cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

spapr.c (169294B)


      1/*
      2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
      3 *
      4 * Copyright (c) 2004-2007 Fabrice Bellard
      5 * Copyright (c) 2007 Jocelyn Mayer
      6 * Copyright (c) 2010 David Gibson, IBM Corporation.
      7 *
      8 * Permission is hereby granted, free of charge, to any person obtaining a copy
      9 * of this software and associated documentation files (the "Software"), to deal
     10 * in the Software without restriction, including without limitation the rights
     11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     12 * copies of the Software, and to permit persons to whom the Software is
     13 * furnished to do so, subject to the following conditions:
     14 *
     15 * The above copyright notice and this permission notice shall be included in
     16 * all copies or substantial portions of the Software.
     17 *
     18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     24 * THE SOFTWARE.
     25 */
     26
     27#include "qemu/osdep.h"
     28#include "qemu-common.h"
     29#include "qemu/datadir.h"
     30#include "qapi/error.h"
     31#include "qapi/qapi-events-machine.h"
     32#include "qapi/qapi-events-qdev.h"
     33#include "qapi/visitor.h"
     34#include "sysemu/sysemu.h"
     35#include "sysemu/hostmem.h"
     36#include "sysemu/numa.h"
     37#include "sysemu/qtest.h"
     38#include "sysemu/reset.h"
     39#include "sysemu/runstate.h"
     40#include "qemu/log.h"
     41#include "hw/fw-path-provider.h"
     42#include "elf.h"
     43#include "net/net.h"
     44#include "sysemu/device_tree.h"
     45#include "sysemu/cpus.h"
     46#include "sysemu/hw_accel.h"
     47#include "kvm_ppc.h"
     48#include "migration/misc.h"
     49#include "migration/qemu-file-types.h"
     50#include "migration/global_state.h"
     51#include "migration/register.h"
     52#include "migration/blocker.h"
     53#include "mmu-hash64.h"
     54#include "mmu-book3s-v3.h"
     55#include "cpu-models.h"
     56#include "hw/core/cpu.h"
     57
     58#include "hw/ppc/ppc.h"
     59#include "hw/loader.h"
     60
     61#include "hw/ppc/fdt.h"
     62#include "hw/ppc/spapr.h"
     63#include "hw/ppc/spapr_vio.h"
     64#include "hw/qdev-properties.h"
     65#include "hw/pci-host/spapr.h"
     66#include "hw/pci/msi.h"
     67
     68#include "hw/pci/pci.h"
     69#include "hw/scsi/scsi.h"
     70#include "hw/virtio/virtio-scsi.h"
     71#include "hw/virtio/vhost-scsi-common.h"
     72
     73#include "exec/ram_addr.h"
     74#include "hw/usb.h"
     75#include "qemu/config-file.h"
     76#include "qemu/error-report.h"
     77#include "trace.h"
     78#include "hw/nmi.h"
     79#include "hw/intc/intc.h"
     80
     81#include "hw/ppc/spapr_cpu_core.h"
     82#include "hw/mem/memory-device.h"
     83#include "hw/ppc/spapr_tpm_proxy.h"
     84#include "hw/ppc/spapr_nvdimm.h"
     85#include "hw/ppc/spapr_numa.h"
     86#include "hw/ppc/pef.h"
     87
     88#include "monitor/monitor.h"
     89
     90#include <libfdt.h>
     91
     92/* SLOF memory layout:
     93 *
     94 * SLOF raw image loaded at 0, copies its romfs right below the flat
     95 * device-tree, then position SLOF itself 31M below that
     96 *
     97 * So we set FW_OVERHEAD to 40MB which should account for all of that
     98 * and more
     99 *
    100 * We load our kernel at 4M, leaving space for SLOF initial image
    101 */
    102#define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
    103#define FW_MAX_SIZE             0x400000
    104#define FW_FILE_NAME            "slof.bin"
    105#define FW_FILE_NAME_VOF        "vof.bin"
    106#define FW_OVERHEAD             0x2800000
    107#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
    108
    109#define MIN_RMA_SLOF            (128 * MiB)
    110
    111#define PHANDLE_INTC            0x00001111
    112
    113/* These two functions implement the VCPU id numbering: one to compute them
    114 * all and one to identify thread 0 of a VCORE. Any change to the first one
    115 * is likely to have an impact on the second one, so let's keep them close.
    116 */
    117static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
    118{
    119    MachineState *ms = MACHINE(spapr);
    120    unsigned int smp_threads = ms->smp.threads;
    121
    122    assert(spapr->vsmt);
    123    return
    124        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
    125}
    126static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
    127                                      PowerPCCPU *cpu)
    128{
    129    assert(spapr->vsmt);
    130    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
    131}
    132
    133static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
    134{
    135    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
    136     * and newer QEMUs don't even have them. In both cases, we don't want
    137     * to send anything on the wire.
    138     */
    139    return false;
    140}
    141
    142static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
    143    .name = "icp/server",
    144    .version_id = 1,
    145    .minimum_version_id = 1,
    146    .needed = pre_2_10_vmstate_dummy_icp_needed,
    147    .fields = (VMStateField[]) {
    148        VMSTATE_UNUSED(4), /* uint32_t xirr */
    149        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
    150        VMSTATE_UNUSED(1), /* uint8_t mfrr */
    151        VMSTATE_END_OF_LIST()
    152    },
    153};
    154
    155static void pre_2_10_vmstate_register_dummy_icp(int i)
    156{
    157    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
    158                     (void *)(uintptr_t) i);
    159}
    160
    161static void pre_2_10_vmstate_unregister_dummy_icp(int i)
    162{
    163    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
    164                       (void *)(uintptr_t) i);
    165}
    166
    167int spapr_max_server_number(SpaprMachineState *spapr)
    168{
    169    MachineState *ms = MACHINE(spapr);
    170
    171    assert(spapr->vsmt);
    172    return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
    173}
    174
    175static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
    176                                  int smt_threads)
    177{
    178    int i, ret = 0;
    179    uint32_t servers_prop[smt_threads];
    180    uint32_t gservers_prop[smt_threads * 2];
    181    int index = spapr_get_vcpu_id(cpu);
    182
    183    if (cpu->compat_pvr) {
    184        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
    185        if (ret < 0) {
    186            return ret;
    187        }
    188    }
    189
    190    /* Build interrupt servers and gservers properties */
    191    for (i = 0; i < smt_threads; i++) {
    192        servers_prop[i] = cpu_to_be32(index + i);
    193        /* Hack, direct the group queues back to cpu 0 */
    194        gservers_prop[i*2] = cpu_to_be32(index + i);
    195        gservers_prop[i*2 + 1] = 0;
    196    }
    197    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
    198                      servers_prop, sizeof(servers_prop));
    199    if (ret < 0) {
    200        return ret;
    201    }
    202    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
    203                      gservers_prop, sizeof(gservers_prop));
    204
    205    return ret;
    206}
    207
    208static void spapr_dt_pa_features(SpaprMachineState *spapr,
    209                                 PowerPCCPU *cpu,
    210                                 void *fdt, int offset)
    211{
    212    uint8_t pa_features_206[] = { 6, 0,
    213        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    214    uint8_t pa_features_207[] = { 24, 0,
    215        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
    216        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
    217        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
    218        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
    219    uint8_t pa_features_300[] = { 66, 0,
    220        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
    221        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
    222        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
    223        /* 6: DS207 */
    224        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
    225        /* 16: Vector */
    226        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
    227        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
    228        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
    229        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
    230        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
    231        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
    232        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
    233        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
    234        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
    235        /* 42: PM, 44: PC RA, 46: SC vec'd */
    236        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
    237        /* 48: SIMD, 50: QP BFP, 52: String */
    238        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
    239        /* 54: DecFP, 56: DecI, 58: SHA */
    240        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
    241        /* 60: NM atomic, 62: RNG */
    242        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
    243    };
    244    uint8_t *pa_features = NULL;
    245    size_t pa_size;
    246
    247    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
    248        pa_features = pa_features_206;
    249        pa_size = sizeof(pa_features_206);
    250    }
    251    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
    252        pa_features = pa_features_207;
    253        pa_size = sizeof(pa_features_207);
    254    }
    255    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
    256        pa_features = pa_features_300;
    257        pa_size = sizeof(pa_features_300);
    258    }
    259    if (!pa_features) {
    260        return;
    261    }
    262
    263    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
    264        /*
    265         * Note: we keep CI large pages off by default because a 64K capable
    266         * guest provisioned with large pages might otherwise try to map a qemu
    267         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
    268         * even if that qemu runs on a 4k host.
    269         * We dd this bit back here if we are confident this is not an issue
    270         */
    271        pa_features[3] |= 0x20;
    272    }
    273    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
    274        pa_features[24] |= 0x80;    /* Transactional memory support */
    275    }
    276    if (spapr->cas_pre_isa3_guest && pa_size > 40) {
    277        /* Workaround for broken kernels that attempt (guest) radix
    278         * mode when they can't handle it, if they see the radix bit set
    279         * in pa-features. So hide it from them. */
    280        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
    281    }
    282
    283    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
    284}
    285
    286static hwaddr spapr_node0_size(MachineState *machine)
    287{
    288    if (machine->numa_state->num_nodes) {
    289        int i;
    290        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
    291            if (machine->numa_state->nodes[i].node_mem) {
    292                return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
    293                           machine->ram_size);
    294            }
    295        }
    296    }
    297    return machine->ram_size;
    298}
    299
    300static void add_str(GString *s, const gchar *s1)
    301{
    302    g_string_append_len(s, s1, strlen(s1) + 1);
    303}
    304
    305static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
    306                                hwaddr start, hwaddr size)
    307{
    308    char mem_name[32];
    309    uint64_t mem_reg_property[2];
    310    int off;
    311
    312    mem_reg_property[0] = cpu_to_be64(start);
    313    mem_reg_property[1] = cpu_to_be64(size);
    314
    315    sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
    316    off = fdt_add_subnode(fdt, 0, mem_name);
    317    _FDT(off);
    318    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    319    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
    320                      sizeof(mem_reg_property))));
    321    spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
    322    return off;
    323}
    324
    325static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
    326{
    327    MemoryDeviceInfoList *info;
    328
    329    for (info = list; info; info = info->next) {
    330        MemoryDeviceInfo *value = info->value;
    331
    332        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
    333            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
    334
    335            if (addr >= pcdimm_info->addr &&
    336                addr < (pcdimm_info->addr + pcdimm_info->size)) {
    337                return pcdimm_info->node;
    338            }
    339        }
    340    }
    341
    342    return -1;
    343}
    344
    345struct sPAPRDrconfCellV2 {
    346     uint32_t seq_lmbs;
    347     uint64_t base_addr;
    348     uint32_t drc_index;
    349     uint32_t aa_index;
    350     uint32_t flags;
    351} QEMU_PACKED;
    352
    353typedef struct DrconfCellQueue {
    354    struct sPAPRDrconfCellV2 cell;
    355    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
    356} DrconfCellQueue;
    357
    358static DrconfCellQueue *
    359spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
    360                      uint32_t drc_index, uint32_t aa_index,
    361                      uint32_t flags)
    362{
    363    DrconfCellQueue *elem;
    364
    365    elem = g_malloc0(sizeof(*elem));
    366    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
    367    elem->cell.base_addr = cpu_to_be64(base_addr);
    368    elem->cell.drc_index = cpu_to_be32(drc_index);
    369    elem->cell.aa_index = cpu_to_be32(aa_index);
    370    elem->cell.flags = cpu_to_be32(flags);
    371
    372    return elem;
    373}
    374
    375static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
    376                                      int offset, MemoryDeviceInfoList *dimms)
    377{
    378    MachineState *machine = MACHINE(spapr);
    379    uint8_t *int_buf, *cur_index;
    380    int ret;
    381    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    382    uint64_t addr, cur_addr, size;
    383    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
    384    uint64_t mem_end = machine->device_memory->base +
    385                       memory_region_size(&machine->device_memory->mr);
    386    uint32_t node, buf_len, nr_entries = 0;
    387    SpaprDrc *drc;
    388    DrconfCellQueue *elem, *next;
    389    MemoryDeviceInfoList *info;
    390    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
    391        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
    392
    393    /* Entry to cover RAM and the gap area */
    394    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
    395                                 SPAPR_LMB_FLAGS_RESERVED |
    396                                 SPAPR_LMB_FLAGS_DRC_INVALID);
    397    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
    398    nr_entries++;
    399
    400    cur_addr = machine->device_memory->base;
    401    for (info = dimms; info; info = info->next) {
    402        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
    403
    404        addr = di->addr;
    405        size = di->size;
    406        node = di->node;
    407
    408        /*
    409         * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
    410         * area is marked hotpluggable in the next iteration for the bigger
    411         * chunk including the NVDIMM occupied area.
    412         */
    413        if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
    414            continue;
    415
    416        /* Entry for hot-pluggable area */
    417        if (cur_addr < addr) {
    418            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
    419            g_assert(drc);
    420            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
    421                                         cur_addr, spapr_drc_index(drc), -1, 0);
    422            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
    423            nr_entries++;
    424        }
    425
    426        /* Entry for DIMM */
    427        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
    428        g_assert(drc);
    429        elem = spapr_get_drconf_cell(size / lmb_size, addr,
    430                                     spapr_drc_index(drc), node,
    431                                     (SPAPR_LMB_FLAGS_ASSIGNED |
    432                                      SPAPR_LMB_FLAGS_HOTREMOVABLE));
    433        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
    434        nr_entries++;
    435        cur_addr = addr + size;
    436    }
    437
    438    /* Entry for remaining hotpluggable area */
    439    if (cur_addr < mem_end) {
    440        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
    441        g_assert(drc);
    442        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
    443                                     cur_addr, spapr_drc_index(drc), -1, 0);
    444        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
    445        nr_entries++;
    446    }
    447
    448    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
    449    int_buf = cur_index = g_malloc0(buf_len);
    450    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
    451    cur_index += sizeof(nr_entries);
    452
    453    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
    454        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
    455        cur_index += sizeof(elem->cell);
    456        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
    457        g_free(elem);
    458    }
    459
    460    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
    461    g_free(int_buf);
    462    if (ret < 0) {
    463        return -1;
    464    }
    465    return 0;
    466}
    467
    468static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
    469                                   int offset, MemoryDeviceInfoList *dimms)
    470{
    471    MachineState *machine = MACHINE(spapr);
    472    int i, ret;
    473    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    474    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
    475    uint32_t nr_lmbs = (machine->device_memory->base +
    476                       memory_region_size(&machine->device_memory->mr)) /
    477                       lmb_size;
    478    uint32_t *int_buf, *cur_index, buf_len;
    479
    480    /*
    481     * Allocate enough buffer size to fit in ibm,dynamic-memory
    482     */
    483    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
    484    cur_index = int_buf = g_malloc0(buf_len);
    485    int_buf[0] = cpu_to_be32(nr_lmbs);
    486    cur_index++;
    487    for (i = 0; i < nr_lmbs; i++) {
    488        uint64_t addr = i * lmb_size;
    489        uint32_t *dynamic_memory = cur_index;
    490
    491        if (i >= device_lmb_start) {
    492            SpaprDrc *drc;
    493
    494            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
    495            g_assert(drc);
    496
    497            dynamic_memory[0] = cpu_to_be32(addr >> 32);
    498            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
    499            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
    500            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
    501            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
    502            if (memory_region_present(get_system_memory(), addr)) {
    503                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
    504            } else {
    505                dynamic_memory[5] = cpu_to_be32(0);
    506            }
    507        } else {
    508            /*
    509             * LMB information for RMA, boot time RAM and gap b/n RAM and
    510             * device memory region -- all these are marked as reserved
    511             * and as having no valid DRC.
    512             */
    513            dynamic_memory[0] = cpu_to_be32(addr >> 32);
    514            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
    515            dynamic_memory[2] = cpu_to_be32(0);
    516            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
    517            dynamic_memory[4] = cpu_to_be32(-1);
    518            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
    519                                            SPAPR_LMB_FLAGS_DRC_INVALID);
    520        }
    521
    522        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    523    }
    524    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    525    g_free(int_buf);
    526    if (ret < 0) {
    527        return -1;
    528    }
    529    return 0;
    530}
    531
    532/*
    533 * Adds ibm,dynamic-reconfiguration-memory node.
    534 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
    535 * of this device tree node.
    536 */
    537static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
    538                                                   void *fdt)
    539{
    540    MachineState *machine = MACHINE(spapr);
    541    int ret, offset;
    542    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    543    uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
    544                                cpu_to_be32(lmb_size & 0xffffffff)};
    545    MemoryDeviceInfoList *dimms = NULL;
    546
    547    /*
    548     * Don't create the node if there is no device memory
    549     */
    550    if (machine->ram_size == machine->maxram_size) {
    551        return 0;
    552    }
    553
    554    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
    555
    556    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
    557                    sizeof(prop_lmb_size));
    558    if (ret < 0) {
    559        return ret;
    560    }
    561
    562    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    563    if (ret < 0) {
    564        return ret;
    565    }
    566
    567    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    568    if (ret < 0) {
    569        return ret;
    570    }
    571
    572    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
    573    dimms = qmp_memory_device_list();
    574    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
    575        ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
    576    } else {
    577        ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
    578    }
    579    qapi_free_MemoryDeviceInfoList(dimms);
    580
    581    if (ret < 0) {
    582        return ret;
    583    }
    584
    585    ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
    586
    587    return ret;
    588}
    589
    590static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
    591{
    592    MachineState *machine = MACHINE(spapr);
    593    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
    594    hwaddr mem_start, node_size;
    595    int i, nb_nodes = machine->numa_state->num_nodes;
    596    NodeInfo *nodes = machine->numa_state->nodes;
    597
    598    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
    599        if (!nodes[i].node_mem) {
    600            continue;
    601        }
    602        if (mem_start >= machine->ram_size) {
    603            node_size = 0;
    604        } else {
    605            node_size = nodes[i].node_mem;
    606            if (node_size > machine->ram_size - mem_start) {
    607                node_size = machine->ram_size - mem_start;
    608            }
    609        }
    610        if (!mem_start) {
    611            /* spapr_machine_init() checks for rma_size <= node0_size
    612             * already */
    613            spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
    614            mem_start += spapr->rma_size;
    615            node_size -= spapr->rma_size;
    616        }
    617        for ( ; node_size; ) {
    618            hwaddr sizetmp = pow2floor(node_size);
    619
    620            /* mem_start != 0 here */
    621            if (ctzl(mem_start) < ctzl(sizetmp)) {
    622                sizetmp = 1ULL << ctzl(mem_start);
    623            }
    624
    625            spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
    626            node_size -= sizetmp;
    627            mem_start += sizetmp;
    628        }
    629    }
    630
    631    /* Generate ibm,dynamic-reconfiguration-memory node if required */
    632    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
    633        int ret;
    634
    635        g_assert(smc->dr_lmb_enabled);
    636        ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
    637        if (ret) {
    638            return ret;
    639        }
    640    }
    641
    642    return 0;
    643}
    644
    645static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
    646                         SpaprMachineState *spapr)
    647{
    648    MachineState *ms = MACHINE(spapr);
    649    PowerPCCPU *cpu = POWERPC_CPU(cs);
    650    CPUPPCState *env = &cpu->env;
    651    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    652    int index = spapr_get_vcpu_id(cpu);
    653    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
    654                       0xffffffff, 0xffffffff};
    655    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
    656        : SPAPR_TIMEBASE_FREQ;
    657    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    658    uint32_t page_sizes_prop[64];
    659    size_t page_sizes_prop_size;
    660    unsigned int smp_threads = ms->smp.threads;
    661    uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
    662    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
    663    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
    664    SpaprDrc *drc;
    665    int drc_index;
    666    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
    667    int i;
    668
    669    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
    670    if (drc) {
    671        drc_index = spapr_drc_index(drc);
    672        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
    673    }
    674
    675    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    676    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
    677
    678    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    679    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
    680                           env->dcache_line_size)));
    681    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
    682                           env->dcache_line_size)));
    683    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
    684                           env->icache_line_size)));
    685    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
    686                           env->icache_line_size)));
    687
    688    if (pcc->l1_dcache_size) {
    689        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
    690                               pcc->l1_dcache_size)));
    691    } else {
    692        warn_report("Unknown L1 dcache size for cpu");
    693    }
    694    if (pcc->l1_icache_size) {
    695        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
    696                               pcc->l1_icache_size)));
    697    } else {
    698        warn_report("Unknown L1 icache size for cpu");
    699    }
    700
    701    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    702    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
    703    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
    704    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
    705    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    706    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
    707
    708    if (ppc_has_spr(cpu, SPR_PURR)) {
    709        _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
    710    }
    711    if (ppc_has_spr(cpu, SPR_PURR)) {
    712        _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
    713    }
    714
    715    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
    716        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
    717                          segs, sizeof(segs))));
    718    }
    719
    720    /* Advertise VSX (vector extensions) if available
    721     *   1               == VMX / Altivec available
    722     *   2               == VSX available
    723     *
    724     * Only CPUs for which we create core types in spapr_cpu_core.c
    725     * are possible, and all of those have VMX */
    726    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
    727        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
    728    } else {
    729        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
    730    }
    731
    732    /* Advertise DFP (Decimal Floating Point) if available
    733     *   0 / no property == no DFP
    734     *   1               == DFP available */
    735    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
    736        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    737    }
    738
    739    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
    740                                                      sizeof(page_sizes_prop));
    741    if (page_sizes_prop_size) {
    742        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
    743                          page_sizes_prop, page_sizes_prop_size)));
    744    }
    745
    746    spapr_dt_pa_features(spapr, cpu, fdt, offset);
    747
    748    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
    749                           cs->cpu_index / vcpus_per_socket)));
    750
    751    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
    752                      pft_size_prop, sizeof(pft_size_prop))));
    753
    754    if (ms->numa_state->num_nodes > 1) {
    755        _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
    756    }
    757
    758    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
    759
    760    if (pcc->radix_page_info) {
    761        for (i = 0; i < pcc->radix_page_info->count; i++) {
    762            radix_AP_encodings[i] =
    763                cpu_to_be32(pcc->radix_page_info->entries[i]);
    764        }
    765        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
    766                          radix_AP_encodings,
    767                          pcc->radix_page_info->count *
    768                          sizeof(radix_AP_encodings[0]))));
    769    }
    770
    771    /*
    772     * We set this property to let the guest know that it can use the large
    773     * decrementer and its width in bits.
