_INT: 398 /* Level sensitive - active high */ 399 trace_ppc_irq_set_state("external IRQ", level); 400 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 401 break; 402 case PPC40x_INPUT_HALT: 403 /* Level sensitive - active low */ 404 if (level) { 405 trace_ppc_irq_cpu("stop"); 406 cs->halted = 1; 407 } else { 408 trace_ppc_irq_cpu("restart"); 409 cs->halted = 0; 410 qemu_cpu_kick(cs); 411 } 412 break; 413 case PPC40x_INPUT_DEBUG: 414 /* Level sensitive - active high */ 415 trace_ppc_irq_set_state("debug pin", level); 416 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 417 break; 418 default: 419 g_assert_not_reached(); 420 } 421 if (level) 422 env->irq_input_state |= 1 << pin; 423 else 424 env->irq_input_state &= ~(1 << pin); 425 } 426} 427 428void ppc40x_irq_init(PowerPCCPU *cpu) 429{ 430 CPUPPCState *env = &cpu->env; 431 432 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq, 433 cpu, PPC40x_INPUT_NB); 434} 435 436/* PowerPC E500 internal IRQ controller */ 437static void ppce500_set_irq(void *opaque, int pin, int level) 438{ 439 PowerPCCPU *cpu = opaque; 440 CPUPPCState *env = &cpu->env; 441 int cur_level; 442 443 trace_ppc_irq_set(env, pin, level); 444 445 cur_level = (env->irq_input_state >> pin) & 1; 446 /* Don't generate spurious events */ 447 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { 448 switch (pin) { 449 case PPCE500_INPUT_MCK: 450 if (level) { 451 trace_ppc_irq_reset("system"); 452 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 453 } 454 break; 455 case PPCE500_INPUT_RESET_CORE: 456 if (level) { 457 trace_ppc_irq_reset("core"); 458 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); 459 } 460 break; 461 case PPCE500_INPUT_CINT: 462 /* Level sensitive - active high */ 463 trace_ppc_irq_set_state("critical IRQ", level); 464 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); 465 break; 466 case PPCE500_INPUT_INT: 467 /* Level sensitive - active high */ 468 trace_ppc_irq_set_state("core IRQ", level); 469 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); 470 break; 471 case PPCE500_INPUT_DEBUG: 472 /* Level sensitive - active high */ 473 trace_ppc_irq_set_state("debug pin", level); 474 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); 475 break; 476 default: 477 g_assert_not_reached(); 478 } 479 if (level) 480 env->irq_input_state |= 1 << pin; 481 else 482 env->irq_input_state &= ~(1 << pin); 483 } 484} 485 486void ppce500_irq_init(PowerPCCPU *cpu) 487{ 488 CPUPPCState *env = &cpu->env; 489 490 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq, 491 cpu, PPCE500_INPUT_NB); 492} 493 494/* Enable or Disable the E500 EPR capability */ 495void ppce500_set_mpic_proxy(bool enabled) 496{ 497 CPUState *cs; 498 499 CPU_FOREACH(cs) { 500 PowerPCCPU *cpu = POWERPC_CPU(cs); 501 502 cpu->env.mpic_proxy = enabled; 503 if (kvm_enabled()) { 504 kvmppc_set_mpic_proxy(cpu, enabled); 505 } 506 } 507} 508 509/*****************************************************************************/ 510/* PowerPC time base and decrementer emulation */ 511 512uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) 513{ 514 /* TB time in tb periods */ 515 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset; 516} 517 518uint64_t cpu_ppc_load_tbl (CPUPPCState *env) 519{ 520 ppc_tb_t *tb_env = env->tb_env; 521 uint64_t tb; 522 523 if (kvm_enabled()) { 524 return env->spr[SPR_TBL]; 525 } 526 527 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 528 trace_ppc_tb_load(tb); 529 530 return tb; 531} 532 533static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) 534{ 535 ppc_tb_t *tb_env = env->tb_env; 536 uint64_t tb; 537 538 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 539 trace_ppc_tb_load(tb); 540 541 return tb >> 32; 542} 543 544uint32_t cpu_ppc_load_tbu (CPUPPCState *env) 545{ 546 if (kvm_enabled()) { 547 return env->spr[SPR_TBU]; 548 } 549 550 return _cpu_ppc_load_tbu(env); 551} 552 553static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, 554 int64_t *tb_offsetp, uint64_t value) 555{ 556 *tb_offsetp = value - 557 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND); 558 559 trace_ppc_tb_store(value, *tb_offsetp); 560} 561 