cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

spapr_hcall.c (47377B)


      1#include "qemu/osdep.h"
      2#include "qemu/cutils.h"
      3#include "qapi/error.h"
      4#include "sysemu/hw_accel.h"
      5#include "sysemu/runstate.h"
      6#include "qemu/log.h"
      7#include "qemu/main-loop.h"
      8#include "qemu/module.h"
      9#include "qemu/error-report.h"
     10#include "exec/exec-all.h"
     11#include "helper_regs.h"
     12#include "hw/ppc/spapr.h"
     13#include "hw/ppc/spapr_cpu_core.h"
     14#include "mmu-hash64.h"
     15#include "cpu-models.h"
     16#include "trace.h"
     17#include "kvm_ppc.h"
     18#include "hw/ppc/fdt.h"
     19#include "hw/ppc/spapr_ovec.h"
     20#include "hw/ppc/spapr_numa.h"
     21#include "mmu-book3s-v3.h"
     22#include "hw/mem/memory-device.h"
     23
     24bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
     25{
     26    MachineState *machine = MACHINE(spapr);
     27    DeviceMemoryState *dms = machine->device_memory;
     28
     29    if (addr < machine->ram_size) {
     30        return true;
     31    }
     32    if ((addr >= dms->base)
     33        && ((addr - dms->base) < memory_region_size(&dms->mr))) {
     34        return true;
     35    }
     36
     37    return false;
     38}
     39
     40/* Convert a return code from the KVM ioctl()s implementing resize HPT
     41 * into a PAPR hypercall return code */
     42static target_ulong resize_hpt_convert_rc(int ret)
     43{
     44    if (ret >= 100000) {
     45        return H_LONG_BUSY_ORDER_100_SEC;
     46    } else if (ret >= 10000) {
     47        return H_LONG_BUSY_ORDER_10_SEC;
     48    } else if (ret >= 1000) {
     49        return H_LONG_BUSY_ORDER_1_SEC;
     50    } else if (ret >= 100) {
     51        return H_LONG_BUSY_ORDER_100_MSEC;
     52    } else if (ret >= 10) {
     53        return H_LONG_BUSY_ORDER_10_MSEC;
     54    } else if (ret > 0) {
     55        return H_LONG_BUSY_ORDER_1_MSEC;
     56    }
     57
     58    switch (ret) {
     59    case 0:
     60        return H_SUCCESS;
     61    case -EPERM:
     62        return H_AUTHORITY;
     63    case -EINVAL:
     64        return H_PARAMETER;
     65    case -ENXIO:
     66        return H_CLOSED;
     67    case -ENOSPC:
     68        return H_PTEG_FULL;
     69    case -EBUSY:
     70        return H_BUSY;
     71    case -ENOMEM:
     72        return H_NO_MEM;
     73    default:
     74        return H_HARDWARE;
     75    }
     76}
     77
     78static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
     79                                         SpaprMachineState *spapr,
     80                                         target_ulong opcode,
     81                                         target_ulong *args)
     82{
     83    target_ulong flags = args[0];
     84    int shift = args[1];
     85    uint64_t current_ram_size;
     86    int rc;
     87
     88    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
     89        return H_AUTHORITY;
     90    }
     91
     92    if (!spapr->htab_shift) {
     93        /* Radix guest, no HPT */
     94        return H_NOT_AVAILABLE;
     95    }
     96
     97    trace_spapr_h_resize_hpt_prepare(flags, shift);
     98
     99    if (flags != 0) {
    100        return H_PARAMETER;
    101    }
    102
    103    if (shift && ((shift < 18) || (shift > 46))) {
    104        return H_PARAMETER;
    105    }
    106
    107    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
    108
    109    /* We only allow the guest to allocate an HPT one order above what
    110     * we'd normally give them (to stop a small guest claiming a huge
    111     * chunk of resources in the HPT */
    112    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
    113        return H_RESOURCE;
    114    }
    115
    116    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
    117    if (rc != -ENOSYS) {
    118        return resize_hpt_convert_rc(rc);
    119    }
    120
    121    if (kvm_enabled()) {
    122        return H_HARDWARE;
    123    }
    124
    125    return softmmu_resize_hpt_prepare(cpu, spapr, shift);
    126}
    127
    128static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
    129{
    130    int ret;
    131
    132    cpu_synchronize_state(cs);
    133
    134    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
    135    if (ret < 0) {
    136        error_report("failed to push sregs to KVM: %s", strerror(-ret));
    137        exit(1);
    138    }
    139}
    140
    141void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
    142{
    143    CPUState *cs;
    144
    145    /*
    146     * This is a hack for the benefit of KVM PR - it abuses the SDR1
    147     * slot in kvm_sregs to communicate the userspace address of the
    148     * HPT
    149     */
    150    if (!kvm_enabled() || !spapr->htab) {
    151        return;
    152    }
    153
    154    CPU_FOREACH(cs) {
    155        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
    156    }
    157}
    158
    159static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
    160                                        SpaprMachineState *spapr,
    161                                        target_ulong opcode,
    162                                        target_ulong *args)
    163{
    164    target_ulong flags = args[0];
    165    target_ulong shift = args[1];
    166    int rc;
    167