    774     */
    775    if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
    776        _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
    777                              pcc->lrg_decr_bits)));
    778}
    779
    780static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
    781{
    782    CPUState **rev;
    783    CPUState *cs;
    784    int n_cpus;
    785    int cpus_offset;
    786    int i;
    787
    788    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    789    _FDT(cpus_offset);
    790    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    791    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
    792
    793    /*
    794     * We walk the CPUs in reverse order to ensure that CPU DT nodes
    795     * created by fdt_add_subnode() end up in the right order in FDT
    796     * for the guest kernel the enumerate the CPUs correctly.
    797     *
    798     * The CPU list cannot be traversed in reverse order, so we need
    799     * to do extra work.
    800     */
    801    n_cpus = 0;
    802    rev = NULL;
    803    CPU_FOREACH(cs) {
    804        rev = g_renew(CPUState *, rev, n_cpus + 1);
    805        rev[n_cpus++] = cs;
    806    }
    807
    808    for (i = n_cpus - 1; i >= 0; i--) {
    809        CPUState *cs = rev[i];
    810        PowerPCCPU *cpu = POWERPC_CPU(cs);
    811        int index = spapr_get_vcpu_id(cpu);
    812        DeviceClass *dc = DEVICE_GET_CLASS(cs);
    813        g_autofree char *nodename = NULL;
    814        int offset;
    815
    816        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
    817            continue;
    818        }
    819
    820        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
    821        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
    822        _FDT(offset);
    823        spapr_dt_cpu(cs, fdt, offset, spapr);
    824    }
    825
    826    g_free(rev);
    827}
    828
    829static int spapr_dt_rng(void *fdt)
    830{
    831    int node;
    832    int ret;
    833
    834    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
    835    if (node <= 0) {
    836        return -1;
    837    }
    838    ret = fdt_setprop_string(fdt, node, "device_type",
    839                             "ibm,platform-facilities");
    840    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
    841    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
    842
    843    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
    844    if (node <= 0) {
    845        return -1;
    846    }
    847    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
    848
    849    return ret ? -1 : 0;
    850}
    851
    852static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
    853{
    854    MachineState *ms = MACHINE(spapr);
    855    int rtas;
    856    GString *hypertas = g_string_sized_new(256);
    857    GString *qemu_hypertas = g_string_sized_new(256);
    858    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
    859        memory_region_size(&MACHINE(spapr)->device_memory->mr);
    860    uint32_t lrdr_capacity[] = {
    861        cpu_to_be32(max_device_addr >> 32),
    862        cpu_to_be32(max_device_addr & 0xffffffff),
    863        cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
    864        cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
    865        cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
    866    };
    867
    868    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
    869
    870    /* hypertas */
    871    add_str(hypertas, "hcall-pft");
    872    add_str(hypertas, "hcall-term");
    873    add_str(hypertas, "hcall-dabr");
    874    add_str(hypertas, "hcall-interrupt");
    875    add_str(hypertas, "hcall-tce");
    876    add_str(hypertas, "hcall-vio");
    877    add_str(hypertas, "hcall-splpar");
    878    add_str(hypertas, "hcall-join");
    879    add_str(hypertas, "hcall-bulk");
    880    add_str(hypertas, "hcall-set-mode");
    881    add_str(hypertas, "hcall-sprg0");
    882    add_str(hypertas, "hcall-copy");
    883    add_str(hypertas, "hcall-debug");
    884    add_str(hypertas, "hcall-vphn");
    885    if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
    886        add_str(hypertas, "hcall-rpt-invalidate");
    887    }
    888
    889    add_str(qemu_hypertas, "hcall-memop1");
    890
    891    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
    892        add_str(hypertas, "hcall-multi-tce");
    893    }
    894
    895    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
    896        add_str(hypertas, "hcall-hpt-resize");
    897    }
    898
    899    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
    900                     hypertas->str, hypertas->len));
    901    g_string_free(hypertas, TRUE);
    902    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
    903                     qemu_hypertas->str, qemu_hypertas->len));
    904    g_string_free(qemu_hypertas, TRUE);
    905
    906    spapr_numa_write_rtas_dt(spapr, fdt, rtas);
    907
    908    /*
    909     * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
    910     * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
    911     *
    912     * The system reset requirements are driven by existing Linux and PowerVM
    913     * implementation which (contrary to PAPR) saves r3 in the error log
    914     * structure like machine check, so Linux expects to find the saved r3
    915     * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
    916     * does not look at the error value).
    917     *
    918     * System reset interrupts are not subject to interlock like machine
    919     * check, so this memory area could be corrupted if the sreset is
    920     * interrupted by a machine check (or vice versa) if it was shared. To
    921     * prevent this, system reset uses per-CPU areas for the sreset save
    922     * area. A system reset that interrupts a system reset handler could
    923     * still overwrite this area, but Linux doesn't try to recover in that
    924     * case anyway.
    925     *
    926     * The extra 8 bytes is required because Linux's FWNMI error log check
    927     * is off-by-one.
    928     *
    929     * RTAS_MIN_SIZE is required for the RTAS blob itself.
    930     */
    931    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
    932                          RTAS_ERROR_LOG_MAX +
    933                          ms->smp.max_cpus * sizeof(uint64_t) * 2 +
    934                          sizeof(uint64_t)));
    935    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
    936                          RTAS_ERROR_LOG_MAX));
    937    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
    938                          RTAS_EVENT_SCAN_RATE));
    939
    940    g_assert(msi_nonbroken);
    941    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
    942
    943    /*
    944     * According to PAPR, rtas ibm,os-term does not guarantee a return
    945     * back to the guest cpu.
    946     *
    947     * While an additional ibm,extended-os-term property indicates
    948     * that rtas call return will always occur. Set this property.
    949     */
    950    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
    951
    952    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
    953                     lrdr_capacity, sizeof(lrdr_capacity)));
    954
    955    spapr_dt_rtas_tokens(fdt, rtas);
    956}
    957
    958/*
    959 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
    960 * and the XIVE features that the guest may request and thus the valid
    961 * values for bytes 23..26 of option vector 5:
    962 */
    963static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
    964                                          int chosen)
    965{
    966    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
    967
    968    char val[2 * 4] = {
    969        23, 0x00, /* XICS / XIVE mode */
    970        24, 0x00, /* Hash/Radix, filled in below. */
    971        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
    972        26, 0x40, /* Radix options: GTSE == yes. */
    973    };
    974
    975    if (spapr->irq->xics && spapr->irq->xive) {
    976        val[1] = SPAPR_OV5_XIVE_BOTH;
    977    } else if (spapr->irq->xive) {
    978        val[1] = SPAPR_OV5_XIVE_EXPLOIT;
    979    } else {
    980        assert(spapr->irq->xics);
    981        val[1] = SPAPR_OV5_XIVE_LEGACY;
    982    }
    983
    984    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
    985                          first_ppc_cpu->compat_pvr)) {
    986        /*
    987         * If we're in a pre POWER9 compat mode then the guest should
    988         * do hash and use the legacy interrupt mode
    989         */
    990        val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
    991        val[3] = 0x00; /* Hash */
    992        spapr_check_mmu_mode(false);
    993    } else if (kvm_enabled()) {
    994        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
    995            val[3] = 0x80; /* OV5_MMU_BOTH */
    996        } else if (kvmppc_has_cap_mmu_radix()) {
    997            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
    998        } else {
    999            val[3] = 0x00; /* Hash */
   1000        }
   1001    } else {
   1002        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
   1003        val[3] = 0xC0;
   1004    }
   1005    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
   1006                     val, sizeof(val)));
   1007}
   1008
   1009static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
   1010{
   1011    MachineState *machine = MACHINE(spapr);
   1012    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
   1013    int chosen;
   1014
   1015    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
   1016
   1017    if (reset) {
   1018        const char *boot_device = spapr->boot_device;
   1019        char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
   1020        size_t cb = 0;
   1021        char *bootlist = get_boot_devices_list(&cb);
   1022
   1023        if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
   1024            _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
   1025                                    machine->kernel_cmdline));
   1026        }
   1027
   1028        if (spapr->initrd_size) {
   1029            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
   1030                                  spapr->initrd_base));
   1031            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
   1032                                  spapr->initrd_base + spapr->initrd_size));
   1033        }
   1034
   1035        if (spapr->kernel_size) {
   1036            uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
   1037                                  cpu_to_be64(spapr->kernel_size) };
   1038
   1039            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
   1040                         &kprop, sizeof(kprop)));
   1041            if (spapr->kernel_le) {
   1042                _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
   1043            }
   1044        }
   1045        if (boot_menu) {
   1046            _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
   1047        }
   1048        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
   1049        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
   1050        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
   1051
   1052        if (cb && bootlist) {
   1053            int i;
   1054
   1055            for (i = 0; i < cb; i++) {
   1056                if (bootlist[i] == '\n') {
   1057                    bootlist[i] = ' ';
   1058                }
   1059            }
   1060            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
   1061        }
   1062
   1063        if (boot_device && strlen(boot_device)) {
   1064            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
   1065        }
   1066
   1067        if (!spapr->has_graphics && stdout_path) {
   1068            /*
   1069             * "linux,stdout-path" and "stdout" properties are
   1070             * deprecated by linux kernel. New platforms should only
   1071             * use the "stdout-path" property. Set the new property
   1072             * and continue using older property to remain compatible
   1073             * with the existing firmware.
   1074             */
   1075            _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
   1076            _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
   1077        }
   1078
   1079        /*
   1080         * We can deal with BAR reallocation just fine, advertise it
   1081         * to the guest
   1082         */
   1083        if (smc->linux_pci_probe) {
   1084            _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
   1085        }
   1086
   1087        spapr_dt_ov5_platform_support(spapr, fdt, chosen);
   1088
   1089        g_free(stdout_path);
   1090        g_free(bootlist);
   1091    }
   1092
   1093    _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
   1094}
   1095
   1096static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
   1097{
   1098    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
   1099     * KVM to work under pHyp with some guest co-operation */
   1100    int hypervisor;
   1101    uint8_t hypercall[16];
   1102
   1103    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
   1104    /* indicate KVM hypercall interface */
   1105    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
   1106    if (kvmppc_has_cap_fixup_hcalls()) {
   1107        /*
   1108         * Older KVM versions with older guest kernels were broken
   1109         * with the magic page, don't allow the guest to map it.
   1110         */
   1111        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
   1112                                  sizeof(hypercall))) {
   1113            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
   1114                             hypercall, sizeof(hypercall)));
   1115        }
   1116    }
   1117}
   1118
   1119void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
   1120{
   1121    MachineState *machine = MACHINE(spapr);
   1122    MachineClass *mc = MACHINE_GET_CLASS(machine);
   1123    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
   1124    uint32_t root_drc_type_mask = 0;
   1125    int ret;
   1126    void *fdt;
   1127    SpaprPhbState *phb;
   1128    char *buf;
   1129
   1130    fdt = g_malloc0(space);
   1131    _FDT((fdt_create_empty_tree(fdt, space)));
   1132
   1133    /* Root node */
   1134    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
   1135    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
   1136    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
   1137
   1138    /* Guest UUID & Name*/
   1139    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
   1140    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
   1141    if (qemu_uuid_set) {
   1142        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
   1143    }
   1144    g_free(buf);
   1145
   1146    if (qemu_get_vm_name()) {
   1147        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
   1148                                qemu_get_vm_name()));
   1149    }
   1150
   1151    /* Host Model & Serial Number */
   1152    if (spapr->host_model) {
   1153        _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
   1154    } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
   1155        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
   1156        g_free(buf);
   1157    }
   1158
   1159    if (spapr->host_serial) {
   1160        _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
   1161    } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
   1162        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
   1163        g_free(buf);
   1164    }
   1165
   1166    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
   1167    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
   1168
   1169    /* /interrupt controller */
   1170    spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
   1171
   1172    ret = spapr_dt_memory(spapr, fdt);
   1173    if (ret < 0) {
   1174        error_report("couldn't setup memory nodes in fdt");
   1175        exit(1);
   1176    }
   1177
   1178    /* /vdevice */
   1179    spapr_dt_vdevice(spapr->vio_bus, fdt);
   1180
   1181    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
   1182        ret = spapr_dt_rng(fdt);
   1183        if (ret < 0) {
   1184            error_report("could not set up rng device in the fdt");
   1185            exit(1);
   1186        }
   1187    }
   1188
   1189    QLIST_FOREACH(phb, &spapr->phbs, list) {
   1190        ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
   1191        if (ret < 0) {
   1192            error_report("couldn't setup PCI devices in fdt");
   1193            exit(1);
   1194        }
   1195    }
   1196
   1197    spapr_dt_cpus(fdt, spapr);
   1198
   1199    /* ibm,drc-indexes and friends */
   1200    if (smc->dr_lmb_enabled) {
   1201        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
   1202    }
   1203    if (smc->dr_phb_enabled) {
   1204        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
   1205    }
   1206    if (mc->nvdimm_supported) {
   1207        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
   1208    }
   1209    if (root_drc_type_mask) {
   1210        _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
   1211    }
   1212
   1213    if (mc->has_hotpluggable_cpus) {
   1214        int offset = fdt_path_offset(fdt, "/cpus");
   1215        ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
   1216        if (ret < 0) {
   1217            error_report("Couldn't set up CPU DR device tree properties");
   1218            exit(1);
   1219        }
   1220    }
   1221
   1222    /* /event-sources */
   1223    spapr_dt_events(spapr, fdt);
   1224
   1225    /* /rtas */
   1226    spapr_dt_rtas(spapr, fdt);
   1227
   1228    /* /chosen */
   1229    spapr_dt_chosen(spapr, fdt, reset);
   1230
   1231    /* /hypervisor */
   1232    if (kvm_enabled()) {
   1233        spapr_dt_hypervisor(spapr, fdt);
   1234    }
   1235
   1236    /* Build memory reserve map */
   1237    if (reset) {
   1238        if (spapr->kernel_size) {
   1239            _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
   1240                                  spapr->kernel_size)));
   1241        }
   1242        if (spapr->initrd_size) {
   1243            _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
   1244                                  spapr->initrd_size)));
   1245        }
   1246    }
   1247
   1248    /* NVDIMM devices */
   1249    if (mc->nvdimm_supported) {
   1250        spapr_dt_persistent_memory(spapr, fdt);
   1251    }
   1252
   1253    return fdt;
   1254}
   1255
   1256static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
   1257{
   1258    SpaprMachineState *spapr = opaque;
   1259
   1260    return (addr & 0x0fffffff) + spapr->kernel_addr;
   1261}
   1262
   1263static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
   1264                                    PowerPCCPU *cpu)
   1265{
   1266    CPUPPCState *env = &cpu->env;
   1267
   1268    /* The TCG path should also be holding the BQL at this point */
   1269    g_assert(qemu_mutex_iothread_locked());
   1270
   1271    if (msr_pr) {
   1272        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
   1273        env->gpr[3] = H_PRIVILEGE;
   1274    } else {
   1275        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
   1276    }
   1277}
   1278
   1279struct LPCRSyncState {
   1280    target_ulong value;
   1281    target_ulong mask;
   1282};
   1283
   1284static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
   1285{
   1286    struct LPCRSyncState *s = arg.host_ptr;
   1287    PowerPCCPU *cpu = POWERPC_CPU(cs);
   1288    CPUPPCState *env = &cpu->env;
   1289    target_ulong lpcr;
   1290
   1291    cpu_synchronize_state(cs);
   1292    lpcr = env->spr[SPR_LPCR];
   1293    lpcr &= ~s->mask;
   1294    lpcr |= s->value;
   1295    ppc_store_lpcr(cpu, lpcr);
   1296}
   1297
   1298void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
   1299{
   1300    CPUState *cs;
   1301    struct LPCRSyncState s = {
   1302        .value = value,
   1303        .mask = mask
   1304    };
   1305    CPU_FOREACH(cs) {
   1306        run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
   1307    }
   1308}
   1309
   1310static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
   1311{
   1312    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
   1313
   1314    /* Copy PATE1:GR into PATE0:HR */
   1315    entry->dw0 = spapr->patb_entry & PATE0_HR;
   1316    entry->dw1 = spapr->patb_entry;
   1317}
   1318
   1319#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
   1320#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
   1321#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
   1322#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
   1323#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
   1324
   1325/*
   1326 * Get the fd to access the kernel htab, re-opening it if necessary
   1327 */
   1328static int get_htab_fd(SpaprMachineState *spapr)
   1329{
   1330    Error *local_err = NULL;
   1331
   1332    if (spapr->htab_fd >= 0) {
   1333        return spapr->htab_fd;
   1334    }
   1335
   1336    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
   1337    if (spapr->htab_fd < 0) {
   1338        error_report_err(local_err);
   1339    }
   1340
   1341    return spapr->htab_fd;
   1342}
   1343
   1344void close_htab_fd(SpaprMachineState *spapr)
   1345{
   1346    if (spapr->htab_fd >= 0) {
   1347        close(spapr->htab_fd);
   1348    }
   1349    spapr->htab_fd = -1;
   1350}
   1351
   1352static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
   1353{
   1354    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
   1355
   1356    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
   1357}
   1358
   1359static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
   1360{
   1361    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
   1362
   1363    assert(kvm_enabled());
   1364
   1365    if (!spapr->htab) {
   1366        return 0;
   1367    }
   1368
   1369    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
   1370}
   1371
   1372static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
   1373                                                hwaddr ptex, int n)
   1374{
   1375    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
   1376    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
   1377
   1378    if (!spapr->htab) {
   1379        /*
   1380         * HTAB is controlled by KVM. Fetch into temporary buffer
   1381         */
   1382        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
   1383        kvmppc_read_hptes(hptes, ptex, n);
   1384        return hptes;
   1385    }
   1386
   1387    /*
   1388     * HTAB is controlled by QEMU. Just point to the internally
   1389     * accessible PTEG.