562void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) 563{ 564 ppc_tb_t *tb_env = env->tb_env; 565 uint64_t tb; 566 567 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 568 tb &= 0xFFFFFFFF00000000ULL; 569 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 570 &tb_env->tb_offset, tb | (uint64_t)value); 571} 572 573static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) 574{ 575 ppc_tb_t *tb_env = env->tb_env; 576 uint64_t tb; 577 578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); 579 tb &= 0x00000000FFFFFFFFULL; 580 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 581 &tb_env->tb_offset, ((uint64_t)value << 32) | tb); 582} 583 584void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) 585{ 586 _cpu_ppc_store_tbu(env, value); 587} 588 589uint64_t cpu_ppc_load_atbl (CPUPPCState *env) 590{ 591 ppc_tb_t *tb_env = env->tb_env; 592 uint64_t tb; 593 594 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 595 trace_ppc_tb_load(tb); 596 597 return tb; 598} 599 600uint32_t cpu_ppc_load_atbu (CPUPPCState *env) 601{ 602 ppc_tb_t *tb_env = env->tb_env; 603 uint64_t tb; 604 605 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 606 trace_ppc_tb_load(tb); 607 608 return tb >> 32; 609} 610 611void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) 612{ 613 ppc_tb_t *tb_env = env->tb_env; 614 uint64_t tb; 615 616 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 617 tb &= 0xFFFFFFFF00000000ULL; 618 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 619 &tb_env->atb_offset, tb | (uint64_t)value); 620} 621 622void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) 623{ 624 ppc_tb_t *tb_env = env->tb_env; 625 uint64_t tb; 626 627 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); 628 tb &= 0x00000000FFFFFFFFULL; 629 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 630 &tb_env->atb_offset, ((uint64_t)value << 32) | tb); 631} 632 633uint64_t cpu_ppc_load_vtb(CPUPPCState *env) 634{ 635 ppc_tb_t *tb_env = env->tb_env; 636 637 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 638 tb_env->vtb_offset); 639} 640 641void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) 642{ 643 ppc_tb_t *tb_env = env->tb_env; 644 645 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 646 &tb_env->vtb_offset, value); 647} 648 649void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) 650{ 651 ppc_tb_t *tb_env = env->tb_env; 652 uint64_t tb; 653 654 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 655 tb_env->tb_offset); 656 tb &= 0xFFFFFFUL; 657 tb |= (value & ~0xFFFFFFUL); 658 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 659 &tb_env->tb_offset, tb); 660} 661 662static void cpu_ppc_tb_stop (CPUPPCState *env) 663{ 664 ppc_tb_t *tb_env = env->tb_env; 665 uint64_t tb, atb, vmclk; 666 667 /* If the time base is already frozen, do nothing */ 668 if (tb_env->tb_freq != 0) { 669 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 670 /* Get the time base */ 671 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); 672 /* Get the alternate time base */ 673 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); 674 /* Store the time base value (ie compute the current offset) */ 675 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 676 /* Store the alternate time base value (compute the current offset) */ 677 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 678 /* Set the time base frequency to zero */ 679 tb_env->tb_freq = 0; 680 /* Now, the time bases are frozen to tb_offset / atb_offset value */ 681 } 682} 683 684static void cpu_ppc_tb_start (CPUPPCState *env) 685{ 686 ppc_tb_t *tb_env = env->tb_env; 687 uint64_t tb, atb, vmclk; 688 689 /* If the time base is not frozen, do nothing */ 690 if (tb_env->tb_freq == 0) { 691 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 692 /* Get the time base from tb_offset */ 693 tb = tb_env->tb_offset; 694 /* Get the alternate time base from atb_offset */ 695 atb = tb_env->atb_offset; 696 /* Restore the tb frequency from the decrementer frequency */ 697 tb_env->tb_freq = tb_env->decr_freq; 698 /* Store the time base value */ 699 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); 700 /* Store the alternate time base value */ 701 