    168    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
    169        return H_AUTHORITY;
    170    }
    171
    172    if (!spapr->htab_shift) {
    173        /* Radix guest, no HPT */
    174        return H_NOT_AVAILABLE;
    175    }
    176
    177    trace_spapr_h_resize_hpt_commit(flags, shift);
    178
    179    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
    180    if (rc != -ENOSYS) {
    181        rc = resize_hpt_convert_rc(rc);
    182        if (rc == H_SUCCESS) {
    183            /* Need to set the new htab_shift in the machine state */
    184            spapr->htab_shift = shift;
    185        }
    186        return rc;
    187    }
    188
    189    if (kvm_enabled()) {
    190        return H_HARDWARE;
    191    }
    192
    193    return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
    194}
    195
    196
    197
    198static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
    199                                target_ulong opcode, target_ulong *args)
    200{
    201    cpu_synchronize_state(CPU(cpu));
    202    cpu->env.spr[SPR_SPRG0] = args[0];
    203
    204    return H_SUCCESS;
    205}
    206
    207static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
    208                               target_ulong opcode, target_ulong *args)
    209{
    210    if (!ppc_has_spr(cpu, SPR_DABR)) {
    211        return H_HARDWARE;              /* DABR register not available */
    212    }
    213    cpu_synchronize_state(CPU(cpu));
    214
    215    if (ppc_has_spr(cpu, SPR_DABRX)) {
    216        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
    217    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
    218        return H_RESERVED_DABR;
    219    }
    220
    221    cpu->env.spr[SPR_DABR] = args[0];
    222    return H_SUCCESS;
    223}
    224
    225static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
    226                                target_ulong opcode, target_ulong *args)
    227{
    228    target_ulong dabrx = args[1];
    229
    230    if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
    231        return H_HARDWARE;
    232    }
    233
    234    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
    235        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
    236        return H_PARAMETER;
    237    }
    238
    239    cpu_synchronize_state(CPU(cpu));
    240    cpu->env.spr[SPR_DABRX] = dabrx;
    241    cpu->env.spr[SPR_DABR] = args[0];
    242
    243    return H_SUCCESS;
    244}
    245
    246static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
    247                                target_ulong opcode, target_ulong *args)
    248{
    249    target_ulong flags = args[0];
    250    hwaddr dst = args[1];
    251    hwaddr src = args[2];
    252    hwaddr len = TARGET_PAGE_SIZE;
    253    uint8_t *pdst, *psrc;
    254    target_long ret = H_SUCCESS;
    255
    256    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
    257                  | H_COPY_PAGE | H_ZERO_PAGE)) {
    258        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
    259                      flags);
    260        return H_PARAMETER;
    261    }
    262
    263    /* Map-in destination */
    264    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
    265        return H_PARAMETER;
    266    }
    267    pdst = cpu_physical_memory_map(dst, &len, true);
    268    if (!pdst || len != TARGET_PAGE_SIZE) {
    269        return H_PARAMETER;
    270    }
    271
    272    if (flags & H_COPY_PAGE) {
    273        /* Map-in source, copy to destination, and unmap source again */
    274        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
    275            ret = H_PARAMETER;
    276            goto unmap_out;
    277        }
    278        psrc = cpu_physical_memory_map(src, &len, false);
    279        if (!psrc || len != TARGET_PAGE_SIZE) {
    280            ret = H_PARAMETER;
    281            goto unmap_out;
    282        }
    283        memcpy(pdst, psrc, len);
    284        cpu_physical_memory_unmap(psrc, len, 0, len);
    285    } else if (flags & H_ZERO_PAGE) {
    286        memset(pdst, 0, len);          /* Just clear the destination page */
    287    }
    288
    289    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
    290        kvmppc_dcbst_range(cpu, pdst, len);
    291    }
    292    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
    293        if (kvm_enabled()) {
    294            kvmppc_icbi_range(cpu, pdst, len);
    295        } else {
    296            tb_flush(CPU(cpu));
    297        }
    298    }
    299
    300unmap_out:
    301    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
    302    return ret;
    303}
    304
    305#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
    306#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
    307#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
    308#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
    309#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
    310#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
    311
    312static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
    313{
    314    CPUState *cs = CPU(cpu);
    315    CPUPPCState *env = &cpu->env;
    316    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    317    uint16_t size;
    318    uint8_t tmp;
    319
    320    if (vpa == 0) {
    321        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