   1390     */
   1391    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
   1392}
   1393
   1394static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
   1395                              const ppc_hash_pte64_t *hptes,
   1396                              hwaddr ptex, int n)
   1397{
   1398    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
   1399
   1400    if (!spapr->htab) {
   1401        g_free((void *)hptes);
   1402    }
   1403
   1404    /* Nothing to do for qemu managed HPT */
   1405}
   1406
   1407void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
   1408                      uint64_t pte0, uint64_t pte1)
   1409{
   1410    SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
   1411    hwaddr offset = ptex * HASH_PTE_SIZE_64;
   1412
   1413    if (!spapr->htab) {
   1414        kvmppc_write_hpte(ptex, pte0, pte1);
   1415    } else {
   1416        if (pte0 & HPTE64_V_VALID) {
   1417            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
   1418            /*
   1419             * When setting valid, we write PTE1 first. This ensures
   1420             * proper synchronization with the reading code in
   1421             * ppc_hash64_pteg_search()
   1422             */
   1423            smp_wmb();
   1424            stq_p(spapr->htab + offset, pte0);
   1425        } else {
   1426            stq_p(spapr->htab + offset, pte0);
   1427            /*
   1428             * When clearing it we set PTE0 first. This ensures proper
   1429             * synchronization with the reading code in
   1430             * ppc_hash64_pteg_search()
   1431             */
   1432            smp_wmb();
   1433            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
   1434        }
   1435    }
   1436}
   1437
   1438static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
   1439                             uint64_t pte1)
   1440{
   1441    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
   1442    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
   1443
   1444    if (!spapr->htab) {
   1445        /* There should always be a hash table when this is called */
   1446        error_report("spapr_hpte_set_c called with no hash table !");
   1447        return;
   1448    }
   1449
   1450    /* The HW performs a non-atomic byte update */
   1451    stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
   1452}
   1453
   1454static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
   1455                             uint64_t pte1)
   1456{
   1457    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
   1458    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
   1459
   1460    if (!spapr->htab) {
   1461        /* There should always be a hash table when this is called */
   1462        error_report("spapr_hpte_set_r called with no hash table !");
   1463        return;
   1464    }
   1465
   1466    /* The HW performs a non-atomic byte update */
   1467    stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
   1468}
   1469
   1470int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
   1471{
   1472    int shift;
   1473
   1474    /* We aim for a hash table of size 1/128 the size of RAM (rounded
   1475     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
   1476     * that's much more than is needed for Linux guests */
   1477    shift = ctz64(pow2ceil(ramsize)) - 7;
   1478    shift = MAX(shift, 18); /* Minimum architected size */
   1479    shift = MIN(shift, 46); /* Maximum architected size */
   1480    return shift;
   1481}
   1482
   1483void spapr_free_hpt(SpaprMachineState *spapr)
   1484{
   1485    g_free(spapr->htab);
   1486    spapr->htab = NULL;
   1487    spapr->htab_shift = 0;
   1488    close_htab_fd(spapr);
   1489}
   1490
   1491int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
   1492{
   1493    ERRP_GUARD();
   1494    long rc;
   1495
   1496    /* Clean up any HPT info from a previous boot */
   1497    spapr_free_hpt(spapr);
   1498
   1499    rc = kvmppc_reset_htab(shift);
   1500
   1501    if (rc == -EOPNOTSUPP) {
   1502        error_setg(errp, "HPT not supported in nested guests");
   1503        return -EOPNOTSUPP;
   1504    }
   1505
   1506    if (rc < 0) {
   1507        /* kernel-side HPT needed, but couldn't allocate one */
   1508        error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
   1509                         shift);
   1510        error_append_hint(errp, "Try smaller maxmem?\n");
   1511        return -errno;
   1512    } else if (rc > 0) {
   1513        /* kernel-side HPT allocated */
   1514        if (rc != shift) {
   1515            error_setg(errp,
   1516                       "Requested order %d HPT, but kernel allocated order %ld",
   1517                       shift, rc);
   1518            error_append_hint(errp, "Try smaller maxmem?\n");
   1519            return -ENOSPC;
   1520        }
   1521
   1522        spapr->htab_shift = shift;
   1523        spapr->htab = NULL;
   1524    } else {
   1525        /* kernel-side HPT not needed, allocate in userspace instead */
   1526        size_t size = 1ULL << shift;
   1527        int i;
   1528
   1529        spapr->htab = qemu_memalign(size, size);
   1530        memset(spapr->htab, 0, size);
   1531        spapr->htab_shift = shift;
   1532
   1533        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
   1534            DIRTY_HPTE(HPTE(spapr->htab, i));
   1535        }
   1536    }
   1537    /* We're setting up a hash table, so that means we're not radix */
   1538    spapr->patb_entry = 0;
   1539    spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
   1540    return 0;
   1541}
   1542
   1543void spapr_setup_hpt(SpaprMachineState *spapr)
   1544{
   1545    int hpt_shift;
   1546
   1547    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
   1548        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
   1549    } else {
   1550        uint64_t current_ram_size;
   1551
   1552        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
   1553        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
   1554    }
   1555    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
   1556
   1557    if (kvm_enabled()) {
   1558        hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
   1559
   1560        /* Check our RMA fits in the possible VRMA */
   1561        if (vrma_limit < spapr->rma_size) {
   1562            error_report("Unable to create %" HWADDR_PRIu
   1563                         "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
   1564                         spapr->rma_size / MiB, vrma_limit / MiB);
   1565            exit(EXIT_FAILURE);
   1566        }
   1567    }
   1568}
   1569
   1570void spapr_check_mmu_mode(bool guest_radix)
   1571{
   1572    if (guest_radix) {
   1573        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
   1574            error_report("Guest requested unavailable MMU mode (radix).");
   1575            exit(EXIT_FAILURE);
   1576        }
   1577    } else {
   1578        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
   1579            && !kvmppc_has_cap_mmu_hash_v3()) {
   1580            error_report("Guest requested unavailable MMU mode (hash).");
   1581            exit(EXIT_FAILURE);
   1582        }
   1583    }
   1584}
   1585
   1586static void spapr_machine_reset(MachineState *machine)
   1587{
   1588    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
   1589    PowerPCCPU *first_ppc_cpu;
   1590    hwaddr fdt_addr;
   1591    void *fdt;
   1592    int rc;
   1593
   1594    pef_kvm_reset(machine->cgs, &error_fatal);
   1595    spapr_caps_apply(spapr);
   1596
   1597    first_ppc_cpu = POWERPC_CPU(first_cpu);
   1598    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
   1599        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
   1600                              spapr->max_compat_pvr)) {
   1601        /*
   1602         * If using KVM with radix mode available, VCPUs can be started
   1603         * without a HPT because KVM will start them in radix mode.
   1604         * Set the GR bit in PATE so that we know there is no HPT.
   1605         */
   1606        spapr->patb_entry = PATE1_GR;
   1607        spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
   1608    } else {
   1609        spapr_setup_hpt(spapr);
   1610    }
   1611
   1612    qemu_devices_reset();
   1613
   1614    spapr_ovec_cleanup(spapr->ov5_cas);
   1615    spapr->ov5_cas = spapr_ovec_new();
   1616
   1617    ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
   1618
   1619    /*
   1620     * This is fixing some of the default configuration of the XIVE
   1621     * devices. To be called after the reset of the machine devices.
   1622     */
   1623    spapr_irq_reset(spapr, &error_fatal);
   1624
   1625    /*
   1626     * There is no CAS under qtest. Simulate one to please the code that
   1627     * depends on spapr->ov5_cas. This is especially needed to test device
   1628     * unplug, so we do that before resetting the DRCs.
   1629     */
   1630    if (qtest_enabled()) {
   1631        spapr_ovec_cleanup(spapr->ov5_cas);
   1632        spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
   1633    }
   1634
   1635    /* DRC reset may cause a device to be unplugged. This will cause troubles
   1636     * if this device is used by another device (eg, a running vhost backend
   1637     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
   1638     * situations, we reset DRCs after all devices have been reset.
   1639     */
   1640    spapr_drc_reset_all(spapr);
   1641
   1642    spapr_clear_pending_events(spapr);
   1643
   1644    /*
   1645     * We place the device tree just below either the top of the RMA,
   1646     * or just below 2GB, whichever is lower, so that it can be
   1647     * processed with 32-bit real mode code if necessary
   1648     */
   1649    fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
   1650
   1651    fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
   1652    if (spapr->vof) {
   1653        spapr_vof_reset(spapr, fdt, &error_fatal);
   1654        /*
   1655         * Do not pack the FDT as the client may change properties.
   1656         * VOF client does not expect the FDT so we do not load it to the VM.
   1657         */
   1658    } else {
   1659        rc = fdt_pack(fdt);
   1660        /* Should only fail if we've built a corrupted tree */
   1661        assert(rc == 0);
   1662
   1663        spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
   1664                                  0, fdt_addr, 0);
   1665        cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
   1666    }
   1667    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
   1668
   1669    g_free(spapr->fdt_blob);
   1670    spapr->fdt_size = fdt_totalsize(fdt);
   1671    spapr->fdt_initial_size = spapr->fdt_size;
   1672    spapr->fdt_blob = fdt;
   1673
   1674    /* Set up the entry state */
   1675    first_ppc_cpu->env.gpr[5] = 0;
   1676
   1677    spapr->fwnmi_system_reset_addr = -1;
   1678    spapr->fwnmi_machine_check_addr = -1;
   1679    spapr->fwnmi_machine_check_interlock = -1;
   1680
   1681    /* Signal all vCPUs waiting on this condition */
   1682    qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
   1683
   1684    migrate_del_blocker(spapr->fwnmi_migration_blocker);
   1685}
   1686
   1687static void spapr_create_nvram(SpaprMachineState *spapr)
   1688{
   1689    DeviceState *dev = qdev_new("spapr-nvram");
   1690    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
   1691
   1692    if (dinfo) {
   1693        qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
   1694                                &error_fatal);
   1695    }
   1696
   1697    qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
   1698
   1699    spapr->nvram = (struct SpaprNvram *)dev;
   1700}
   1701
   1702static void spapr_rtc_create(SpaprMachineState *spapr)
   1703{
   1704    object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
   1705                                       sizeof(spapr->rtc), TYPE_SPAPR_RTC,
   1706                                       &error_fatal, NULL);
   1707    qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
   1708    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
   1709                              "date");
   1710}
   1711
   1712/* Returns whether we want to use VGA or not */
   1713static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
   1714{
   1715    switch (vga_interface_type) {
   1716    case VGA_NONE:
   1717        return false;
   1718    case VGA_DEVICE:
   1719        return true;
   1720    case VGA_STD:
   1721    case VGA_VIRTIO:
   1722    case VGA_CIRRUS:
   1723        return pci_vga_init(pci_bus) != NULL;
   1724    default:
   1725        error_setg(errp,
   1726                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
   1727        return false;
   1728    }
   1729}
   1730
   1731static int spapr_pre_load(void *opaque)
   1732{
   1733    int rc;
   1734
   1735    rc = spapr_caps_pre_load(opaque);
   1736    if (rc) {
   1737        return rc;
   1738    }
   1739
   1740    return 0;
   1741}
   1742
   1743static int spapr_post_load(void *opaque, int version_id)
   1744{
   1745    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
   1746    int err = 0;
   1747
   1748    err = spapr_caps_post_migration(spapr);
   1749    if (err) {
   1750        return err;
   1751    }
   1752
   1753    /*
   1754     * In earlier versions, there was no separate qdev for the PAPR
   1755     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
   1756     * So when migrating from those versions, poke the incoming offset
   1757     * value into the RTC device
   1758     */
   1759    if (version_id < 3) {
   1760        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
   1761        if (err) {
   1762            return err;
   1763        }
   1764    }
   1765
   1766    if (kvm_enabled() && spapr->patb_entry) {
   1767        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
   1768        bool radix = !!(spapr->patb_entry & PATE1_GR);
   1769        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
   1770
   1771        /*
   1772         * Update LPCR:HR and UPRT as they may not be set properly in
   1773         * the stream
   1774         */
   1775        spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
   1776                            LPCR_HR | LPCR_UPRT);
   1777
   1778        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
   1779        if (err) {
   1780            error_report("Process table config unsupported by the host");
   1781            return -EINVAL;
   1782        }
   1783    }
   1784
   1785    err = spapr_irq_post_load(spapr, version_id);
   1786    if (err) {
   1787        return err;
   1788    }
   1789
   1790    return err;
   1791}
   1792
   1793static int spapr_pre_save(void *opaque)
   1794{
   1795    int rc;
   1796
   1797    rc = spapr_caps_pre_save(opaque);
   1798    if (rc) {
   1799        return rc;
   1800    }
   1801
   1802    return 0;
   1803}
   1804
   1805static bool version_before_3(void *opaque, int version_id)
   1806{
   1807    return version_id < 3;
   1808}
   1809
   1810static bool spapr_pending_events_needed(void *opaque)
   1811{
   1812    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
   1813    return !QTAILQ_EMPTY(&spapr->pending_events);
   1814}
   1815
   1816static const VMStateDescription vmstate_spapr_event_entry = {
   1817    .name = "spapr_event_log_entry",
   1818    .version_id = 1,
   1819    .minimum_version_id = 1,
   1820    .fields = (VMStateField[]) {
   1821        VMSTATE_UINT32(summary, SpaprEventLogEntry),
   1822        VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
   1823        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
   1824                                     NULL, extended_length),
   1825        VMSTATE_END_OF_LIST()
   1826    },
   1827};
   1828
   1829static const VMStateDescription vmstate_spapr_pending_events = {
   1830    .name = "spapr_pending_events",
   1831    .version_id = 1,
   1832    .minimum_version_id = 1,
   1833    .needed = spapr_pending_events_needed,
   1834    .fields = (VMStateField[]) {
   1835        VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
   1836                         vmstate_spapr_event_entry, SpaprEventLogEntry, next),
   1837        VMSTATE_END_OF_LIST()
   1838    },
   1839};
   1840
   1841static bool spapr_ov5_cas_needed(void *opaque)
   1842{
   1843    SpaprMachineState *spapr = opaque;
   1844    SpaprOptionVector *ov5_mask = spapr_ovec_new();
   1845    bool cas_needed;
   1846
   1847    /* Prior to the introduction of SpaprOptionVector, we had two option
   1848     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
   1849     * Both of these options encode machine topology into the device-tree
   1850     * in such a way that the now-booted OS should still be able to interact
   1851     * appropriately with QEMU regardless of what options were actually
   1852     * negotiatied on the source side.
   1853     *
   1854     * As such, we can avoid migrating the CAS-negotiated options if these
   1855     * are the only options available on the current machine/platform.
   1856     * Since these are the only options available for pseries-2.7 and
   1857     * earlier, this allows us to maintain old->new/new->old migration
   1858     * compatibility.
   1859     *
   1860     * For QEMU 2.8+, there are additional CAS-negotiatable options available
   1861     * via default pseries-2.8 machines and explicit command-line parameters.
   1862     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
   1863     * of the actual CAS-negotiated values to continue working properly. For
   1864     * example, availability of memory unplug depends on knowing whether
   1865     * OV5_HP_EVT was negotiated via CAS.
   1866     *
   1867     * Thus, for any cases where the set of available CAS-negotiatable
   1868     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
   1869     * include the CAS-negotiated options in the migration stream, unless
   1870     * if they affect boot time behaviour only.
   1871     */
   1872    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
   1873    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
   1874    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
   1875
   1876    /* We need extra information if we have any bits outside the mask
   1877     * defined above */
   1878    cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
   1879
   1880    spapr_ovec_cleanup(ov5_mask);
   1881
   1882    return cas_needed;
   1883}
   1884
   1885static const VMStateDescription vmstate_spapr_ov5_cas = {
   1886    .name = "spapr_option_vector_ov5_cas",
   1887    .version_id = 1,
   1888    .minimum_version_id = 1,
   1889    .needed = spapr_ov5_cas_needed,
   1890    .fields = (VMStateField[]) {
   1891        VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
   1892                                 vmstate_spapr_ovec, SpaprOptionVector),
   1893        VMSTATE_END_OF_LIST()
   1894    },
   1895};
   1896
   1897static bool spapr_patb_entry_needed(void *opaque)
   1898{
   1899    SpaprMachineState *spapr = opaque;
   1900
   1901    return !!spapr->patb_entry;
   1902}
   1903
   1904static const VMStateDescription vmstate_spapr_patb_entry = {
   1905    .name = "spapr_patb_entry",
   1906    .version_id = 1,
   1907    .minimum_version_id = 1,
   1908    .needed = spapr_patb_entry_needed,
   1909    .fields = (VMStateField[]) {
   1910        VMSTATE_UINT64(patb_entry, SpaprMachineState),
   1911        VMSTATE_END_OF_LIST()
   1912    },
   1913};
   1914
   1915static bool spapr_irq_map_needed(void *opaque)
   1916{
   1917    SpaprMachineState *spapr = opaque;
   1918
   1919    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
   1920}
   1921
   1922static const VMStateDescription vmstate_spapr_irq_map = {
   1923    .name = "spapr_irq_map",
   1924    .version_id = 1,
   1925    .minimum_version_id = 1,
   1926    .needed = spapr_irq_map_needed,
   1927    .fields = (VMStateField[]) {
   1928        VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
   1929        VMSTATE_END_OF_LIST()
   1930    },
   1931};
   1932
   1933static bool spapr_dtb_needed(void *opaque)
   1934{
   1935    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
   1936
   1937    return smc->update_dt_enabled;
   1938}
   1939
   1940static int spapr_dtb_pre_load(void *opaque)
   1941{
   1942    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
   1943
   1944    g_free(spapr->fdt_blob);
   1945    spapr->fdt_blob = NULL;
   1946    spapr->fdt_size = 0;
   1947
   1948    return 0;
   1949}
   1950
   1951static const VMStateDescription vmstate_spapr_dtb = {
   1952    .name = "spapr_dtb",
   1953    .version_id = 1,
   1954    .minimum_version_id = 1,
   1955    .needed = spapr_dtb_needed,
   1956    .pre_load = spapr_dtb_pre_load,
   1957    .fields = (VMStateField[]) {
   1958        VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
   1959        VMSTATE_UINT32(fdt_size, SpaprMachineState),
   1960        VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
   1961                                     fdt_size),
   1962        VMSTATE_END_OF_LIST()
   1963    },
   1964};
   1965
   1966static bool spapr_fwnmi_needed(void *opaque)
   1967{
   1968    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
   1969
   1970    return spapr->fwnmi_machine_check_addr != -1;
   1971}
   1972
   1973static int spapr_fwnmi_pre_save(void *opaque)
   1974{
   1975    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
   1976
   1977    /*
   1978     * Check if machine check handling is in progress and print a
   1979     * warning message.