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); 702 } 703} 704 705bool ppc_decr_clear_on_delivery(CPUPPCState *env) 706{ 707 ppc_tb_t *tb_env = env->tb_env; 708 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; 709 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); 710} 711 712static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next) 713{ 714 ppc_tb_t *tb_env = env->tb_env; 715 int64_t decr, diff; 716 717 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 718 if (diff >= 0) { 719 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 720 } else if (tb_env->flags & PPC_TIMER_BOOKE) { 721 decr = 0; 722 } else { 723 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND); 724 } 725 trace_ppc_decr_load(decr); 726 727 return decr; 728} 729 730target_ulong cpu_ppc_load_decr(CPUPPCState *env) 731{ 732 ppc_tb_t *tb_env = env->tb_env; 733 uint64_t decr; 734 735 if (kvm_enabled()) { 736 return env->spr[SPR_DECR]; 737 } 738 739 decr = _cpu_ppc_load_decr(env, tb_env->decr_next); 740 741 /* 742 * If large decrementer is enabled then the decrementer is signed extened 743 * to 64 bits, otherwise it is a 32 bit value. 744 */ 745 if (env->spr[SPR_LPCR] & LPCR_LD) { 746 return decr; 747 } 748 return (uint32_t) decr; 749} 750 751target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) 752{ 753 PowerPCCPU *cpu = env_archcpu(env); 754 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 755 ppc_tb_t *tb_env = env->tb_env; 756 uint64_t hdecr; 757 758 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next); 759 760 /* 761 * If we have a large decrementer (POWER9 or later) then hdecr is sign 762 * extended to 64 bits, otherwise it is 32 bits. 763 */ 764 if (pcc->lrg_decr_bits > 32) { 765 return hdecr; 766 } 767 return (uint32_t) hdecr; 768} 769 770uint64_t cpu_ppc_load_purr (CPUPPCState *env) 771{ 772 ppc_tb_t *tb_env = env->tb_env; 773 774 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 775 tb_env->purr_offset); 776} 777 778/* When decrementer expires, 779 * all we need to do is generate or queue a CPU exception 780 */ 781static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) 782{ 783 /* Raise it */ 784 trace_ppc_decr_excp("raise"); 785 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); 786} 787 788static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) 789{ 790 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); 791} 792 793static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) 794{ 795 CPUPPCState *env = &cpu->env; 796 797 /* Raise it */ 798 trace_ppc_decr_excp("raise HV"); 799 800 /* The architecture specifies that we don't deliver HDEC 801 * interrupts in a PM state. Not only they don't cause a 802 * wakeup but they also get effectively discarded. 803 */ 804 if (!env->resume_as_sreset) { 805 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); 806 } 807} 808 809static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) 810{ 811 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); 812} 813 814static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp, 815 QEMUTimer *timer, 816 void (*raise_excp)(void *), 817 void (*lower_excp)(PowerPCCPU *), 818 target_ulong decr, target_ulong value, 819 int nr_bits) 820{ 821 CPUPPCState *env = &cpu->env; 822 ppc_tb_t *tb_env = env->tb_env; 823 uint64_t now, next; 824 int64_t signed_value; 825 int64_t signed_decr; 826 827 /* Truncate value to decr_width and sign extend for simplicity */ 828 signed_value = sextract64(value, 0, nr_bits); 829 signed_decr = sextract64(decr, 0, nr_bits); 830 831 trace_ppc_decr_store(nr_bits, decr, value); 832 833 if (kvm_enabled()) { 834 /* KVM handles decrementer exceptions, we don't need our own timer */ 835 return; 836 } 837 838 /* 839 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC 840 * interrupt. 841 * 842 * If we get a really small DEC value, we can assume that by the time we 843 * handled it we should inject an interrupt already. 844 * 845 * On MSB level based DEC implementations the MSB always means the interrupt 846 * is pending, so raise it on those. 