    322        return H_HARDWARE;
    323    }
    324
    325    if (vpa % env->dcache_line_size) {
    326        return H_PARAMETER;
    327    }
    328    /* FIXME: bounds check the address */
    329
    330    size = lduw_be_phys(cs->as, vpa + 0x4);
    331
    332    if (size < VPA_MIN_SIZE) {
    333        return H_PARAMETER;
    334    }
    335
    336    /* VPA is not allowed to cross a page boundary */
    337    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
    338        return H_PARAMETER;
    339    }
    340
    341    spapr_cpu->vpa_addr = vpa;
    342
    343    tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
    344    tmp |= VPA_SHARED_PROC_VAL;
    345    stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
    346
    347    return H_SUCCESS;
    348}
    349
    350static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
    351{
    352    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    353
    354    if (spapr_cpu->slb_shadow_addr) {
    355        return H_RESOURCE;
    356    }
    357
    358    if (spapr_cpu->dtl_addr) {
    359        return H_RESOURCE;
    360    }
    361
    362    spapr_cpu->vpa_addr = 0;
    363    return H_SUCCESS;
    364}
    365
    366static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
    367{
    368    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    369    uint32_t size;
    370
    371    if (addr == 0) {
    372        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
    373        return H_HARDWARE;
    374    }
    375
    376    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
    377    if (size < 0x8) {
    378        return H_PARAMETER;
    379    }
    380
    381    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
    382        return H_PARAMETER;
    383    }
    384
    385    if (!spapr_cpu->vpa_addr) {
    386        return H_RESOURCE;
    387    }
    388
    389    spapr_cpu->slb_shadow_addr = addr;
    390    spapr_cpu->slb_shadow_size = size;
    391
    392    return H_SUCCESS;
    393}
    394
    395static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
    396{
    397    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    398
    399    spapr_cpu->slb_shadow_addr = 0;
    400    spapr_cpu->slb_shadow_size = 0;
    401    return H_SUCCESS;
    402}
    403
    404static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
    405{
    406    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    407    uint32_t size;
    408
    409    if (addr == 0) {
    410        hcall_dprintf("Can't cope with DTL at logical 0\n");
    411        return H_HARDWARE;
    412    }
    413
    414    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
    415
    416    if (size < 48) {
    417        return H_PARAMETER;
    418    }
    419
    420    if (!spapr_cpu->vpa_addr) {
    421        return H_RESOURCE;
    422    }
    423
    424    spapr_cpu->dtl_addr = addr;
    425    spapr_cpu->dtl_size = size;
    426
    427    return H_SUCCESS;
    428}
    429
    430static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
    431{
    432    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    433
    434    spapr_cpu->dtl_addr = 0;
    435    spapr_cpu->dtl_size = 0;
    436
    437    return H_SUCCESS;
    438}
    439
    440static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
    441                                   target_ulong opcode, target_ulong *args)
    442{
    443    target_ulong flags = args[0];
    444    target_ulong procno = args[1];
    445    target_ulong vpa = args[2];
    446    target_ulong ret = H_PARAMETER;
    447    PowerPCCPU *tcpu;
    448
    449    tcpu = spapr_find_cpu(procno);
    450    if (!tcpu) {
    451        return H_PARAMETER;
    452    }
    453
    454    switch (flags) {
    455    case FLAGS_REGISTER_VPA:
    456        ret = register_vpa(tcpu, vpa);
    457        break;
    458
    459    case FLAGS_DEREGISTER_VPA:
    460        ret = deregister_vpa(tcpu, vpa);
    461        break;
    462
    463    case FLAGS_REGISTER_SLBSHADOW:
    464        ret = register_slb_shadow(tcpu, vpa);
    465        break;
    466
    467    case FLAGS_DEREGISTER_SLBSHADOW:
    468        ret = deregister_slb_shadow(tcpu, vpa);
    469        break;
    470
    471    case FLAGS_REGISTER_DTL:
    472        ret = register_dtl(tcpu, vpa);
    473        break;
    474
    475    case FLAGS_DEREGISTER_DTL:
    476        ret = deregister_dtl(tcpu, vpa);
    477        break;
    478    }
    479
    480    return ret;
    481}
    482
    483static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
    484                           target_ulong opcode, target_ulong *args)
    485{
    486    CPUPPCState *env = &cpu->env;
    487    CPUState *cs = CPU(cpu);
    488    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    489
    490    env->msr |= (1ULL << MSR_EE);
    491    hreg_compute_hflags(env);
    492
    493    if (spapr_cpu->prod) {
    494        spapr_cpu->prod = false;
    495        return H_SUCCESS;
    496    }
    497
    498    if (!cpu_has_work(cs)) {
    499        cs->halted = 1;
    500        cs->exception_index = EXCP_HLT;
    501        cs->exit_request = 1;
    502    }
    503
    504    return H_SUCCESS;
    505}
    506
    507/*
    508 * Confer to self, aka join. Cede could use the same pattern as well, if
    509 * EXCP_HLT can be changed to ECXP_HALTED.