   1980     */
   1981    if (spapr->fwnmi_machine_check_interlock != -1) {
   1982        warn_report("A machine check is being handled during migration. The"
   1983                "handler may run and log hardware error on the destination");
   1984    }
   1985
   1986    return 0;
   1987}
   1988
   1989static const VMStateDescription vmstate_spapr_fwnmi = {
   1990    .name = "spapr_fwnmi",
   1991    .version_id = 1,
   1992    .minimum_version_id = 1,
   1993    .needed = spapr_fwnmi_needed,
   1994    .pre_save = spapr_fwnmi_pre_save,
   1995    .fields = (VMStateField[]) {
   1996        VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
   1997        VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
   1998        VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
   1999        VMSTATE_END_OF_LIST()
   2000    },
   2001};
   2002
   2003static const VMStateDescription vmstate_spapr = {
   2004    .name = "spapr",
   2005    .version_id = 3,
   2006    .minimum_version_id = 1,
   2007    .pre_load = spapr_pre_load,
   2008    .post_load = spapr_post_load,
   2009    .pre_save = spapr_pre_save,
   2010    .fields = (VMStateField[]) {
   2011        /* used to be @next_irq */
   2012        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
   2013
   2014        /* RTC offset */
   2015        VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
   2016
   2017        VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
   2018        VMSTATE_END_OF_LIST()
   2019    },
   2020    .subsections = (const VMStateDescription*[]) {
   2021        &vmstate_spapr_ov5_cas,
   2022        &vmstate_spapr_patb_entry,
   2023        &vmstate_spapr_pending_events,
   2024        &vmstate_spapr_cap_htm,
   2025        &vmstate_spapr_cap_vsx,
   2026        &vmstate_spapr_cap_dfp,
   2027        &vmstate_spapr_cap_cfpc,
   2028        &vmstate_spapr_cap_sbbc,
   2029        &vmstate_spapr_cap_ibs,
   2030        &vmstate_spapr_cap_hpt_maxpagesize,
   2031        &vmstate_spapr_irq_map,
   2032        &vmstate_spapr_cap_nested_kvm_hv,
   2033        &vmstate_spapr_dtb,
   2034        &vmstate_spapr_cap_large_decr,
   2035        &vmstate_spapr_cap_ccf_assist,
   2036        &vmstate_spapr_cap_fwnmi,
   2037        &vmstate_spapr_fwnmi,
   2038        &vmstate_spapr_cap_rpt_invalidate,
   2039        NULL
   2040    }
   2041};
   2042
   2043static int htab_save_setup(QEMUFile *f, void *opaque)
   2044{
   2045    SpaprMachineState *spapr = opaque;
   2046
   2047    /* "Iteration" header */
   2048    if (!spapr->htab_shift) {
   2049        qemu_put_be32(f, -1);
   2050    } else {
   2051        qemu_put_be32(f, spapr->htab_shift);
   2052    }
   2053
   2054    if (spapr->htab) {
   2055        spapr->htab_save_index = 0;
   2056        spapr->htab_first_pass = true;
   2057    } else {
   2058        if (spapr->htab_shift) {
   2059            assert(kvm_enabled());
   2060        }
   2061    }
   2062
   2063
   2064    return 0;
   2065}
   2066
   2067static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
   2068                            int chunkstart, int n_valid, int n_invalid)
   2069{
   2070    qemu_put_be32(f, chunkstart);
   2071    qemu_put_be16(f, n_valid);
   2072    qemu_put_be16(f, n_invalid);
   2073    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
   2074                    HASH_PTE_SIZE_64 * n_valid);
   2075}
   2076
   2077static void htab_save_end_marker(QEMUFile *f)
   2078{
   2079    qemu_put_be32(f, 0);
   2080    qemu_put_be16(f, 0);
   2081    qemu_put_be16(f, 0);
   2082}
   2083
   2084static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
   2085                                 int64_t max_ns)
   2086{
   2087    bool has_timeout = max_ns != -1;
   2088    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
   2089    int index = spapr->htab_save_index;
   2090    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
   2091
   2092    assert(spapr->htab_first_pass);
   2093
   2094    do {
   2095        int chunkstart;
   2096
   2097        /* Consume invalid HPTEs */
   2098        while ((index < htabslots)
   2099               && !HPTE_VALID(HPTE(spapr->htab, index))) {
   2100            CLEAN_HPTE(HPTE(spapr->htab, index));
   2101            index++;
   2102        }
   2103
   2104        /* Consume valid HPTEs */
   2105        chunkstart = index;
   2106        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
   2107               && HPTE_VALID(HPTE(spapr->htab, index))) {
   2108            CLEAN_HPTE(HPTE(spapr->htab, index));
   2109            index++;
   2110        }
   2111
   2112        if (index > chunkstart) {
   2113            int n_valid = index - chunkstart;
   2114
   2115            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
   2116
   2117            if (has_timeout &&
   2118                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
   2119                break;
   2120            }
   2121        }
   2122    } while ((index < htabslots) && !qemu_file_rate_limit(f));
   2123
   2124    if (index >= htabslots) {
   2125        assert(index == htabslots);
   2126        index = 0;
   2127        spapr->htab_first_pass = false;
   2128    }
   2129    spapr->htab_save_index = index;
   2130}
   2131
   2132static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
   2133                                int64_t max_ns)
   2134{
   2135    bool final = max_ns < 0;
   2136    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
   2137    int examined = 0, sent = 0;
   2138    int index = spapr->htab_save_index;
   2139    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
   2140
   2141    assert(!spapr->htab_first_pass);
   2142
   2143    do {
   2144        int chunkstart, invalidstart;
   2145
   2146        /* Consume non-dirty HPTEs */
   2147        while ((index < htabslots)
   2148               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
   2149            index++;
   2150            examined++;
   2151        }
   2152
   2153        chunkstart = index;
   2154        /* Consume valid dirty HPTEs */
   2155        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
   2156               && HPTE_DIRTY(HPTE(spapr->htab, index))
   2157               && HPTE_VALID(HPTE(spapr->htab, index))) {
   2158            CLEAN_HPTE(HPTE(spapr->htab, index));
   2159            index++;
   2160            examined++;
   2161        }
   2162
   2163        invalidstart = index;
   2164        /* Consume invalid dirty HPTEs */
   2165        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
   2166               && HPTE_DIRTY(HPTE(spapr->htab, index))
   2167               && !HPTE_VALID(HPTE(spapr->htab, index))) {
   2168            CLEAN_HPTE(HPTE(spapr->htab, index));
   2169            index++;
   2170            examined++;
   2171        }
   2172
   2173        if (index > chunkstart) {
   2174            int n_valid = invalidstart - chunkstart;
   2175            int n_invalid = index - invalidstart;
   2176
   2177            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
   2178            sent += index - chunkstart;
   2179
   2180            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
   2181                break;
   2182            }
   2183        }
   2184
   2185        if (examined >= htabslots) {
   2186            break;
   2187        }
   2188
   2189        if (index >= htabslots) {
   2190            assert(index == htabslots);
   2191            index = 0;
   2192        }
   2193    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
   2194
   2195    if (index >= htabslots) {
   2196        assert(index == htabslots);
   2197        index = 0;
   2198    }
   2199
   2200    spapr->htab_save_index = index;
   2201
   2202    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
   2203}
   2204
   2205#define MAX_ITERATION_NS    5000000 /* 5 ms */
   2206#define MAX_KVM_BUF_SIZE    2048
   2207
   2208static int htab_save_iterate(QEMUFile *f, void *opaque)
   2209{
   2210    SpaprMachineState *spapr = opaque;
   2211    int fd;
   2212    int rc = 0;
   2213
   2214    /* Iteration header */
   2215    if (!spapr->htab_shift) {
   2216        qemu_put_be32(f, -1);
   2217        return 1;
   2218    } else {
   2219        qemu_put_be32(f, 0);
   2220    }
   2221
   2222    if (!spapr->htab) {
   2223        assert(kvm_enabled());
   2224
   2225        fd = get_htab_fd(spapr);
   2226        if (fd < 0) {
   2227            return fd;
   2228        }
   2229
   2230        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
   2231        if (rc < 0) {
   2232            return rc;
   2233        }
   2234    } else  if (spapr->htab_first_pass) {
   2235        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
   2236    } else {
   2237        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
   2238    }
   2239
   2240    htab_save_end_marker(f);
   2241
   2242    return rc;
   2243}
   2244
   2245static int htab_save_complete(QEMUFile *f, void *opaque)
   2246{
   2247    SpaprMachineState *spapr = opaque;
   2248    int fd;
   2249
   2250    /* Iteration header */
   2251    if (!spapr->htab_shift) {
   2252        qemu_put_be32(f, -1);
   2253        return 0;
   2254    } else {
   2255        qemu_put_be32(f, 0);
   2256    }
   2257
   2258    if (!spapr->htab) {
   2259        int rc;
   2260
   2261        assert(kvm_enabled());
   2262
   2263        fd = get_htab_fd(spapr);
   2264        if (fd < 0) {
   2265            return fd;
   2266        }
   2267
   2268        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
   2269        if (rc < 0) {
   2270            return rc;
   2271        }
   2272    } else {
   2273        if (spapr->htab_first_pass) {
   2274            htab_save_first_pass(f, spapr, -1);
   2275        }
   2276        htab_save_later_pass(f, spapr, -1);
   2277    }
   2278
   2279    /* End marker */
   2280    htab_save_end_marker(f);
   2281
   2282    return 0;
   2283}
   2284
   2285static int htab_load(QEMUFile *f, void *opaque, int version_id)
   2286{
   2287    SpaprMachineState *spapr = opaque;
   2288    uint32_t section_hdr;
   2289    int fd = -1;
   2290    Error *local_err = NULL;
   2291
   2292    if (version_id < 1 || version_id > 1) {
   2293        error_report("htab_load() bad version");
   2294        return -EINVAL;
   2295    }
   2296
   2297    section_hdr = qemu_get_be32(f);
   2298
   2299    if (section_hdr == -1) {
   2300        spapr_free_hpt(spapr);
   2301        return 0;
   2302    }
   2303
   2304    if (section_hdr) {
   2305        int ret;
   2306
   2307        /* First section gives the htab size */
   2308        ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
   2309        if (ret < 0) {
   2310            error_report_err(local_err);
   2311            return ret;
   2312        }
   2313        return 0;
   2314    }
   2315
   2316    if (!spapr->htab) {
   2317        assert(kvm_enabled());
   2318
   2319        fd = kvmppc_get_htab_fd(true, 0, &local_err);
   2320        if (fd < 0) {
   2321            error_report_err(local_err);
   2322            return fd;
   2323        }
   2324    }
   2325
   2326    while (true) {
   2327        uint32_t index;
   2328        uint16_t n_valid, n_invalid;
   2329
   2330        index = qemu_get_be32(f);
   2331        n_valid = qemu_get_be16(f);
   2332        n_invalid = qemu_get_be16(f);
   2333
   2334        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
   2335            /* End of Stream */
   2336            break;
   2337        }
   2338
   2339        if ((index + n_valid + n_invalid) >
   2340            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
   2341            /* Bad index in stream */
   2342            error_report(
   2343                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
   2344                index, n_valid, n_invalid, spapr->htab_shift);
   2345            return -EINVAL;
   2346        }
   2347
   2348        if (spapr->htab) {
   2349            if (n_valid) {
   2350                qemu_get_buffer(f, HPTE(spapr->htab, index),
   2351                                HASH_PTE_SIZE_64 * n_valid);
   2352            }
   2353            if (n_invalid) {
   2354                memset(HPTE(spapr->htab, index + n_valid), 0,
   2355                       HASH_PTE_SIZE_64 * n_invalid);
   2356            }
   2357        } else {
   2358            int rc;
   2359
   2360            assert(fd >= 0);
   2361
   2362            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
   2363                                        &local_err);
   2364            if (rc < 0) {
   2365                error_report_err(local_err);
   2366                return rc;
   2367            }
   2368        }
   2369    }
   2370
   2371    if (!spapr->htab) {
   2372        assert(fd >= 0);
   2373        close(fd);
   2374    }
   2375
   2376    return 0;
   2377}
   2378
   2379static void htab_save_cleanup(void *opaque)
   2380{
   2381    SpaprMachineState *spapr = opaque;
   2382
   2383    close_htab_fd(spapr);
   2384}
   2385
   2386static SaveVMHandlers savevm_htab_handlers = {
   2387    .save_setup = htab_save_setup,
   2388    .save_live_iterate = htab_save_iterate,
   2389    .save_live_complete_precopy = htab_save_complete,
   2390    .save_cleanup = htab_save_cleanup,
   2391    .load_state = htab_load,
   2392};
   2393
   2394static void spapr_boot_set(void *opaque, const char *boot_device,
   2395                           Error **errp)
   2396{
   2397    SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
   2398
   2399    g_free(spapr->boot_device);
   2400    spapr->boot_device = g_strdup(boot_device);
   2401}
   2402
   2403static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
   2404{
   2405    MachineState *machine = MACHINE(spapr);
   2406    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
   2407    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
   2408    int i;
   2409
   2410    for (i = 0; i < nr_lmbs; i++) {
   2411        uint64_t addr;
   2412
   2413        addr = i * lmb_size + machine->device_memory->base;
   2414        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
   2415                               addr / lmb_size);
   2416    }
   2417}
   2418
   2419/*
   2420 * If RAM size, maxmem size and individual node mem sizes aren't aligned
   2421 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
   2422 * since we can't support such unaligned sizes with DRCONF_MEMORY.
   2423 */
   2424static void spapr_validate_node_memory(MachineState *machine, Error **errp)
   2425{
   2426    int i;
   2427
   2428    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
   2429        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
   2430                   " is not aligned to %" PRIu64 " MiB",
   2431                   machine->ram_size,
   2432                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
   2433        return;
   2434    }
   2435
   2436    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
   2437        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
   2438                   " is not aligned to %" PRIu64 " MiB",
   2439                   machine->ram_size,
   2440                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
   2441        return;
   2442    }
   2443
   2444    for (i = 0; i < machine->numa_state->num_nodes; i++) {
   2445        if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
   2446            error_setg(errp,
   2447                       "Node %d memory size 0x%" PRIx64
   2448                       " is not aligned to %" PRIu64 " MiB",
   2449                       i, machine->numa_state->nodes[i].node_mem,
   2450                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
   2451            return;
   2452        }
   2453    }
   2454}
   2455
   2456/* find cpu slot in machine->possible_cpus by core_id */
   2457static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
   2458{
   2459    int index = id / ms->smp.threads;
   2460
   2461    if (index >= ms->possible_cpus->len) {
   2462        return NULL;
   2463    }
   2464    if (idx) {
   2465        *idx = index;
   2466    }
   2467    return &ms->possible_cpus->cpus[index];
   2468}
   2469
   2470static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
   2471{
   2472    MachineState *ms = MACHINE(spapr);
   2473    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
   2474    Error *local_err = NULL;
   2475    bool vsmt_user = !!spapr->vsmt;
   2476    int kvm_smt = kvmppc_smt_threads();
   2477    int ret;
   2478    unsigned int smp_threads = ms->smp.threads;
   2479
   2480    if (!kvm_enabled() && (smp_threads > 1)) {
   2481        error_setg(errp, "TCG cannot support more than 1 thread/core "
   2482                   "on a pseries machine");
   2483        return;
   2484    }
   2485    if (!is_power_of_2(smp_threads)) {
   2486        error_setg(errp, "Cannot support %d threads/core on a pseries "
   2487                   "machine because it must be a power of 2", smp_threads);
   2488        return;
   2489    }
   2490
   2491    /* Detemine the VSMT mode to use: */
   2492    if (vsmt_user) {
   2493        if (spapr->vsmt < smp_threads) {
   2494            error_setg(errp, "Cannot support VSMT mode %d"
   2495                       " because it must be >= threads/core (%d)",
   2496                       spapr->vsmt, smp_threads);
   2497            return;
   2498        }
   2499        /* In this case, spapr->vsmt has been set by the command line */
   2500    } else if (!smc->smp_threads_vsmt) {
   2501        /*
   2502         * Default VSMT value is tricky, because we need it to be as
   2503         * consistent as possible (for migration), but this requires
   2504         * changing it for at least some existing cases.  We pick 8 as
   2505         * the value that we'd get with KVM on POWER8, the
   2506         * overwhelmingly common case in production systems.
   2507         */
   2508        spapr->vsmt = MAX(8, smp_threads);
   2509    } else {
   2510        spapr->vsmt = smp_threads;
   2511    }
   2512
   2513    /* KVM: If necessary, set the SMT mode: */
   2514    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
   2515        ret = kvmppc_set_smt_threads(spapr->vsmt);
   2516        if (ret) {
   2517            /* Looks like KVM isn't able to change VSMT mode */
   2518            error_setg(&local_err,
   2519                       "Failed to set KVM's VSMT mode to %d (errno %d)",
   2520                       spapr->vsmt, ret);
   2521            /* We can live with that if the default one is big enough
   2522             * for the number of threads, and a submultiple of the one
   2523             * we want.  In this case we'll waste some vcpu ids, but
   2524             * behaviour will be correct */
   2525            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
   2526                warn_report_err(local_err);
   2527            } else {
   2528                if (!vsmt_user) {
   2529                    error_append_hint(&local_err,
   2530                                      "On PPC, a VM with %d threads/core"
   2531                                      " on a host with %d threads/core"
   2532                                      " requires the use of VSMT mode %d.\n",
   2533                                      smp_threads, kvm_smt, spapr->vsmt);
   2534                }
   2535                kvmppc_error_append_smt_possible_hint(&local_err);
   2536                error_propagate(errp, local_err);
   2537            }
   2538        }
   2539    }
   2540    /* else TCG: nothing to do currently */
   2541}
   2542
   2543static void spapr_init_cpus(SpaprMachineState *spapr)
   2544{
   2545    MachineState *machine = MACHINE(spapr);
   2546    MachineClass *mc = MACHINE_GET_CLASS(machine);
   2547    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
   2548    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
   2549    const CPUArchIdList *possible_cpus;
   2550    unsigned int smp_cpus = machine->smp.cpus;
   2551    unsigned int smp_threads = machine->smp.threads;
   2552    unsigned int max_cpus = machine->smp.max_cpus;
   2553    int boot_cores_nr = smp_cpus / smp_threads;
   2554    int i;
   2555
   2556    possible_cpus = mc->possible_cpu_arch_ids(machine);
   2557    if (mc->has_hotpluggable_cpus) {
   2558        if (smp_cpus % smp_threads) {
   2559            error_report("smp_cpus (%u) must be multiple of threads (%u)",
   2560                         smp_cpus, smp_threads);
   2561            exit(1);
   2562        }
   2563        if (max_cpus % smp_threads) {
   2564            error_report("max_cpus (%u) must be multiple of threads (%u)",
   2565                         max_cpus, smp_threads);
   2566            exit(1);
   2567        }
   2568    } else {
   2569        if (max_cpus != smp_cpus) {
   2570            error_report("This machine version does not support CPU hotplug");
   2571            exit(1);
   2572        }
   2573        boot_cores_nr = possible_cpus->len;
   2574    }
   2575
   2576    if (smc->pre_2_10_has_unused_icps) {
   2577        int i;
   2578
   2579        for (i = 0; i < spapr_max_server_number(spapr); i++) {
   2580            /* Dummy entries get deregistered when real ICPState objects
   2581             * are registered during CPU core hotplug.