847 * 848 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers 849 * an edge interrupt, so raise it here too. 850 */ 851 if ((signed_value < 3) || 852 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) || 853 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0 854 && signed_decr >= 0)) { 855 (*raise_excp)(cpu); 856 return; 857 } 858 859 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ 860 if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) { 861 (*lower_excp)(cpu); 862 } 863 864 /* Calculate the next timer event */ 865 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 866 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 867 *nextp = next; 868 869 /* Adjust timer */ 870 timer_mod(timer, next); 871} 872 873static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr, 874 target_ulong value, int nr_bits) 875{ 876 ppc_tb_t *tb_env = cpu->env.tb_env; 877 878 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer, 879 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr, 880 value, nr_bits); 881} 882 883void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) 884{ 885 PowerPCCPU *cpu = env_archcpu(env); 886 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 887 int nr_bits = 32; 888 889 if (env->spr[SPR_LPCR] & LPCR_LD) { 890 nr_bits = pcc->lrg_decr_bits; 891 } 892 893 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits); 894} 895 896static void cpu_ppc_decr_cb(void *opaque) 897{ 898 PowerPCCPU *cpu = opaque; 899 900 cpu_ppc_decr_excp(cpu); 901} 902 903static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr, 904 target_ulong value, int nr_bits) 905{ 906 ppc_tb_t *tb_env = cpu->env.tb_env; 907 908 if (tb_env->hdecr_timer != NULL) { 909 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer, 910 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, 911 hdecr, value, nr_bits); 912 } 913} 914 915void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) 916{ 917 PowerPCCPU *cpu = env_archcpu(env); 918 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 919 920 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 921 pcc->lrg_decr_bits); 922} 923 924static void cpu_ppc_hdecr_cb(void *opaque) 925{ 926 PowerPCCPU *cpu = opaque; 927 928 cpu_ppc_hdecr_excp(cpu); 929} 930 931void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) 932{ 933 ppc_tb_t *tb_env = env->tb_env; 934 935 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 936 &tb_env->purr_offset, value); 937} 938 939static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq) 940{ 941 CPUPPCState *env = opaque; 942 PowerPCCPU *cpu = env_archcpu(env); 943 ppc_tb_t *tb_env = env->tb_env; 944 945 tb_env->tb_freq = freq; 946 tb_env->decr_freq = freq; 947 /* There is a bug in Linux 2.4 kernels: 948 * if a decrementer exception is pending when it enables msr_ee at startup, 949 * it's not ready to handle it... 950 */ 951 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 952 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32); 953 cpu_ppc_store_purr(env, 0x0000000000000000ULL); 954} 955 956static void timebase_save(PPCTimebase *tb) 957{ 958 uint64_t ticks = cpu_get_host_ticks(); 959 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 960 961 if (!first_ppc_cpu->env.tb_env) { 962 error_report("No timebase object"); 963 return; 964 } 965 966 /* not used anymore, we keep it for compatibility */ 967 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); 968 /* 969 * tb_offset is only expected to be changed by QEMU so 970 * there is no need to update it from KVM here 971 */ 972 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; 973 974 tb->runstate_paused = 975 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM); 976} 977 978static void timebase_load(PPCTimebase *tb) 979{ 980 CPUState *cpu; 981 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 982 int64_t tb_off_adj, tb_off; 983 unsigned long freq; 984 985 if (!first_ppc_cpu->env.tb_env) { 986 error_report("No timebase object"); 987 return; 988 } 989 990 freq = first_ppc_cpu->env.tb_env->tb_freq; 991 992 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); 993 994 tb_off = first_ppc_cpu->env.tb_env->tb_offset; 995 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, 996 (tb_off_adj - tb_off) / freq); 997 998 /* Set new offset to all CPUs */ 999 CPU_FOREACH(cpu) { 1000 PowerPCCPU *pcpu = POWERPC_CPU(cpu); 1001 pcpu->env.tb_env->tb_offset = tb_off_adj; 1002 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); 1003 } 1004} 1005 1006void cpu_ppc_clock_vm_state_change(void *opaque, bool running, 1007 RunState state) 1008{ 1009 PPCTimebase *tb = opaque; 1010 1011 if (running) { 1012 timebase_load(tb); 1013 } else { 1014 timebase_save(tb); 1015 } 1016} 1017 1018/* 1019 * When migrating a running guest, read the clock just 1020 * before migration, so that the guest clock counts 1021 * during the events between: 1022 * 1023 * * vm_stop() 1024 * * 1025 * * pre_save() 1026 * 1027 * This reduces clock difference on migration from 5s 1028 * to 0.1s (when max_downtime == 5s), because sending the 1029 * final pages of memory (which happens between vm_stop() 1030 * and pre_save()) takes max_downtime. 1031 */ 1032static int timebase_pre_save(void *opaque) 1033{ 1034 PPCTimebase *tb = opaque; 1035 1036 /* guest_timebase won't be overridden in case of paused guest or savevm */ 1037 if (!tb->runstate_paused) { 1038 timebase_save(tb); 1039 } 1040 1041 return 0; 1042} 1043 1044const VMStateDescription vmstate_ppc_timebase = { 1045 .name = "timebase", 1046 .version_id = 1, 1047 .minimum_version_id = 1, 1048 .minimum_version_id_old = 1, 1049 .pre_save = timebase_pre_save, 1050 .fields = (VMStateField []) { 1051 VMSTATE_UINT64(guest_timebase, PPCTimebase), 1052 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), 1053 VMSTATE_END_OF_LIST() 1054 }, 1055}; 1056 1057/* Set up (once) timebase frequency (in Hz) */ 1058clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq) 1059{ 1060 PowerPCCPU *cpu = env_archcpu(env); 1061 ppc_tb_t *tb_env; 1062 1063 tb_env = g_malloc0(sizeof(ppc_tb_t)); 1064 env->tb_env = tb_env; 1065 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1066 if (is_book3s_arch2x(env)) { 1067 /* All Book3S 64bit CPUs implement level based DEC logic */ 1068 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; 1069 } 1070 /* Create new timer */ 1071 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu); 1072 if (env->has_hv_mode) { 1073 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, 1074 cpu); 1075 } else { 1076 tb_env->hdecr_timer = NULL; 1077 } 1078 cpu_ppc_set_tb_clk(env, freq); 1079 1080 return &cpu_ppc_set_tb_clk; 1081} 1082 1083/* Specific helpers for POWER & PowerPC 601 RTC */ 1084void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value) 1085{ 1086 _cpu_ppc_store_tbu(env, value); 1087} 1088 1089uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env) 1090{ 1091 return _cpu_ppc_load_tbu(env); 1092} 1093 1094void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value) 1095{ 1096 cpu_ppc_store_tbl(env, value & 0x3FFFFF80); 1097} 1098 1099uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env) 1100{ 1101 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1102} 1103 1104/*****************************************************************************/ 1105/* PowerPC 40x timers */ 1106 1107/* PIT, FIT & WDT */ 1108typedef struct ppc40x_timer_t ppc40x_timer_t; 1109struct ppc40x_timer_t { 1110 uint64_t pit_reload; /* PIT auto-reload value */ 1111 uint64_t fit_next; /* Tick for next FIT interrupt */ 1112 QEMUTimer *fit_timer; 1113 uint64_t wdt_next; /* Tick for next WDT interrupt */ 1114 QEMUTimer *wdt_timer; 1115 1116 /* 405 have the PIT, 440 have a DECR. */ 1117 unsigned int decr_excp; 1118}; 1119 1120/* Fixed interval timer */ 1121static void cpu_4xx_fit_cb (void *opaque) 1122{ 1123 PowerPCCPU *cpu; 1124 CPUPPCState *env; 1125 ppc_tb_t *tb_env; 1126 ppc40x_timer_t *ppc40x_timer; 1127 uint64_t now, next; 1128 1129 env = opaque; 1130 cpu = env_archcpu(env); 1131 tb_env = env->tb_env; 1132 ppc40x_timer = tb_env->opaque; 1133 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1134 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { 1135 case 0: 1136 next = 1 << 9; 1137 break; 1138 case 1: 1139 next = 1 << 13; 1140 break; 1141 case 2: 1142 next = 1 << 17; 1143 break; 1144 case 3: 1145 next = 1 << 21; 1146 break; 1147 default: 1148 /* Cannot occur, but makes gcc happy */ 1149 return; 1150 } 1151 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq); 1152 if (next == now) 