   2582             */
   2583            pre_2_10_vmstate_register_dummy_icp(i);
   2584        }
   2585    }
   2586
   2587    for (i = 0; i < possible_cpus->len; i++) {
   2588        int core_id = i * smp_threads;
   2589
   2590        if (mc->has_hotpluggable_cpus) {
   2591            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
   2592                                   spapr_vcpu_id(spapr, core_id));
   2593        }
   2594
   2595        if (i < boot_cores_nr) {
   2596            Object *core  = object_new(type);
   2597            int nr_threads = smp_threads;
   2598
   2599            /* Handle the partially filled core for older machine types */
   2600            if ((i + 1) * smp_threads >= smp_cpus) {
   2601                nr_threads = smp_cpus - i * smp_threads;
   2602            }
   2603
   2604            object_property_set_int(core, "nr-threads", nr_threads,
   2605                                    &error_fatal);
   2606            object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
   2607                                    &error_fatal);
   2608            qdev_realize(DEVICE(core), NULL, &error_fatal);
   2609
   2610            object_unref(core);
   2611        }
   2612    }
   2613}
   2614
   2615static PCIHostState *spapr_create_default_phb(void)
   2616{
   2617    DeviceState *dev;
   2618
   2619    dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
   2620    qdev_prop_set_uint32(dev, "index", 0);
   2621    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
   2622
   2623    return PCI_HOST_BRIDGE(dev);
   2624}
   2625
   2626static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
   2627{
   2628    MachineState *machine = MACHINE(spapr);
   2629    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
   2630    hwaddr rma_size = machine->ram_size;
   2631    hwaddr node0_size = spapr_node0_size(machine);
   2632
   2633    /* RMA has to fit in the first NUMA node */
   2634    rma_size = MIN(rma_size, node0_size);
   2635
   2636    /*
   2637     * VRMA access is via a special 1TiB SLB mapping, so the RMA can
   2638     * never exceed that
   2639     */
   2640    rma_size = MIN(rma_size, 1 * TiB);
   2641
   2642    /*
   2643     * Clamp the RMA size based on machine type.  This is for
   2644     * migration compatibility with older qemu versions, which limited
   2645     * the RMA size for complicated and mostly bad reasons.
   2646     */
   2647    if (smc->rma_limit) {
   2648        rma_size = MIN(rma_size, smc->rma_limit);
   2649    }
   2650
   2651    if (rma_size < MIN_RMA_SLOF) {
   2652        error_setg(errp,
   2653                   "pSeries SLOF firmware requires >= %" HWADDR_PRIx
   2654                   "ldMiB guest RMA (Real Mode Area memory)",
   2655                   MIN_RMA_SLOF / MiB);
   2656        return 0;
   2657    }
   2658
   2659    return rma_size;
   2660}
   2661
   2662static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
   2663{
   2664    MachineState *machine = MACHINE(spapr);
   2665    int i;
   2666
   2667    for (i = 0; i < machine->ram_slots; i++) {
   2668        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
   2669    }
   2670}
   2671
   2672/* pSeries LPAR / sPAPR hardware init */
   2673static void spapr_machine_init(MachineState *machine)
   2674{
   2675    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
   2676    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
   2677    MachineClass *mc = MACHINE_GET_CLASS(machine);
   2678    const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
   2679    const char *bios_name = machine->firmware ?: bios_default;
   2680    const char *kernel_filename = machine->kernel_filename;
   2681    const char *initrd_filename = machine->initrd_filename;
   2682    PCIHostState *phb;
   2683    int i;
   2684    MemoryRegion *sysmem = get_system_memory();
   2685    long load_limit, fw_size;
   2686    char *filename;
   2687    Error *resize_hpt_err = NULL;
   2688
   2689    /*
   2690     * if Secure VM (PEF) support is configured, then initialize it
   2691     */
   2692    pef_kvm_init(machine->cgs, &error_fatal);
   2693
   2694    msi_nonbroken = true;
   2695
   2696    QLIST_INIT(&spapr->phbs);
   2697    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
   2698
   2699    /* Determine capabilities to run with */
   2700    spapr_caps_init(spapr);
   2701
   2702    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
   2703    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
   2704        /*
   2705         * If the user explicitly requested a mode we should either
   2706         * supply it, or fail completely (which we do below).  But if
   2707         * it's not set explicitly, we reset our mode to something
   2708         * that works
   2709         */
   2710        if (resize_hpt_err) {
   2711            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
   2712            error_free(resize_hpt_err);
   2713            resize_hpt_err = NULL;
   2714        } else {
   2715            spapr->resize_hpt = smc->resize_hpt_default;
   2716        }
   2717    }
   2718
   2719    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
   2720
   2721    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
   2722        /*
   2723         * User requested HPT resize, but this host can't supply it.  Bail out
   2724         */
   2725        error_report_err(resize_hpt_err);
   2726        exit(1);
   2727    }
   2728    error_free(resize_hpt_err);
   2729
   2730    spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
   2731
   2732    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
   2733    load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
   2734
   2735    /*
   2736     * VSMT must be set in order to be able to compute VCPU ids, ie to
   2737     * call spapr_max_server_number() or spapr_vcpu_id().
   2738     */
   2739    spapr_set_vsmt_mode(spapr, &error_fatal);
   2740
   2741    /* Set up Interrupt Controller before we create the VCPUs */
   2742    spapr_irq_init(spapr, &error_fatal);
   2743
   2744    /* Set up containers for ibm,client-architecture-support negotiated options
   2745     */
   2746    spapr->ov5 = spapr_ovec_new();
   2747    spapr->ov5_cas = spapr_ovec_new();
   2748
   2749    if (smc->dr_lmb_enabled) {
   2750        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
   2751        spapr_validate_node_memory(machine, &error_fatal);
   2752    }
   2753
   2754    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
   2755
   2756    /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
   2757    if (!smc->pre_6_2_numa_affinity) {
   2758        spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
   2759    }
   2760
   2761    /* advertise support for dedicated HP event source to guests */
   2762    if (spapr->use_hotplug_event_source) {
   2763        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
   2764    }
   2765
   2766    /* advertise support for HPT resizing */
   2767    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
   2768        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
   2769    }
   2770
   2771    /* advertise support for ibm,dyamic-memory-v2 */
   2772    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
   2773
   2774    /* advertise XIVE on POWER9 machines */
   2775    if (spapr->irq->xive) {
   2776        spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
   2777    }
   2778
   2779    /* init CPUs */
   2780    spapr_init_cpus(spapr);
   2781
   2782    spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
   2783
   2784    /* Init numa_assoc_array */
   2785    spapr_numa_associativity_init(spapr, machine);
   2786
   2787    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
   2788        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
   2789                              spapr->max_compat_pvr)) {
   2790        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
   2791        /* KVM and TCG always allow GTSE with radix... */
   2792        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
   2793    }
   2794    /* ... but not with hash (currently). */
   2795
   2796    if (kvm_enabled()) {
   2797        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
   2798        kvmppc_enable_logical_ci_hcalls();
   2799        kvmppc_enable_set_mode_hcall();
   2800
   2801        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
   2802        kvmppc_enable_clear_ref_mod_hcalls();
   2803
   2804        /* Enable H_PAGE_INIT */
   2805        kvmppc_enable_h_page_init();
   2806    }
   2807
   2808    /* map RAM */
   2809    memory_region_add_subregion(sysmem, 0, machine->ram);
   2810
   2811    /* always allocate the device memory information */
   2812    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
   2813
   2814    /* initialize hotplug memory address space */
   2815    if (machine->ram_size < machine->maxram_size) {
   2816        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
   2817        /*
   2818         * Limit the number of hotpluggable memory slots to half the number
   2819         * slots that KVM supports, leaving the other half for PCI and other
   2820         * devices. However ensure that number of slots doesn't drop below 32.
   2821         */
   2822        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
   2823                           SPAPR_MAX_RAM_SLOTS;
   2824
   2825        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
   2826            max_memslots = SPAPR_MAX_RAM_SLOTS;
   2827        }
   2828        if (machine->ram_slots > max_memslots) {
   2829            error_report("Specified number of memory slots %"
   2830                         PRIu64" exceeds max supported %d",
   2831                         machine->ram_slots, max_memslots);
   2832            exit(1);
   2833        }
   2834
   2835        machine->device_memory->base = ROUND_UP(machine->ram_size,
   2836                                                SPAPR_DEVICE_MEM_ALIGN);
   2837        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
   2838                           "device-memory", device_mem_size);
   2839        memory_region_add_subregion(sysmem, machine->device_memory->base,
   2840                                    &machine->device_memory->mr);
   2841    }
   2842
   2843    if (smc->dr_lmb_enabled) {
   2844        spapr_create_lmb_dr_connectors(spapr);
   2845    }
   2846
   2847    if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
   2848        /* Create the error string for live migration blocker */
   2849        error_setg(&spapr->fwnmi_migration_blocker,
   2850            "A machine check is being handled during migration. The handler"
   2851            "may run and log hardware error on the destination");
   2852    }
   2853
   2854    if (mc->nvdimm_supported) {
   2855        spapr_create_nvdimm_dr_connectors(spapr);
   2856    }
   2857
   2858    /* Set up RTAS event infrastructure */
   2859    spapr_events_init(spapr);
   2860
   2861    /* Set up the RTC RTAS interfaces */
   2862    spapr_rtc_create(spapr);
   2863
   2864    /* Set up VIO bus */
   2865    spapr->vio_bus = spapr_vio_bus_init();
   2866
   2867    for (i = 0; serial_hd(i); i++) {
   2868        spapr_vty_create(spapr->vio_bus, serial_hd(i));
   2869    }
   2870
   2871    /* We always have at least the nvram device on VIO */
   2872    spapr_create_nvram(spapr);
   2873
   2874    /*
   2875     * Setup hotplug / dynamic-reconfiguration connectors. top-level
   2876     * connectors (described in root DT node's "ibm,drc-types" property)
   2877     * are pre-initialized here. additional child connectors (such as
   2878     * connectors for a PHBs PCI slots) are added as needed during their
   2879     * parent's realization.
   2880     */
   2881    if (smc->dr_phb_enabled) {
   2882        for (i = 0; i < SPAPR_MAX_PHBS; i++) {
   2883            spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
   2884        }
   2885    }
   2886
   2887    /* Set up PCI */
   2888    spapr_pci_rtas_init();
   2889
   2890    phb = spapr_create_default_phb();
   2891
   2892    for (i = 0; i < nb_nics; i++) {
   2893        NICInfo *nd = &nd_table[i];
   2894
   2895        if (!nd->model) {
   2896            nd->model = g_strdup("spapr-vlan");
   2897        }
   2898
   2899        if (g_str_equal(nd->model, "spapr-vlan") ||
   2900            g_str_equal(nd->model, "ibmveth")) {
   2901            spapr_vlan_create(spapr->vio_bus, nd);
   2902        } else {
   2903            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
   2904        }
   2905    }
   2906
   2907    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
   2908        spapr_vscsi_create(spapr->vio_bus);
   2909    }
   2910
   2911    /* Graphics */
   2912    if (spapr_vga_init(phb->bus, &error_fatal)) {
   2913        spapr->has_graphics = true;
   2914        machine->usb |= defaults_enabled() && !machine->usb_disabled;
   2915    }
   2916
   2917    if (machine->usb) {
   2918        if (smc->use_ohci_by_default) {
   2919            pci_create_simple(phb->bus, -1, "pci-ohci");
   2920        } else {
   2921            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
   2922        }
   2923
   2924        if (spapr->has_graphics) {
   2925            USBBus *usb_bus = usb_bus_find(-1);
   2926
   2927            usb_create_simple(usb_bus, "usb-kbd");
   2928            usb_create_simple(usb_bus, "usb-mouse");
   2929        }
   2930    }
   2931
   2932    if (kernel_filename) {
   2933        spapr->kernel_size = load_elf(kernel_filename, NULL,
   2934                                      translate_kernel_address, spapr,
   2935                                      NULL, NULL, NULL, NULL, 1,
   2936                                      PPC_ELF_MACHINE, 0, 0);
   2937        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
   2938            spapr->kernel_size = load_elf(kernel_filename, NULL,
   2939                                          translate_kernel_address, spapr,
   2940                                          NULL, NULL, NULL, NULL, 0,
   2941                                          PPC_ELF_MACHINE, 0, 0);
   2942            spapr->kernel_le = spapr->kernel_size > 0;
   2943        }
   2944        if (spapr->kernel_size < 0) {
   2945            error_report("error loading %s: %s", kernel_filename,
   2946                         load_elf_strerror(spapr->kernel_size));
   2947            exit(1);
   2948        }
   2949
   2950        /* load initrd */
   2951        if (initrd_filename) {
   2952            /* Try to locate the initrd in the gap between the kernel
   2953             * and the firmware. Add a bit of space just in case
   2954             */
   2955            spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
   2956                                  + 0x1ffff) & ~0xffff;
   2957            spapr->initrd_size = load_image_targphys(initrd_filename,
   2958                                                     spapr->initrd_base,
   2959                                                     load_limit
   2960                                                     - spapr->initrd_base);
   2961            if (spapr->initrd_size < 0) {
   2962                error_report("could not load initial ram disk '%s'",
   2963                             initrd_filename);
   2964                exit(1);
   2965            }
   2966        }
   2967    }
   2968
   2969    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
   2970    if (!filename) {
   2971        error_report("Could not find LPAR firmware '%s'", bios_name);
   2972        exit(1);
   2973    }
   2974    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
   2975    if (fw_size <= 0) {
   2976        error_report("Could not load LPAR firmware '%s'", filename);
   2977        exit(1);
   2978    }
   2979    g_free(filename);
   2980
   2981    /* FIXME: Should register things through the MachineState's qdev
   2982     * interface, this is a legacy from the sPAPREnvironment structure
   2983     * which predated MachineState but had a similar function */
   2984    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
   2985    register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
   2986                         &savevm_htab_handlers, spapr);
   2987
   2988    qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
   2989
   2990    qemu_register_boot_set(spapr_boot_set, spapr);
   2991
   2992    /*
   2993     * Nothing needs to be done to resume a suspended guest because
   2994     * suspending does not change the machine state, so no need for
   2995     * a ->wakeup method.
   2996     */
   2997    qemu_register_wakeup_support();
   2998
   2999    if (kvm_enabled()) {
   3000        /* to stop and start vmclock */
   3001        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
   3002                                         &spapr->tb);
   3003
   3004        kvmppc_spapr_enable_inkernel_multitce();
   3005    }
   3006
   3007    qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
   3008    if (spapr->vof) {
   3009        spapr->vof->fw_size = fw_size; /* for claim() on itself */
   3010        spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
   3011    }
   3012}
   3013
   3014#define DEFAULT_KVM_TYPE "auto"
   3015static int spapr_kvm_type(MachineState *machine, const char *vm_type)
   3016{
   3017    /*
   3018     * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
   3019     * accomodate the 'HV' and 'PV' formats that exists in the
   3020     * wild. The 'auto' mode is being introduced already as
   3021     * lower-case, thus we don't need to bother checking for
   3022     * "AUTO".
   3023     */
   3024    if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
   3025        return 0;
   3026    }
   3027
   3028    if (!g_ascii_strcasecmp(vm_type, "hv")) {
   3029        return 1;
   3030    }
   3031
   3032    if (!g_ascii_strcasecmp(vm_type, "pr")) {
   3033        return 2;
   3034    }
   3035
   3036    error_report("Unknown kvm-type specified '%s'", vm_type);
   3037    exit(1);
   3038}
   3039
   3040/*
   3041 * Implementation of an interface to adjust firmware path
   3042 * for the bootindex property handling.
   3043 */
   3044static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
   3045                                   DeviceState *dev)
   3046{
   3047#define CAST(type, obj, name) \
   3048    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
   3049    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
   3050    SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
   3051    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
   3052    PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
   3053
   3054    if (d) {
   3055        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
   3056        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
   3057        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
   3058
   3059        if (spapr) {
   3060            /*
   3061             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
   3062             * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
   3063             * 0x8000 | (target << 8) | (bus << 5) | lun
   3064             * (see the "Logical unit addressing format" table in SAM5)
   3065             */
   3066            unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
   3067            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
   3068                                   (uint64_t)id << 48);
   3069        } else if (virtio) {
   3070            /*
   3071             * We use SRP luns of the form 01000000 | (target << 8) | lun
   3072             * in the top 32 bits of the 64-bit LUN
   3073             * Note: the quote above is from SLOF and it is wrong,
   3074             * the actual binding is:
   3075             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
   3076             */
   3077            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
   3078            if (d->lun >= 256) {
   3079                /* Use the LUN "flat space addressing method" */
   3080                id |= 0x4000;
   3081            }
   3082            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
   3083                                   (uint64_t)id << 32);
   3084        } else if (usb) {
   3085            /*
   3086             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
   3087             * in the top 32 bits of the 64-bit LUN
   3088             */
   3089            unsigned usb_port = atoi(usb->port->path);
   3090            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
   3091            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
   3092                                   (uint64_t)id << 32);
   3093        }
   3094    }
   3095
   3096    /*
   3097     * SLOF probes the USB devices, and if it recognizes that the device is a
   3098     * storage device, it changes its name to "storage" instead of "usb-host",
   3099     * and additionally adds a child node for the SCSI LUN, so the correct
   3100     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
   3101     */
   3102    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
   3103        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
   3104        if (usb_device_is_scsi_storage(usbdev)) {
   3105            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
   3106        }
   3107    }
   3108
   3109    if (phb) {
   3110        /* Replace "pci" with "pci@800000020000000" */
   3111        return g_strdup_printf("pci@%"PRIX64, phb->buid);
   3112    }
   3113
   3114    if (vsc) {
   3115        /* Same logic as virtio above */
   3116        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
   3117        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
   3118    }
   3119
   3120    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
   3121        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
   3122        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
   3123        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
   3124    }
   3125
   3126    if (pcidev) {
   3127        return spapr_pci_fw_dev_name(pcidev);
   3128    }
   3129
   3130    return NULL;
   3131}
   3132
   3133static char *spapr_get_kvm_type(Object *obj, Error **errp)
   3134{
   3135    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3136
   3137    return g_strdup(spapr->kvm_type);
   3138}
   3139
   3140static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
   3141{
   3142    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3143
   3144    g_free(spapr->kvm_type);
   3145    spapr->kvm_type = g_strdup(value);
   3146}
   3147
   3148static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
   3149{
   3150    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3151
   3152    return spapr->use_hotplug_event_source;
   3153}
   3154
   3155static void spapr_set_modern_hotplug_events(Object *obj, bool value,
   3156                                            Error **errp)
   3157{
   3158    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3159
   3160    spapr->use_hotplug_event_source = value;
   3161}
   3162
   3163static bool spapr_get_msix_emulation(Object *obj, Error **errp)
   3164{
   3165    return true;
   3166}
   3167
   3168static char *spapr_get_resize_hpt(Object *obj, Error **errp)
   3169{
   3170    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3171
   3172    switch (spapr->resize_hpt) {
   3173    case SPAPR_RESIZE_HPT_DEFAULT:
   3174        return g_strdup("default");
   3175    case SPAPR_RESIZE_HPT_DISABLED:
   3176        return g_strdup("disabled");
   3177    case SPAPR_RESIZE_HPT_ENABLED:
   3178        return g_strdup("enabled");
   3179    case SPAPR_RESIZE_HPT_REQUIRED:
   3180        return g_strdup("required");
   3181    }
   3182    g_assert_not_reached();
   3183}
   3184
   3185static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
   3186{
   3187    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3188
   3189    if (strcmp(value, "default") == 0) {
   3190        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
   3191    } else if (strcmp(value, "disabled") == 0) {
   3192        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
   3193    } else if (strcmp(value, "enabled") == 0) {
   3194        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
   3195    } else if (strcmp(value, "required") == 0) {
   3196        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
   3197    } else {
   3198        error_setg(errp, "Bad value for \"resize-hpt\" property");
   3199    }
   3200}
   3201
   3202static bool spapr_get_vof(Object *obj, Error **errp)
   3203{
   3204    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3205
   3206    return spapr->vof != NULL;
   3207}
   3208
   3209static void spapr_set_vof(Object *obj, bool value, Error **errp)
   3210{
   3211    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3212
   3213    if (spapr->vof) {
   3214        vof_cleanup(spapr->vof);
   3215        g_free(spapr->vof);
   3216        spapr->vof = NULL;
   3217    }
   3218    if (!value) {
   3219        return;
   3220    }
   3221    spapr->vof = g_malloc0(sizeof(*spapr->vof));
   3222}
   3223
   3224static char *spapr_get_ic_mode(Object *obj, Error **errp)
   3225{
   3226    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3227
   3228    if (spapr->irq == &spapr_irq_xics_legacy) {
   3229        return g_strdup("legacy");
   3230    } else if (spapr->irq == &spapr_irq_xics) {
   3231        return g_strdup("xics");
   3232    } else if (spapr->irq == &spapr_irq_xive) {
   3233        return g_strdup("xive");
   3234    } else if (spapr->irq == &spapr_irq_dual) {
   3235        return g_strdup("dual");
   3236    }
   3237    g_assert_not_reached();
   3238}
   3239
   3240static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
   3241{
   3242    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3243
   3244    if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
   3245        error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
   3246        return;
   3247    }
   3248
   3249    /* The legacy IRQ backend can not be set */
   3250    if (strcmp(value, "xics") == 0) {
   3251        spapr->irq = &spapr_irq_xics;
   3252    } else if (strcmp(value, "xive") == 0) {
   3253        spapr->irq = &spapr_irq_xive;
   3254    } else if (strcmp(value, "dual") == 0) {
   3255        spapr->irq = &spapr_irq_dual;
   3256    } else {
   3257        error_setg(errp, "Bad value for \"ic-mode\" property");
   3258    }
   3259}
   3260
   3261static char *spapr_get_host_model(Object *obj, Error **errp)
   3262{
   3263    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3264
   3265    return g_strdup(spapr->host_model);
   3266}
   3267
   3268static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
   3269{
   3270    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3271
   3272    g_free(spapr->host_model);
   3273    spapr->host_model = g_strdup(value);
   3274}
   3275
   3276static char *spapr_get_host_serial(Object *obj, Error **errp)
   3277{
   3278    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3279
   3280    return g_strdup(spapr->host_serial);
   3281}
   3282
   3283static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
   3284{
   3285    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3286
   3287    g_free(spapr->host_serial);
   3288    spapr->host_serial = g_strdup(value);
   3289}
   3290
   3291static void spapr_instance_init(Object *obj)
   3292{
   3293    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3294    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
   3295    MachineState *ms = MACHINE(spapr);
   3296    MachineClass *mc = MACHINE_GET_CLASS(ms);
   3297
   3298    /*
   3299     * NVDIMM support went live in 5.1 without considering that, in
   3300     * other archs, the user needs to enable NVDIMM support with the
   3301     * 'nvdimm' machine option and the default behavior is NVDIMM
   3302     * support disabled. It is too late to roll back to the standard
   3303     * behavior without breaking 5.1 guests.