1153 next++; 1154 timer_mod(ppc40x_timer->fit_timer, next); 1155 env->spr[SPR_40x_TSR] |= 1 << 26; 1156 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { 1157 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); 1158 } 1159 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), 1160 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1161} 1162 1163/* Programmable interval timer */ 1164static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) 1165{ 1166 ppc40x_timer_t *ppc40x_timer; 1167 uint64_t now, next; 1168 1169 ppc40x_timer = tb_env->opaque; 1170 if (ppc40x_timer->pit_reload <= 1 || 1171 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || 1172 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { 1173 /* Stop PIT */ 1174 trace_ppc4xx_pit_stop(); 1175 timer_del(tb_env->decr_timer); 1176 } else { 1177 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); 1178 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1179 next = now + muldiv64(ppc40x_timer->pit_reload, 1180 NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1181 if (is_excp) 1182 next += tb_env->decr_next - now; 1183 if (next == now) 1184 next++; 1185 timer_mod(tb_env->decr_timer, next); 1186 tb_env->decr_next = next; 1187 } 1188} 1189 1190static void cpu_4xx_pit_cb (void *opaque) 1191{ 1192 PowerPCCPU *cpu; 1193 CPUPPCState *env; 1194 ppc_tb_t *tb_env; 1195 ppc40x_timer_t *ppc40x_timer; 1196 1197 env = opaque; 1198 cpu = env_archcpu(env); 1199 tb_env = env->tb_env; 1200 ppc40x_timer = tb_env->opaque; 1201 env->spr[SPR_40x_TSR] |= 1 << 27; 1202 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { 1203 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); 1204 } 1205 start_stop_pit(env, tb_env, 1); 1206 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), 1207 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), 1208 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], 1209 ppc40x_timer->pit_reload); 1210} 1211 1212/* Watchdog timer */ 1213static void cpu_4xx_wdt_cb (void *opaque) 1214{ 1215 PowerPCCPU *cpu; 1216 CPUPPCState *env; 1217 ppc_tb_t *tb_env; 1218 ppc40x_timer_t *ppc40x_timer; 1219 uint64_t now, next; 1220 1221 env = opaque; 1222 cpu = env_archcpu(env); 1223 tb_env = env->tb_env; 1224 ppc40x_timer = tb_env->opaque; 1225 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1226 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { 1227 case 0: 1228 next = 1 << 17; 1229 break; 1230 case 1: 1231 next = 1 << 21; 1232 break; 1233 case 2: 1234 next = 1 << 25; 1235 break; 1236 case 3: 1237 next = 1 << 29; 1238 break; 1239 default: 1240 /* Cannot occur, but makes gcc happy */ 1241 return; 1242 } 1243 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq); 1244 if (next == now) 1245 next++; 1246 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); 1247 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { 1248 case 0x0: 1249 case 0x1: 1250 timer_mod(ppc40x_timer->wdt_timer, next); 1251 ppc40x_timer->wdt_next = next; 1252 env->spr[SPR_40x_TSR] |= 1U << 31; 1253 break; 1254 case 0x2: 1255 timer_mod(ppc40x_timer->wdt_timer, next); 1256 ppc40x_timer->wdt_next = next; 1257 env->spr[SPR_40x_TSR] |= 1 << 30; 1258 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { 1259 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); 1260 } 1261 break; 1262 case 0x3: 1263 env->spr[SPR_40x_TSR] &= ~0x30000000; 1264 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; 1265 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { 1266 case 0x0: 1267 /* No reset */ 1268 break; 1269 case 0x1: /* Core reset */ 1270 ppc40x_core_reset(cpu); 1271 break; 1272 case 0x2: /* Chip reset */ 1273 ppc40x_chip_reset(cpu); 1274 break; 1275 case 0x3: /* System reset */ 1276 ppc40x_system_reset(cpu); 1277 break; 1278 } 1279 } 1280} 1281 1282void store_40x_pit (CPUPPCState *env, target_ulong val) 1283{ 1284 ppc_tb_t *tb_env; 1285 ppc40x_timer_t *ppc40x_timer; 1286 1287 tb_env = env->tb_env; 1288 ppc40x_timer = tb_env->opaque; 1289 trace_ppc40x_store_pit(val); 1290 ppc40x_timer->pit_reload = val; 1291 start_stop_pit(env, tb_env, 0); 1292} 1293 1294target_ulong load_40x_pit (CPUPPCState *env) 1295{ 1296 return cpu_ppc_load_decr(env); 1297} 1298 1299static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) 1300{ 1301 CPUPPCState *env = opaque; 1302 ppc_tb_t *tb_env = env->tb_env; 1303 1304 trace_ppc40x_set_tb_clk(freq); 1305 tb_env->tb_freq = freq; 1306 tb_env->decr_freq = freq; 1307 /* XXX: we should also update all timers */ 1308} 1309 1310clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, 1311 unsigned int decr_excp) 1312{ 1313 ppc_tb_t *tb_env; 1314 ppc40x_timer_t *ppc40x_timer; 1315 1316 tb_env = g_malloc0(sizeof(ppc_tb_t)); 1317 env->tb_env = tb_env; 1318 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; 1319 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t)); 1320 tb_env->tb_freq = freq; 1321 tb_env->decr_freq = freq; 1322 tb_env->opaque = ppc40x_timer; 1323 trace_ppc40x_timers_init(freq); 1324 if (ppc40x_timer != NULL) { 1325 /* We use decr timer for PIT */ 1326 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env); 1327 ppc40x_timer->fit_timer = 1328 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env); 1329 ppc40x_timer->wdt_timer = 1330 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env); 1331 ppc40x_timer->decr_excp = decr_excp; 1332 } 1333 1334 return &ppc_40x_set_tb_clk; 1335} 1336 1337/*****************************************************************************/ 1338/* Embedded PowerPC Device Control Registers */ 1339typedef struct ppc_dcrn_t ppc_dcrn_t; 1340struct ppc_dcrn_t { 1341 dcr_read_cb dcr_read; 1342 dcr_write_cb dcr_write; 1343 void *opaque; 1344}; 1345 1346/* XXX: on 460, DCR addresses are 32 bits wide, 1347 * using DCRIPR to get the 22 upper bits of the DCR address 1348 */ 1349#define DCRN_NB 1024 1350struct ppc_dcr_t { 1351 ppc_dcrn_t dcrn[DCRN_NB]; 1352 int (*read_error)(int dcrn); 1353 int (*write_error)(int dcrn); 1354}; 1355 1356int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1357{ 1358 ppc_dcrn_t *dcr; 1359 1360 if (dcrn < 0 || dcrn >= DCRN_NB) 1361 goto error; 1362 dcr = &dcr_env->dcrn[dcrn]; 1363 if (dcr->dcr_read == NULL) 1364 goto error; 1365 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); 1366 1367 return 0; 1368 1369 error: 1370 if (dcr_env->read_error != NULL) 1371 return (*dcr_env->read_error)(dcrn); 1372 1373 return -1; 1374} 1375 1376int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1377{ 1378 ppc_dcrn_t *dcr; 1379 1380 if (dcrn < 0 || dcrn >= DCRN_NB) 1381 goto error; 1382 dcr = &dcr_env->dcrn[dcrn]; 1383 if (dcr->dcr_write == NULL) 1384 goto error; 1385 (*dcr->dcr_write)(dcr->opaque, dcrn, val); 1386 1387 return 0; 1388 1389 error: 1390 if (dcr_env->write_error != NULL) 1391 return (*dcr_env->write_error)(dcrn); 1392 1393 return -1; 1394} 1395 1396int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, 1397 dcr_read_cb dcr_read, dcr_write_cb dcr_write) 1398{ 1399 ppc_dcr_t *dcr_env; 1400 ppc_dcrn_t *dcr; 1401 1402 dcr_env = env->dcr_env; 1403 if (dcr_env == NULL) 1404 return -1; 1405 if (dcrn < 0 || dcrn >= DCRN_NB) 1406 return -1; 1407 dcr = &dcr_env->dcrn[dcrn]; 1408 if (dcr->opaque != NULL || 1409 dcr->dcr_read != NULL || 1410 dcr->dcr_write != NULL) 1411 return -1; 1412 dcr->opaque = opaque; 1413 dcr->dcr_read = dcr_read; 1414 dcr->dcr_write = dcr_write; 1415 1416 return 0; 1417} 1418 1419int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), 1420 int (*write_error)(int dcrn)) 1421{ 1422 ppc_dcr_t *dcr_env; 1423 1424 dcr_env = g_malloc0(sizeof(ppc_dcr_t)); 1425 dcr_env->read_error = read_error; 1426 dcr_env->write_error = write_error; 1427 env->dcr_env = dcr_env; 1428 1429 return 0; 1430} 1431 1432/*****************************************************************************/ 1433 1434int ppc_cpu_pir(PowerPCCPU *cpu) 1435{ 1436 CPUPPCState *env = &cpu->env; 1437 return env->spr_cb[SPR_PIR].default_value; 1438} 1439 1440PowerPCCPU *ppc_get_vcpu_by_pir(int pir) 1441{ 1442 CPUState *cs; 1443 1444 CPU_FOREACH(cs) { 1445 PowerPCCPU *cpu = POWERPC_CPU(cs); 1446 1447 if (ppc_cpu_pir(cpu) == pir) { 1448 return cpu; 1449 } 1450 } 1451 1452 return NULL; 1453} 1454 1455void ppc_irq_reset(PowerPCCPU *cpu) 1456{ 1457 CPUPPCState *env = &cpu->env; 1458 1459 env->irq_input_state = 0; 1460 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); 1461}