   3304     */
   3305    if (mc->nvdimm_supported) {
   3306        ms->nvdimms_state->is_enabled = true;
   3307    }
   3308
   3309    spapr->htab_fd = -1;
   3310    spapr->use_hotplug_event_source = true;
   3311    spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
   3312    object_property_add_str(obj, "kvm-type",
   3313                            spapr_get_kvm_type, spapr_set_kvm_type);
   3314    object_property_set_description(obj, "kvm-type",
   3315                                    "Specifies the KVM virtualization mode (auto,"
   3316                                    " hv, pr). Defaults to 'auto'. This mode will use"
   3317                                    " any available KVM module loaded in the host,"
   3318                                    " where kvm_hv takes precedence if both kvm_hv and"
   3319                                    " kvm_pr are loaded.");
   3320    object_property_add_bool(obj, "modern-hotplug-events",
   3321                            spapr_get_modern_hotplug_events,
   3322                            spapr_set_modern_hotplug_events);
   3323    object_property_set_description(obj, "modern-hotplug-events",
   3324                                    "Use dedicated hotplug event mechanism in"
   3325                                    " place of standard EPOW events when possible"
   3326                                    " (required for memory hot-unplug support)");
   3327    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
   3328                            "Maximum permitted CPU compatibility mode");
   3329
   3330    object_property_add_str(obj, "resize-hpt",
   3331                            spapr_get_resize_hpt, spapr_set_resize_hpt);
   3332    object_property_set_description(obj, "resize-hpt",
   3333                                    "Resizing of the Hash Page Table (enabled, disabled, required)");
   3334    object_property_add_uint32_ptr(obj, "vsmt",
   3335                                   &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
   3336    object_property_set_description(obj, "vsmt",
   3337                                    "Virtual SMT: KVM behaves as if this were"
   3338                                    " the host's SMT mode");
   3339
   3340    object_property_add_bool(obj, "vfio-no-msix-emulation",
   3341                             spapr_get_msix_emulation, NULL);
   3342
   3343    object_property_add_uint64_ptr(obj, "kernel-addr",
   3344                                   &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
   3345    object_property_set_description(obj, "kernel-addr",
   3346                                    stringify(KERNEL_LOAD_ADDR)
   3347                                    " for -kernel is the default");
   3348    spapr->kernel_addr = KERNEL_LOAD_ADDR;
   3349
   3350    object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
   3351    object_property_set_description(obj, "x-vof",
   3352                                    "Enable Virtual Open Firmware (experimental)");
   3353
   3354    /* The machine class defines the default interrupt controller mode */
   3355    spapr->irq = smc->irq;
   3356    object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
   3357                            spapr_set_ic_mode);
   3358    object_property_set_description(obj, "ic-mode",
   3359                 "Specifies the interrupt controller mode (xics, xive, dual)");
   3360
   3361    object_property_add_str(obj, "host-model",
   3362        spapr_get_host_model, spapr_set_host_model);
   3363    object_property_set_description(obj, "host-model",
   3364        "Host model to advertise in guest device tree");
   3365    object_property_add_str(obj, "host-serial",
   3366        spapr_get_host_serial, spapr_set_host_serial);
   3367    object_property_set_description(obj, "host-serial",
   3368        "Host serial number to advertise in guest device tree");
   3369}
   3370
   3371static void spapr_machine_finalizefn(Object *obj)
   3372{
   3373    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   3374
   3375    g_free(spapr->kvm_type);
   3376}
   3377
   3378void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
   3379{
   3380    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
   3381    PowerPCCPU *cpu = POWERPC_CPU(cs);
   3382    CPUPPCState *env = &cpu->env;
   3383
   3384    cpu_synchronize_state(cs);
   3385    /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
   3386    if (spapr->fwnmi_system_reset_addr != -1) {
   3387        uint64_t rtas_addr, addr;
   3388
   3389        /* get rtas addr from fdt */
   3390        rtas_addr = spapr_get_rtas_addr();
   3391        if (!rtas_addr) {
   3392            qemu_system_guest_panicked(NULL);
   3393            return;
   3394        }
   3395
   3396        addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
   3397        stq_be_phys(&address_space_memory, addr, env->gpr[3]);
   3398        stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
   3399        env->gpr[3] = addr;
   3400    }
   3401    ppc_cpu_do_system_reset(cs);
   3402    if (spapr->fwnmi_system_reset_addr != -1) {
   3403        env->nip = spapr->fwnmi_system_reset_addr;
   3404    }
   3405}
   3406
   3407static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
   3408{
   3409    CPUState *cs;
   3410
   3411    CPU_FOREACH(cs) {
   3412        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
   3413    }
   3414}
   3415
   3416int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
   3417                          void *fdt, int *fdt_start_offset, Error **errp)
   3418{
   3419    uint64_t addr;
   3420    uint32_t node;
   3421
   3422    addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
   3423    node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
   3424                                    &error_abort);
   3425    *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
   3426                                             SPAPR_MEMORY_BLOCK_SIZE);
   3427    return 0;
   3428}
   3429
   3430static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
   3431                           bool dedicated_hp_event_source)
   3432{
   3433    SpaprDrc *drc;
   3434    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
   3435    int i;
   3436    uint64_t addr = addr_start;
   3437    bool hotplugged = spapr_drc_hotplugged(dev);
   3438
   3439    for (i = 0; i < nr_lmbs; i++) {
   3440        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
   3441                              addr / SPAPR_MEMORY_BLOCK_SIZE);
   3442        g_assert(drc);
   3443
   3444        /*
   3445         * memory_device_get_free_addr() provided a range of free addresses
   3446         * that doesn't overlap with any existing mapping at pre-plug. The
   3447         * corresponding LMB DRCs are thus assumed to be all attachable.
   3448         */
   3449        spapr_drc_attach(drc, dev);
   3450        if (!hotplugged) {
   3451            spapr_drc_reset(drc);
   3452        }
   3453        addr += SPAPR_MEMORY_BLOCK_SIZE;
   3454    }
   3455    /* send hotplug notification to the
   3456     * guest only in case of hotplugged memory
   3457     */
   3458    if (hotplugged) {
   3459        if (dedicated_hp_event_source) {
   3460            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
   3461                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
   3462            g_assert(drc);
   3463            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
   3464                                                   nr_lmbs,
   3465                                                   spapr_drc_index(drc));
   3466        } else {
   3467            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
   3468                                           nr_lmbs);
   3469        }
   3470    }
   3471}
   3472
   3473static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
   3474{
   3475    SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
   3476    PCDIMMDevice *dimm = PC_DIMM(dev);
   3477    uint64_t size, addr;
   3478    int64_t slot;
   3479    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
   3480
   3481    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
   3482
   3483    pc_dimm_plug(dimm, MACHINE(ms));
   3484
   3485    if (!is_nvdimm) {
   3486        addr = object_property_get_uint(OBJECT(dimm),
   3487                                        PC_DIMM_ADDR_PROP, &error_abort);
   3488        spapr_add_lmbs(dev, addr, size,
   3489                       spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
   3490    } else {
   3491        slot = object_property_get_int(OBJECT(dimm),
   3492                                       PC_DIMM_SLOT_PROP, &error_abort);
   3493        /* We should have valid slot number at this point */
   3494        g_assert(slot >= 0);
   3495        spapr_add_nvdimm(dev, slot);
   3496    }
   3497}
   3498
   3499static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
   3500                                  Error **errp)
   3501{
   3502    const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
   3503    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
   3504    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
   3505    PCDIMMDevice *dimm = PC_DIMM(dev);
   3506    Error *local_err = NULL;
   3507    uint64_t size;
   3508    Object *memdev;
   3509    hwaddr pagesize;
   3510
   3511    if (!smc->dr_lmb_enabled) {
   3512        error_setg(errp, "Memory hotplug not supported for this machine");
   3513        return;
   3514    }
   3515
   3516    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
   3517    if (local_err) {
   3518        error_propagate(errp, local_err);
   3519        return;
   3520    }
   3521
   3522    if (is_nvdimm) {
   3523        if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
   3524            return;
   3525        }
   3526    } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
   3527        error_setg(errp, "Hotplugged memory size must be a multiple of "
   3528                   "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
   3529        return;
   3530    }
   3531
   3532    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
   3533                                      &error_abort);
   3534    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
   3535    if (!spapr_check_pagesize(spapr, pagesize, errp)) {
   3536        return;
   3537    }
   3538
   3539    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
   3540}
   3541
   3542struct SpaprDimmState {
   3543    PCDIMMDevice *dimm;
   3544    uint32_t nr_lmbs;
   3545    QTAILQ_ENTRY(SpaprDimmState) next;
   3546};
   3547
   3548static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
   3549                                                       PCDIMMDevice *dimm)
   3550{
   3551    SpaprDimmState *dimm_state = NULL;
   3552
   3553    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
   3554        if (dimm_state->dimm == dimm) {
   3555            break;
   3556        }
   3557    }
   3558    return dimm_state;
   3559}
   3560
   3561static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
   3562                                                      uint32_t nr_lmbs,
   3563                                                      PCDIMMDevice *dimm)
   3564{
   3565    SpaprDimmState *ds = NULL;
   3566
   3567    /*
   3568     * If this request is for a DIMM whose removal had failed earlier
   3569     * (due to guest's refusal to remove the LMBs), we would have this
   3570     * dimm already in the pending_dimm_unplugs list. In that
   3571     * case don't add again.
   3572     */
   3573    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
   3574    if (!ds) {
   3575        ds = g_malloc0(sizeof(SpaprDimmState));
   3576        ds->nr_lmbs = nr_lmbs;
   3577        ds->dimm = dimm;
   3578        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
   3579    }
   3580    return ds;
   3581}
   3582
   3583static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
   3584                                              SpaprDimmState *dimm_state)
   3585{
   3586    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
   3587    g_free(dimm_state);
   3588}
   3589
   3590static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
   3591                                                        PCDIMMDevice *dimm)
   3592{
   3593    SpaprDrc *drc;
   3594    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
   3595                                                  &error_abort);
   3596    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
   3597    uint32_t avail_lmbs = 0;
   3598    uint64_t addr_start, addr;
   3599    int i;
   3600
   3601    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
   3602                                          &error_abort);
   3603
   3604    addr = addr_start;
   3605    for (i = 0; i < nr_lmbs; i++) {
   3606        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
   3607                              addr / SPAPR_MEMORY_BLOCK_SIZE);
   3608        g_assert(drc);
   3609        if (drc->dev) {
   3610            avail_lmbs++;
   3611        }
   3612        addr += SPAPR_MEMORY_BLOCK_SIZE;
   3613    }
   3614
   3615    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
   3616}
   3617
   3618void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
   3619{
   3620    SpaprDimmState *ds;
   3621    PCDIMMDevice *dimm;
   3622    SpaprDrc *drc;
   3623    uint32_t nr_lmbs;
   3624    uint64_t size, addr_start, addr;
   3625    g_autofree char *qapi_error = NULL;
   3626    int i;
   3627
   3628    if (!dev) {
   3629        return;
   3630    }
   3631
   3632    dimm = PC_DIMM(dev);
   3633    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
   3634
   3635    /*
   3636     * 'ds == NULL' would mean that the DIMM doesn't have a pending
   3637     * unplug state, but one of its DRC is marked as unplug_requested.
   3638     * This is bad and weird enough to g_assert() out.
   3639     */
   3640    g_assert(ds);
   3641
   3642    spapr_pending_dimm_unplugs_remove(spapr, ds);
   3643
   3644    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
   3645    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
   3646
   3647    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
   3648                                          &error_abort);
   3649
   3650    addr = addr_start;
   3651    for (i = 0; i < nr_lmbs; i++) {
   3652        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
   3653                              addr / SPAPR_MEMORY_BLOCK_SIZE);
   3654        g_assert(drc);
   3655
   3656        drc->unplug_requested = false;
   3657        addr += SPAPR_MEMORY_BLOCK_SIZE;
   3658    }
   3659
   3660    /*
   3661     * Tell QAPI that something happened and the memory
   3662     * hotunplug wasn't successful. Keep sending
   3663     * MEM_UNPLUG_ERROR even while sending
   3664     * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
   3665     * MEM_UNPLUG_ERROR is due.
   3666     */
   3667    qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
   3668                                 "for device %s", dev->id);
   3669
   3670    qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
   3671
   3672    qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
   3673                                              dev->canonical_path);
   3674}
   3675
   3676/* Callback to be called during DRC release. */
   3677void spapr_lmb_release(DeviceState *dev)
   3678{
   3679    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
   3680    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
   3681    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
   3682
   3683    /* This information will get lost if a migration occurs
   3684     * during the unplug process. In this case recover it. */
   3685    if (ds == NULL) {
   3686        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
   3687        g_assert(ds);
   3688        /* The DRC being examined by the caller at least must be counted */
   3689        g_assert(ds->nr_lmbs);
   3690    }
   3691
   3692    if (--ds->nr_lmbs) {
   3693        return;
   3694    }
   3695
   3696    /*
   3697     * Now that all the LMBs have been removed by the guest, call the
   3698     * unplug handler chain. This can never fail.
   3699     */
   3700    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
   3701    object_unparent(OBJECT(dev));
   3702}
   3703
   3704static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
   3705{
   3706    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
   3707    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
   3708
   3709    /* We really shouldn't get this far without anything to unplug */
   3710    g_assert(ds);
   3711
   3712    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
   3713    qdev_unrealize(dev);
   3714    spapr_pending_dimm_unplugs_remove(spapr, ds);
   3715}
   3716
   3717static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
   3718                                        DeviceState *dev, Error **errp)
   3719{
   3720    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
   3721    PCDIMMDevice *dimm = PC_DIMM(dev);
   3722    uint32_t nr_lmbs;
   3723    uint64_t size, addr_start, addr;
   3724    int i;
   3725    SpaprDrc *drc;
   3726
   3727    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
   3728        error_setg(errp, "nvdimm device hot unplug is not supported yet.");
   3729        return;
   3730    }
   3731
   3732    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
   3733    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
   3734
   3735    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
   3736                                          &error_abort);
   3737
   3738    /*
   3739     * An existing pending dimm state for this DIMM means that there is an
   3740     * unplug operation in progress, waiting for the spapr_lmb_release
   3741     * callback to complete the job (BQL can't cover that far). In this case,
   3742     * bail out to avoid detaching DRCs that were already released.
   3743     */
   3744    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
   3745        error_setg(errp, "Memory unplug already in progress for device %s",
   3746                   dev->id);
   3747        return;
   3748    }
   3749
   3750    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
   3751
   3752    addr = addr_start;
   3753    for (i = 0; i < nr_lmbs; i++) {
   3754        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
   3755                              addr / SPAPR_MEMORY_BLOCK_SIZE);
   3756        g_assert(drc);
   3757
   3758        spapr_drc_unplug_request(drc);
   3759        addr += SPAPR_MEMORY_BLOCK_SIZE;
   3760    }
   3761
   3762    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
   3763                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
   3764    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
   3765                                              nr_lmbs, spapr_drc_index(drc));
   3766}
   3767
   3768/* Callback to be called during DRC release. */
   3769void spapr_core_release(DeviceState *dev)
   3770{
   3771    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
   3772
   3773    /* Call the unplug handler chain. This can never fail. */
   3774    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
   3775    object_unparent(OBJECT(dev));
   3776}
   3777
   3778static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
   3779{
   3780    MachineState *ms = MACHINE(hotplug_dev);
   3781    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
   3782    CPUCore *cc = CPU_CORE(dev);
   3783    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
   3784
   3785    if (smc->pre_2_10_has_unused_icps) {
   3786        SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
   3787        int i;
   3788
   3789        for (i = 0; i < cc->nr_threads; i++) {
   3790            CPUState *cs = CPU(sc->threads[i]);
   3791
   3792            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
   3793        }
   3794    }
   3795
   3796    assert(core_slot);
   3797    core_slot->cpu = NULL;
   3798    qdev_unrealize(dev);
   3799}
   3800
   3801static
   3802void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
   3803                               Error **errp)
   3804{
   3805    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
   3806    int index;
   3807    SpaprDrc *drc;
   3808    CPUCore *cc = CPU_CORE(dev);
   3809
   3810    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
   3811        error_setg(errp, "Unable to find CPU core with core-id: %d",
   3812                   cc->core_id);
   3813        return;
   3814    }
   3815    if (index == 0) {
   3816        error_setg(errp, "Boot CPU core may not be unplugged");
   3817        return;
   3818    }
   3819
   3820    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
   3821                          spapr_vcpu_id(spapr, cc->core_id));
   3822    g_assert(drc);
   3823
   3824    if (!spapr_drc_unplug_requested(drc)) {
   3825        spapr_drc_unplug_request(drc);
   3826    }
   3827
   3828    /*
   3829     * spapr_hotplug_req_remove_by_index is left unguarded, out of the
   3830     * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
   3831     * pulses removing the same CPU. Otherwise, in an failed hotunplug
   3832     * attempt (e.g. the kernel will refuse to remove the last online
   3833     * CPU), we will never attempt it again because unplug_requested
   3834     * will still be 'true' in that case.
   3835     */
   3836    spapr_hotplug_req_remove_by_index(drc);
   3837}
   3838
   3839int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
   3840                           void *fdt, int *fdt_start_offset, Error **errp)
   3841{
   3842    SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
   3843    CPUState *cs = CPU(core->threads[0]);
   3844    PowerPCCPU *cpu = POWERPC_CPU(cs);
   3845    DeviceClass *dc = DEVICE_GET_CLASS(cs);
   3846    int id = spapr_get_vcpu_id(cpu);
   3847    g_autofree char *nodename = NULL;
   3848    int offset;
   3849
   3850    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
   3851    offset = fdt_add_subnode(fdt, 0, nodename);
   3852
   3853    spapr_dt_cpu(cs, fdt, offset, spapr);
   3854
   3855    /*
   3856     * spapr_dt_cpu() does not fill the 'name' property in the
   3857     * CPU node. The function is called during boot process, before
   3858     * and after CAS, and overwriting the 'name' property written
   3859     * by SLOF is not allowed.
   3860     *
   3861     * Write it manually after spapr_dt_cpu(). This makes the hotplug
   3862     * CPUs more compatible with the coldplugged ones, which have
   3863     * the 'name' property. Linux Kernel also relies on this
   3864     * property to identify CPU nodes.
   3865     */
   3866    _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
   3867
   3868    *fdt_start_offset = offset;
   3869    return 0;
   3870}
   3871
   3872static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
   3873{
   3874    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
   3875    MachineClass *mc = MACHINE_GET_CLASS(spapr);
   3876    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   3877    SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
   3878    CPUCore *cc = CPU_CORE(dev);
   3879    CPUState *cs;
   3880    SpaprDrc *drc;
   3881    CPUArchId *core_slot;
   3882    int index;
   3883    bool hotplugged = spapr_drc_hotplugged(dev);
   3884    int i;
   3885
   3886    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
   3887    g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
   3888
   3889    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
   3890                          spapr_vcpu_id(spapr, cc->core_id));
   3891
   3892    g_assert(drc || !mc->has_hotpluggable_cpus);
   3893
   3894    if (drc) {
   3895        /*
   3896         * spapr_core_pre_plug() already buys us this is a brand new
   3897         * core being plugged into a free slot. Nothing should already
   3898         * be attached to the corresponding DRC.
   3899         */
   3900        spapr_drc_attach(drc, dev);
   3901
   3902        if (hotplugged) {
   3903            /*
   3904             * Send hotplug notification interrupt to the guest only
   3905             * in case of hotplugged CPUs.
   3906             */
   3907            spapr_hotplug_req_add_by_index(drc);
   3908        } else {
   3909            spapr_drc_reset(drc);
   3910        }
   3911    }
   3912
   3913    core_slot->cpu = OBJECT(dev);
   3914
   3915    /*
   3916     * Set compatibility mode to match the boot CPU, which was either set
   3917     * by the machine reset code or by CAS. This really shouldn't fail at
   3918     * this point.
   3919     */
   3920    if (hotplugged) {
   3921        for (i = 0; i < cc->nr_threads; i++) {
   3922            ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
   3923                           &error_abort);
   3924        }
   3925    }
   3926
   3927    if (smc->pre_2_10_has_unused_icps) {
   3928        for (i = 0; i < cc->nr_threads; i++) {
   3929            cs = CPU(core->threads[i]);
   3930            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
   3931        }
   3932    }
   3933}
   3934
   3935static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
   3936                                Error **errp)
   3937{
   3938    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
   3939    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
   3940    CPUCore *cc = CPU_CORE(dev);
   3941    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
   3942    const char *type = object_get_typename(OBJECT(dev));
   3943    CPUArchId *core_slot;
   3944    int index;
   3945    unsigned int smp_threads = machine->smp.threads;
   3946
   3947    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
   3948        error_setg(errp, "CPU hotplug not supported for this machine");
   3949        return;
   3950    }
   3951
   3952    if (strcmp(base_core_type, type)) {
   3953        error_setg(errp, "CPU core type should be %s", base_core_type);
   3954        return;
   3955    }
   3956
   3957    if (cc->core_id % smp_threads) {
   3958        error_setg(errp, "invalid core id %d", cc->core_id);
   3959        return;
   3960    }
   3961
   3962    /*
   3963     * In general we should have homogeneous threads-per-core, but old
   3964     * (pre hotplug support) machine types allow the last core to have
   3965     * reduced threads as a compatibility hack for when we allowed
   3966     * total vcpus not a multiple of threads-per-core.
   3967     */
   3968    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
   3969        error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
   3970                   smp_threads);
   3971        return;
   3972    }
   3973
   3974    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
   3975    if (!core_slot) {
   3976        error_setg(errp, "core id %d out of range", cc->core_id);
   3977        return;
   3978    }
   3979
   3980    if (core_slot->cpu) {
   3981        error_setg(errp, "core %d already populated", cc->core_id);
   3982        return;
   3983    }
   3984
   3985    numa_cpu_pre_plug(core_slot, dev, errp);
   3986}
   3987
   3988int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
   3989                          void *fdt, int *fdt_start_offset, Error **errp)
   3990{
   3991    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
   3992    int intc_phandle;
   3993
   3994    intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
   3995    if (intc_phandle <= 0) {
   3996        return -1;
   3997    }
   3998
   3999    if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
   4000        error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
   4001        return -1;
   4002    }
   4003
   4004    /* generally SLOF creates these, for hotplug it's up to QEMU */
   4005    _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
   4006
   4007    return 0;
   4008}
   4009
   4010static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
   4011                               Error **errp)
   4012{
   4013    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
   4014    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
   4015    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
   4016    const unsigned windows_supported = spapr_phb_windows_supported(sphb);
   4017    SpaprDrc *drc;
   4018
   4019    if (dev->hotplugged && !smc->dr_phb_enabled) {
   4020        error_setg(errp, "PHB hotplug not supported for this machine");
   4021        return false;
   4022    }
   4023
   4024    if (sphb->index == (uint32_t)-1) {
   4025        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
   4026        return false;
   4027    }
   4028
   4029    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
   4030    if (drc && drc->dev) {
   4031        error_setg(errp, "PHB %d already attached", sphb->index);
   4032        return false;
   4033    }
   4034
   4035    /*
   4036     * This will check that sphb->index doesn't exceed the maximum number of
   4037     * PHBs for the current machine type.
   4038     */
   4039    return
   4040        smc->phb_placement(spapr, sphb->index,
   4041                           &sphb->buid, &sphb->io_win_addr,
   4042                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
   4043                           windows_supported, sphb->dma_liobn,
   4044                           &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
   4045                           errp);
   4046}
   4047
   4048static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
   4049{
   4050    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
   4051    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
   4052    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
   4053    SpaprDrc *drc;
   4054    bool hotplugged = spapr_drc_hotplugged(dev);
   4055
   4056    if (!smc->dr_phb_enabled) {
   4057        return;
   4058    }
   4059
   4060    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
   4061    /* hotplug hooks should check it's enabled before getting this far */
   4062    assert(drc);
   4063
   4064    /* spapr_phb_pre_plug() already checked the DRC is attachable */
   4065    spapr_drc_attach(drc, dev);
   4066
   4067    if (hotplugged) {
   4068        spapr_hotplug_req_add_by_index(drc);
   4069    } else {
   4070        spapr_drc_reset(drc);
   4071    }
   4072}
   4073
   4074void spapr_phb_release(DeviceState *dev)
   4075{
   4076    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
   4077
   4078    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
   4079    object_unparent(OBJECT(dev));
   4080}
   4081
   4082static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
   4083{
   4084    qdev_unrealize(dev);
   4085}
   4086
   4087static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
   4088                                     DeviceState *dev, Error **errp)
   4089{
   4090    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
   4091    SpaprDrc *drc;
   4092
   4093    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
   4094    assert(drc);
   4095
   4096    if (!spapr_drc_unplug_requested(drc)) {
   4097        spapr_drc_unplug_request(drc);
   4098        spapr_hotplug_req_remove_by_index(drc);
   4099    } else {
   4100        error_setg(errp,
   4101                   "PCI Host Bridge unplug already in progress for device %s",
   4102                   dev->id);
   4103    }
   4104}
   4105
   4106static
   4107bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
   4108                              Error **errp)
   4109{
   4110    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
   4111
   4112    if (spapr->tpm_proxy != NULL) {
   4113        error_setg(errp, "Only one TPM proxy can be specified for this machine");
   4114        return false;
   4115    }
   4116
   4117    return true;
   4118}
   4119
   4120static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
   4121{
   4122    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
   4123    SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
   4124
   4125    /* Already checked in spapr_tpm_proxy_pre_plug() */
   4126    g_assert(spapr->tpm_proxy == NULL);
   4127
   4128    spapr->tpm_proxy = tpm_proxy;
   4129}
   4130
   4131static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
   4132{
   4133    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
   4134
   4135    qdev_unrealize(dev);
   4136    object_unparent(OBJECT(dev));
   4137    spapr->tpm_proxy = NULL;
   4138}
   4139
   4140static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
   4141                                      DeviceState *dev, Error **errp)
   4142{
   4143    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
   4144        spapr_memory_plug(hotplug_dev, dev);
   4145    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
   4146        spapr_core_plug(hotplug_dev, dev);
   4147    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
   4148        spapr_phb_plug(hotplug_dev, dev);
   4149    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
   4150        spapr_tpm_proxy_plug(hotplug_dev, dev);
   4151    }
   4152}
   4153
   4154static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
   4155                                        DeviceState *dev, Error **errp)
   4156{
   4157    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
   4158        spapr_memory_unplug(hotplug_dev, dev);
   4159    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
   4160        spapr_core_unplug(hotplug_dev, dev);
   4161    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
   4162        spapr_phb_unplug(hotplug_dev, dev);
   4163    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
   4164        spapr_tpm_proxy_unplug(hotplug_dev, dev);
   4165    }
   4166}
   4167
   4168bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
   4169{
   4170    return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
   4171        /*
   4172         * CAS will process all pending unplug requests.
   4173         *
   4174         * HACK: a guest could theoretically have cleared all bits in OV5,
   4175         * but none of the guests we care for do.
   4176         */
   4177        spapr_ovec_empty(spapr->ov5_cas);
   4178}
   4179
   4180static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
   4181                                                DeviceState *dev, Error **errp)
   4182{
   4183    SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
   4184    MachineClass *mc = MACHINE_GET_CLASS(sms);
   4185    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4186
   4187    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
   4188        if (spapr_memory_hot_unplug_supported(sms)) {
   4189            spapr_memory_unplug_request(hotplug_dev, dev, errp);
   4190        } else {
   4191            error_setg(errp, "Memory hot unplug not supported for this guest");
   4192        }
   4193    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
   4194        if (!mc->has_hotpluggable_cpus) {
   4195            error_setg(errp, "CPU hot unplug not supported on this machine");
   4196            return;
   4197        }
   4198        spapr_core_unplug_request(hotplug_dev, dev, errp);
   4199    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
   4200        if (!smc->dr_phb_enabled) {
   4201            error_setg(errp, "PHB hot unplug not supported on this machine");
   4202            return;
   4203        }
   4204        spapr_phb_unplug_request(hotplug_dev, dev, errp);
   4205    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
   4206        spapr_tpm_proxy_unplug(hotplug_dev, dev);
   4207    }
   4208}
   4209
   4210static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
   4211                                          DeviceState *dev, Error **errp)
   4212{
   4213    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
   4214        spapr_memory_pre_plug(hotplug_dev, dev, errp);
   4215    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
   4216        spapr_core_pre_plug(hotplug_dev, dev, errp);
   4217    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
   4218        spapr_phb_pre_plug(hotplug_dev, dev, errp);
   4219    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
   4220        spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
   4221    }
   4222}
   4223
   4224static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
   4225                                                 DeviceState *dev)
   4226{
   4227    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
   4228        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
   4229        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
   4230        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
   4231        return HOTPLUG_HANDLER(machine);
   4232    }
   4233    if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
   4234        PCIDevice *pcidev = PCI_DEVICE(dev);
   4235        PCIBus *root = pci_device_root_bus(pcidev);
   4236        SpaprPhbState *phb =
   4237            (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
   4238                                                 TYPE_SPAPR_PCI_HOST_BRIDGE);
   4239
   4240        if (phb) {
   4241            return HOTPLUG_HANDLER(phb);
   4242        }
   4243    }
   4244    return NULL;
   4245}
   4246
   4247static CpuInstanceProperties
   4248spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
   4249{
   4250    CPUArchId *core_slot;
   4251    MachineClass *mc = MACHINE_GET_CLASS(machine);
   4252
   4253    /* make sure possible_cpu are intialized */
   4254    mc->possible_cpu_arch_ids(machine);
   4255    /* get CPU core slot containing thread that matches cpu_index */
   4256    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
   4257    assert(core_slot);
   4258    return core_slot->props;
   4259}
   4260
   4261static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
   4262{
   4263    return idx / ms->smp.cores % ms->numa_state->num_nodes;
   4264}
   4265
   4266static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
   4267{
   4268    int i;
   4269    unsigned int smp_threads = machine->smp.threads;
   4270    unsigned int smp_cpus = machine->smp.cpus;
   4271    const char *core_type;
   4272    int spapr_max_cores = machine->smp.max_cpus / smp_threads;
   4273    MachineClass *mc = MACHINE_GET_CLASS(machine);
   4274
   4275    if (!mc->has_hotpluggable_cpus) {
   4276        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
   4277    }
   4278    if (machine->possible_cpus) {
   4279        assert(machine->possible_cpus->len == spapr_max_cores);
   4280        return machine->possible_cpus;
   4281    }
   4282
   4283    core_type = spapr_get_cpu_core_type(machine->cpu_type);
   4284    if (!core_type) {
   4285        error_report("Unable to find sPAPR CPU Core definition");
   4286        exit(1);
   4287    }
   4288
   4289    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
   4290                             sizeof(CPUArchId) * spapr_max_cores);
   4291    machine->possible_cpus->len = spapr_max_cores;
   4292    for (i = 0; i < machine->possible_cpus->len; i++) {
   4293        int core_id = i * smp_threads;
   4294
   4295        machine->possible_cpus->cpus[i].type = core_type;
   4296        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
   4297        machine->possible_cpus->cpus[i].arch_id = core_id;
   4298        machine->possible_cpus->cpus[i].props.has_core_id = true;
   4299        machine->possible_cpus->cpus[i].props.core_id = core_id;
   4300    }
   4301    return machine->possible_cpus;
   4302}
   4303
   4304static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
   4305                                uint64_t *buid, hwaddr *pio,
   4306                                hwaddr *mmio32, hwaddr *mmio64,
   4307                                unsigned n_dma, uint32_t *liobns,
   4308                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
   4309{
   4310    /*
   4311     * New-style PHB window placement.
   4312     *
   4313     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
   4314     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
   4315     * windows.
   4316     *
   4317     * Some guest kernels can't work with MMIO windows above 1<<46
   4318     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
   4319     *
   4320     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
   4321     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
   4322     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
   4323     * 1TiB 64-bit MMIO windows for each PHB.
   4324     */
   4325    const uint64_t base_buid = 0x800000020000000ULL;
   4326    int i;
   4327
   4328    /* Sanity check natural alignments */
   4329    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
   4330    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
   4331    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
   4332    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
   4333    /* Sanity check bounds */
   4334    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
   4335                      SPAPR_PCI_MEM32_WIN_SIZE);
   4336    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
   4337                      SPAPR_PCI_MEM64_WIN_SIZE);
   4338
   4339    if (index >= SPAPR_MAX_PHBS) {
   4340        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
   4341                   SPAPR_MAX_PHBS - 1);
   4342        return false;
   4343    }
   4344
   4345    *buid = base_buid + index;
   4346    for (i = 0; i < n_dma; ++i) {
   4347        liobns[i] = SPAPR_PCI_LIOBN(index, i);
   4348    }
   4349
   4350    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
   4351    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
   4352    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
   4353
   4354    *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
   4355    *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
   4356    return true;
   4357}
   4358
   4359static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
   4360{
   4361    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
   4362
   4363    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
   4364}
   4365
   4366static void spapr_ics_resend(XICSFabric *dev)
   4367{
   4368    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
   4369
   4370    ics_resend(spapr->ics);
   4371}
   4372
   4373static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
   4374{
   4375    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
   4376
   4377    return cpu ? spapr_cpu_state(cpu)->icp : NULL;
   4378}
   4379
   4380static void spapr_pic_print_info(InterruptStatsProvider *obj,
   4381                                 Monitor *mon)
   4382{
   4383    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
   4384
   4385    spapr_irq_print_info(spapr, mon);
   4386    monitor_printf(mon, "irqchip: %s\n",
   4387                   kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
   4388}
   4389
   4390/*
   4391 * This is a XIVE only operation
   4392 */
   4393static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
   4394                           uint8_t nvt_blk, uint32_t nvt_idx,
   4395                           bool cam_ignore, uint8_t priority,
   4396                           uint32_t logic_serv, XiveTCTXMatch *match)
   4397{
   4398    SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
   4399    XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
   4400    XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
   4401    int count;
   4402
   4403    count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
   4404                           priority, logic_serv, match);
   4405    if (count < 0) {
   4406        return count;
   4407    }
   4408
   4409    /*
   4410     * When we implement the save and restore of the thread interrupt
   4411     * contexts in the enter/exit CPU handlers of the machine and the
   4412     * escalations in QEMU, we should be able to handle non dispatched
   4413     * vCPUs.
   4414     *
   4415     * Until this is done, the sPAPR machine should find at least one
   4416     * matching context always.
   4417     */
   4418    if (count == 0) {
   4419        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
   4420                      nvt_blk, nvt_idx);
   4421    }
   4422
   4423    return count;
   4424}
   4425
   4426int spapr_get_vcpu_id(PowerPCCPU *cpu)
   4427{
   4428    return cpu->vcpu_id;
   4429}
   4430
   4431bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
   4432{
   4433    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
   4434    MachineState *ms = MACHINE(spapr);
   4435    int vcpu_id;
   4436
   4437    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
   4438
   4439    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
   4440        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
   4441        error_append_hint(errp, "Adjust the number of cpus to %d "
   4442                          "or try to raise the number of threads per core\n",
   4443                          vcpu_id * ms->smp.threads / spapr->vsmt);
   4444        return false;
   4445    }
   4446
   4447    cpu->vcpu_id = vcpu_id;
   4448    return true;
   4449}
   4450
   4451PowerPCCPU *spapr_find_cpu(int vcpu_id)
   4452{
   4453    CPUState *cs;
   4454
   4455    CPU_FOREACH(cs) {
   4456        PowerPCCPU *cpu = POWERPC_CPU(cs);
   4457
   4458        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
   4459            return cpu;
   4460        }
   4461    }
   4462
   4463    return NULL;
   4464}
   4465
   4466static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
   4467{
   4468    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
   4469
   4470    /* These are only called by TCG, KVM maintains dispatch state */
   4471
   4472    spapr_cpu->prod = false;
   4473    if (spapr_cpu->vpa_addr) {
   4474        CPUState *cs = CPU(cpu);
   4475        uint32_t dispatch;
   4476
   4477        dispatch = ldl_be_phys(cs->as,
   4478                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
   4479        dispatch++;
   4480        if ((dispatch & 1) != 0) {
   4481            qemu_log_mask(LOG_GUEST_ERROR,
   4482                          "VPA: incorrect dispatch counter value for "
   4483                          "dispatched partition %u, correcting.\n", dispatch);
   4484            dispatch++;
   4485        }
   4486        stl_be_phys(cs->as,
   4487                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
   4488    }
   4489}
   4490
   4491static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
   4492{
   4493    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
   4494
   4495    if (spapr_cpu->vpa_addr) {
   4496        CPUState *cs = CPU(cpu);
   4497        uint32_t dispatch;
   4498
   4499        dispatch = ldl_be_phys(cs->as,
   4500                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
   4501        dispatch++;
   4502        if ((dispatch & 1) != 1) {
   4503            qemu_log_mask(LOG_GUEST_ERROR,
   4504                          "VPA: incorrect dispatch counter value for "
   4505                          "preempted partition %u, correcting.\n", dispatch);
   4506            dispatch++;
   4507        }
   4508        stl_be_phys(cs->as,
   4509                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
   4510    }
   4511}
   4512
   4513static void spapr_machine_class_init(ObjectClass *oc, void *data)
   4514{
   4515    MachineClass *mc = MACHINE_CLASS(oc);
   4516    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
   4517    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
   4518    NMIClass *nc = NMI_CLASS(oc);
   4519    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
   4520    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
   4521    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
   4522    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
   4523    XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
   4524    VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
   4525
   4526    mc->desc = "pSeries Logical Partition (PAPR compliant)";
   4527    mc->ignore_boot_device_suffixes = true;
   4528
   4529    /*
   4530     * We set up the default / latest behaviour here.  The class_init
   4531     * functions for the specific versioned machine types can override
   4532     * these details for backwards compatibility
   4533     */
   4534    mc->init = spapr_machine_init;
   4535    mc->reset = spapr_machine_reset;
   4536    mc->block_default_type = IF_SCSI;
   4537
   4538    /*
   4539     * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
   4540     * should be limited by the host capability instead of hardcoded.
   4541     * max_cpus for KVM guests will be checked in kvm_init(), and TCG
   4542     * guests are welcome to have as many CPUs as the host are capable
   4543     * of emulate.
   4544     */
   4545    mc->max_cpus = INT32_MAX;
   4546
   4547    mc->no_parallel = 1;
   4548    mc->default_boot_order = "";
   4549    mc->default_ram_size = 512 * MiB;
   4550    mc->default_ram_id = "ppc_spapr.ram";
   4551    mc->default_display = "std";
   4552    mc->kvm_type = spapr_kvm_type;
   4553    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
   4554    mc->pci_allow_0_address = true;
   4555    assert(!mc->get_hotplug_handler);
   4556    mc->get_hotplug_handler = spapr_get_hotplug_handler;
   4557    hc->pre_plug = spapr_machine_device_pre_plug;
   4558    hc->plug = spapr_machine_device_plug;
   4559    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
   4560    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
   4561    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
   4562    hc->unplug_request = spapr_machine_device_unplug_request;
   4563    hc->unplug = spapr_machine_device_unplug;
   4564
   4565    smc->dr_lmb_enabled = true;
   4566    smc->update_dt_enabled = true;
   4567    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
   4568    mc->has_hotpluggable_cpus = true;
   4569    mc->nvdimm_supported = true;
   4570    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
   4571    fwc->get_dev_path = spapr_get_fw_dev_path;
   4572    nc->nmi_monitor_handler = spapr_nmi;
   4573    smc->phb_placement = spapr_phb_placement;
   4574    vhc->hypercall = emulate_spapr_hypercall;
   4575    vhc->hpt_mask = spapr_hpt_mask;
   4576    vhc->map_hptes = spapr_map_hptes;
   4577    vhc->unmap_hptes = spapr_unmap_hptes;
   4578    vhc->hpte_set_c = spapr_hpte_set_c;
   4579    vhc->hpte_set_r = spapr_hpte_set_r;
   4580    vhc->get_pate = spapr_get_pate;
   4581    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
   4582    vhc->cpu_exec_enter = spapr_cpu_exec_enter;
   4583    vhc->cpu_exec_exit = spapr_cpu_exec_exit;
   4584    xic->ics_get = spapr_ics_get;
   4585    xic->ics_resend = spapr_ics_resend;
   4586    xic->icp_get = spapr_icp_get;
   4587    ispc->print_info = spapr_pic_print_info;
   4588    /* Force NUMA node memory size to be a multiple of
   4589     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
   4590     * in which LMBs are represented and hot-added
   4591     */
   4592    mc->numa_mem_align_shift = 28;
   4593    mc->auto_enable_numa = true;
   4594
   4595    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
   4596    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
   4597    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
   4598    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
   4599    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
   4600    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
   4601    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
   4602    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
   4603    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
   4604    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
   4605    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
   4606    smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
   4607    spapr_caps_add_properties(smc);
   4608    smc->irq = &spapr_irq_dual;
   4609    smc->dr_phb_enabled = true;
   4610    smc->linux_pci_probe = true;
   4611    smc->smp_threads_vsmt = true;
   4612    smc->nr_xirqs = SPAPR_NR_XIRQS;
   4613    xfc->match_nvt = spapr_match_nvt;
   4614    vmc->client_architecture_support = spapr_vof_client_architecture_support;
   4615    vmc->quiesce = spapr_vof_quiesce;
   4616    vmc->setprop = spapr_vof_setprop;
   4617}
   4618
   4619static const TypeInfo spapr_machine_info = {
   4620    .name          = TYPE_SPAPR_MACHINE,
   4621    .parent        = TYPE_MACHINE,
   4622    .abstract      = true,
   4623    .instance_size = sizeof(SpaprMachineState),
   4624    .instance_init = spapr_instance_init,
   4625    .instance_finalize = spapr_machine_finalizefn,
   4626    .class_size    = sizeof(SpaprMachineClass),
   4627    .class_init    = spapr_machine_class_init,
   4628    .interfaces = (InterfaceInfo[]) {
   4629        { TYPE_FW_PATH_PROVIDER },
   4630        { TYPE_NMI },
   4631        { TYPE_HOTPLUG_HANDLER },
   4632        { TYPE_PPC_VIRTUAL_HYPERVISOR },
   4633        { TYPE_XICS_FABRIC },
   4634        { TYPE_INTERRUPT_STATS_PROVIDER },
   4635        { TYPE_XIVE_FABRIC },
   4636        { TYPE_VOF_MACHINE_IF },
   4637        { }
   4638    },
   4639};
   4640
   4641static void spapr_machine_latest_class_options(MachineClass *mc)
   4642{
   4643    mc->alias = "pseries";
   4644    mc->is_default = true;
   4645}
   4646
   4647#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
   4648    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
   4649                                                    void *data)      \
   4650    {                                                                \
   4651        MachineClass *mc = MACHINE_CLASS(oc);                        \
   4652        spapr_machine_##suffix##_class_options(mc);                  \
   4653        if (latest) {                                                \
   4654            spapr_machine_latest_class_options(mc);                  \
   4655        }                                                            \
   4656    }                                                                \
   4657    static const TypeInfo spapr_machine_##suffix##_info = {          \
   4658        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
   4659        .parent = TYPE_SPAPR_MACHINE,                                \
   4660        .class_init = spapr_machine_##suffix##_class_init,           \
   4661    };                                                               \
   4662    static void spapr_machine_register_##suffix(void)                \
   4663    {                                                                \
   4664        type_register(&spapr_machine_##suffix##_info);               \
   4665    }                                                                \
   4666    type_init(spapr_machine_register_##suffix)
   4667
   4668/*
   4669 * pseries-6.2
   4670 */
   4671static void spapr_machine_6_2_class_options(MachineClass *mc)
   4672{
   4673    /* Defaults for the latest behaviour inherited from the base class */
   4674}
   4675
   4676DEFINE_SPAPR_MACHINE(6_2, "6.2", true);
   4677
   4678/*
   4679 * pseries-6.1
   4680 */
   4681static void spapr_machine_6_1_class_options(MachineClass *mc)
   4682{
   4683    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4684
   4685    spapr_machine_6_2_class_options(mc);
   4686    compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
   4687    smc->pre_6_2_numa_affinity = true;
   4688    mc->smp_props.prefer_sockets = true;
   4689}
   4690
   4691DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
   4692
   4693/*
   4694 * pseries-6.0
   4695 */
   4696static void spapr_machine_6_0_class_options(MachineClass *mc)
   4697{
   4698    spapr_machine_6_1_class_options(mc);
   4699    compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
   4700}
   4701
   4702DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
   4703
   4704/*
   4705 * pseries-5.2
   4706 */
   4707static void spapr_machine_5_2_class_options(MachineClass *mc)
   4708{
   4709    spapr_machine_6_0_class_options(mc);
   4710    compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
   4711}
   4712
   4713DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
   4714
   4715/*
   4716 * pseries-5.1
   4717 */
   4718static void spapr_machine_5_1_class_options(MachineClass *mc)
   4719{
   4720    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4721
   4722    spapr_machine_5_2_class_options(mc);
   4723    compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
   4724    smc->pre_5_2_numa_associativity = true;
   4725}
   4726
   4727DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
   4728
   4729/*
   4730 * pseries-5.0
   4731 */
   4732static void spapr_machine_5_0_class_options(MachineClass *mc)
   4733{
   4734    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4735    static GlobalProperty compat[] = {
   4736        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
   4737    };
   4738
   4739    spapr_machine_5_1_class_options(mc);
   4740    compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
   4741    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   4742    mc->numa_mem_supported = true;
   4743    smc->pre_5_1_assoc_refpoints = true;
   4744}
   4745
   4746DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
   4747
   4748/*
   4749 * pseries-4.2
   4750 */
   4751static void spapr_machine_4_2_class_options(MachineClass *mc)
   4752{
   4753    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4754
   4755    spapr_machine_5_0_class_options(mc);
   4756    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
   4757    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
   4758    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
   4759    smc->rma_limit = 16 * GiB;
   4760    mc->nvdimm_supported = false;
   4761}
   4762
   4763DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
   4764
   4765/*
   4766 * pseries-4.1
   4767 */
   4768static void spapr_machine_4_1_class_options(MachineClass *mc)
   4769{
   4770    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4771    static GlobalProperty compat[] = {
   4772        /* Only allow 4kiB and 64kiB IOMMU pagesizes */
   4773        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
   4774    };
   4775
   4776    spapr_machine_4_2_class_options(mc);
   4777    smc->linux_pci_probe = false;
   4778    smc->smp_threads_vsmt = false;
   4779    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
   4780    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   4781}
   4782
   4783DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
   4784
   4785/*
   4786 * pseries-4.0
   4787 */
   4788static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
   4789                              uint64_t *buid, hwaddr *pio,
   4790                              hwaddr *mmio32, hwaddr *mmio64,
   4791                              unsigned n_dma, uint32_t *liobns,
   4792                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
   4793{
   4794    if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
   4795                             liobns, nv2gpa, nv2atsd, errp)) {
   4796        return false;
   4797    }
   4798
   4799    *nv2gpa = 0;
   4800    *nv2atsd = 0;
   4801    return true;
   4802}
   4803static void spapr_machine_4_0_class_options(MachineClass *mc)
   4804{
   4805    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4806
   4807    spapr_machine_4_1_class_options(mc);
   4808    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
   4809    smc->phb_placement = phb_placement_4_0;
   4810    smc->irq = &spapr_irq_xics;
   4811    smc->pre_4_1_migration = true;
   4812}
   4813
   4814DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
   4815
   4816/*
   4817 * pseries-3.1
   4818 */
   4819static void spapr_machine_3_1_class_options(MachineClass *mc)
   4820{
   4821    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4822
   4823    spapr_machine_4_0_class_options(mc);
   4824    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
   4825
   4826    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
   4827    smc->update_dt_enabled = false;
   4828    smc->dr_phb_enabled = false;
   4829    smc->broken_host_serial_model = true;
   4830    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
   4831    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
   4832    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
   4833    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
   4834}
   4835
   4836DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
   4837
   4838/*
   4839 * pseries-3.0
   4840 */
   4841
   4842static void spapr_machine_3_0_class_options(MachineClass *mc)
   4843{
   4844    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4845
   4846    spapr_machine_3_1_class_options(mc);
   4847    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
   4848
   4849    smc->legacy_irq_allocation = true;
   4850    smc->nr_xirqs = 0x400;
   4851    smc->irq = &spapr_irq_xics_legacy;
   4852}
   4853
   4854DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
   4855
   4856/*
   4857 * pseries-2.12
   4858 */
   4859static void spapr_machine_2_12_class_options(MachineClass *mc)
   4860{
   4861    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4862    static GlobalProperty compat[] = {
   4863        { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
   4864        { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
   4865    };
   4866
   4867    spapr_machine_3_0_class_options(mc);
   4868    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
   4869    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   4870
   4871    /* We depend on kvm_enabled() to choose a default value for the
   4872     * hpt-max-page-size capability. Of course we can't do it here
   4873     * because this is too early and the HW accelerator isn't initialzed
   4874     * yet. Postpone this to machine init (see default_caps_with_cpu()).
   4875     */
   4876    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
   4877}
   4878
   4879DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
   4880
   4881static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
   4882{
   4883    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4884
   4885    spapr_machine_2_12_class_options(mc);
   4886    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
   4887    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
   4888    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
   4889}
   4890
   4891DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
   4892
   4893/*
   4894 * pseries-2.11
   4895 */
   4896
   4897static void spapr_machine_2_11_class_options(MachineClass *mc)
   4898{
   4899    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4900
   4901    spapr_machine_2_12_class_options(mc);
   4902    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
   4903    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
   4904}
   4905
   4906DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
   4907
   4908/*
   4909 * pseries-2.10
   4910 */
   4911
   4912static void spapr_machine_2_10_class_options(MachineClass *mc)
   4913{
   4914    spapr_machine_2_11_class_options(mc);
   4915    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
   4916}
   4917
   4918DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
   4919
   4920/*
   4921 * pseries-2.9
   4922 */
   4923
   4924static void spapr_machine_2_9_class_options(MachineClass *mc)
   4925{
   4926    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   4927    static GlobalProperty compat[] = {
   4928        { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
   4929    };
   4930
   4931    spapr_machine_2_10_class_options(mc);
   4932    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
   4933    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   4934    smc->pre_2_10_has_unused_icps = true;
   4935    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
   4936}
   4937
   4938DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
   4939
   4940/*
   4941 * pseries-2.8
   4942 */
   4943
   4944static void spapr_machine_2_8_class_options(MachineClass *mc)
   4945{
   4946    static GlobalProperty compat[] = {
   4947        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
   4948    };
   4949
   4950    spapr_machine_2_9_class_options(mc);
   4951    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
   4952    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   4953    mc->numa_mem_align_shift = 23;
   4954}
   4955
   4956DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
   4957
   4958/*
   4959 * pseries-2.7
   4960 */
   4961
   4962static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
   4963                              uint64_t *buid, hwaddr *pio,
   4964                              hwaddr *mmio32, hwaddr *mmio64,
   4965                              unsigned n_dma, uint32_t *liobns,
   4966                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
   4967{
   4968    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
   4969    const uint64_t base_buid = 0x800000020000000ULL;
   4970    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
   4971    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
   4972    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
   4973    const uint32_t max_index = 255;
   4974    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
   4975
   4976    uint64_t ram_top = MACHINE(spapr)->ram_size;
   4977    hwaddr phb0_base, phb_base;
   4978    int i;
   4979
   4980    /* Do we have device memory? */
   4981    if (MACHINE(spapr)->maxram_size > ram_top) {
   4982        /* Can't just use maxram_size, because there may be an
   4983         * alignment gap between normal and device memory regions
   4984         */
   4985        ram_top = MACHINE(spapr)->device_memory->base +
   4986            memory_region_size(&MACHINE(spapr)->device_memory->mr);
   4987    }
   4988
   4989    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
   4990
   4991    if (index > max_index) {
   4992        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
   4993                   max_index);
   4994        return false;
   4995    }
   4996
   4997    *buid = base_buid + index;
   4998    for (i = 0; i < n_dma; ++i) {
   4999        liobns[i] = SPAPR_PCI_LIOBN(index, i);
   5000    }
   5001
   5002    phb_base = phb0_base + index * phb_spacing;
   5003    *pio = phb_base + pio_offset;
   5004    *mmio32 = phb_base + mmio_offset;
   5005    /*
   5006     * We don't set the 64-bit MMIO window, relying on the PHB's
   5007     * fallback behaviour of automatically splitting a large "32-bit"
   5008     * window into contiguous 32-bit and 64-bit windows
   5009     */
   5010
   5011    *nv2gpa = 0;
   5012    *nv2atsd = 0;
   5013    return true;
   5014}
   5015
   5016static void spapr_machine_2_7_class_options(MachineClass *mc)
   5017{
   5018    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   5019    static GlobalProperty compat[] = {
   5020        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
   5021        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
   5022        { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
   5023        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
   5024    };
   5025
   5026    spapr_machine_2_8_class_options(mc);
   5027    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
   5028    mc->default_machine_opts = "modern-hotplug-events=off";
   5029    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
   5030    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   5031    smc->phb_placement = phb_placement_2_7;
   5032}
   5033
   5034DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
   5035
   5036/*
   5037 * pseries-2.6
   5038 */
   5039
   5040static void spapr_machine_2_6_class_options(MachineClass *mc)
   5041{
   5042    static GlobalProperty compat[] = {
   5043        { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
   5044    };
   5045
   5046    spapr_machine_2_7_class_options(mc);
   5047    mc->has_hotpluggable_cpus = false;
   5048    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
   5049    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   5050}
   5051
   5052DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
   5053
   5054/*
   5055 * pseries-2.5
   5056 */
   5057
   5058static void spapr_machine_2_5_class_options(MachineClass *mc)
   5059{
   5060    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   5061    static GlobalProperty compat[] = {
   5062        { "spapr-vlan", "use-rx-buffer-pools", "off" },
   5063    };
   5064
   5065    spapr_machine_2_6_class_options(mc);
   5066    smc->use_ohci_by_default = true;
   5067    compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
   5068    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   5069}
   5070
   5071DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
   5072
   5073/*
   5074 * pseries-2.4
   5075 */
   5076
   5077static void spapr_machine_2_4_class_options(MachineClass *mc)
   5078{
   5079    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
   5080
   5081    spapr_machine_2_5_class_options(mc);
   5082    smc->dr_lmb_enabled = false;
   5083    compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
   5084}
   5085
   5086DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
   5087
   5088/*
   5089 * pseries-2.3
   5090 */
   5091
   5092static void spapr_machine_2_3_class_options(MachineClass *mc)
   5093{
   5094    static GlobalProperty compat[] = {
   5095        { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
   5096    };
   5097    spapr_machine_2_4_class_options(mc);
   5098    compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
   5099    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   5100}
   5101DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
   5102
   5103/*
   5104 * pseries-2.2
   5105 */
   5106
   5107static void spapr_machine_2_2_class_options(MachineClass *mc)
   5108{
   5109    static GlobalProperty compat[] = {
   5110        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
   5111    };
   5112
   5113    spapr_machine_2_3_class_options(mc);
   5114    compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
   5115    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
   5116    mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
   5117}
   5118DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
   5119
   5120/*
   5121 * pseries-2.1
   5122 */
   5123
   5124static void spapr_machine_2_1_class_options(MachineClass *mc)
   5125{
   5126    spapr_machine_2_2_class_options(mc);
   5127    compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
   5128}
   5129DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
   5130
   5131static void spapr_machine_register_types(void)
   5132{
   5133    type_register_static(&spapr_machine_info);
   5134}
   5135
   5136type_init(spapr_machine_register_types)