    510 */
    511static target_ulong h_confer_self(PowerPCCPU *cpu)
    512{
    513    CPUState *cs = CPU(cpu);
    514    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    515
    516    if (spapr_cpu->prod) {
    517        spapr_cpu->prod = false;
    518        return H_SUCCESS;
    519    }
    520    cs->halted = 1;
    521    cs->exception_index = EXCP_HALTED;
    522    cs->exit_request = 1;
    523
    524    return H_SUCCESS;
    525}
    526
    527static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
    528                           target_ulong opcode, target_ulong *args)
    529{
    530    CPUPPCState *env = &cpu->env;
    531    CPUState *cs;
    532    bool last_unjoined = true;
    533
    534    if (env->msr & (1ULL << MSR_EE)) {
    535        return H_BAD_MODE;
    536    }
    537
    538    /*
    539     * Must not join the last CPU running. Interestingly, no such restriction
    540     * for H_CONFER-to-self, but that is probably not intended to be used
    541     * when H_JOIN is available.
    542     */
    543    CPU_FOREACH(cs) {
    544        PowerPCCPU *c = POWERPC_CPU(cs);
    545        CPUPPCState *e = &c->env;
    546        if (c == cpu) {
    547            continue;
    548        }
    549
    550        /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
    551        if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
    552            last_unjoined = false;
    553            break;
    554        }
    555    }
    556    if (last_unjoined) {
    557        return H_CONTINUE;
    558    }
    559
    560    return h_confer_self(cpu);
    561}
    562
    563static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
    564                           target_ulong opcode, target_ulong *args)
    565{
    566    target_long target = args[0];
    567    uint32_t dispatch = args[1];
    568    CPUState *cs = CPU(cpu);
    569    SpaprCpuState *spapr_cpu;
    570
    571    /*
    572     * -1 means confer to all other CPUs without dispatch counter check,
    573     *  otherwise it's a targeted confer.
    574     */
    575    if (target != -1) {
    576        PowerPCCPU *target_cpu = spapr_find_cpu(target);
    577        uint32_t target_dispatch;
    578
    579        if (!target_cpu) {
    580            return H_PARAMETER;
    581        }
    582
    583        /*
    584         * target == self is a special case, we wait until prodded, without
    585         * dispatch counter check.
    586         */
    587        if (cpu == target_cpu) {
    588            return h_confer_self(cpu);
    589        }
    590
    591        spapr_cpu = spapr_cpu_state(target_cpu);
    592        if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
    593            return H_SUCCESS;
    594        }
    595
    596        target_dispatch = ldl_be_phys(cs->as,
    597                                  spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
    598        if (target_dispatch != dispatch) {
    599            return H_SUCCESS;
    600        }
    601
    602        /*
    603         * The targeted confer does not do anything special beyond yielding
    604         * the current vCPU, but even this should be better than nothing.
    605         * At least for single-threaded tcg, it gives the target a chance to
    606         * run before we run again. Multi-threaded tcg does not really do
    607         * anything with EXCP_YIELD yet.
    608         */
    609    }
    610
    611    cs->exception_index = EXCP_YIELD;
    612    cs->exit_request = 1;
    613    cpu_loop_exit(cs);
    614
    615    return H_SUCCESS;
    616}
    617
    618static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
    619                           target_ulong opcode, target_ulong *args)
    620{
    621    target_long target = args[0];
    622    PowerPCCPU *tcpu;
    623    CPUState *cs;
    624    SpaprCpuState *spapr_cpu;
    625
    626    tcpu = spapr_find_cpu(target);
    627    cs = CPU(tcpu);
    628    if (!cs) {
    629        return H_PARAMETER;
    630    }
    631
    632    spapr_cpu = spapr_cpu_state(tcpu);
    633    spapr_cpu->prod = true;
    634    cs->halted = 0;
    635    qemu_cpu_kick(cs);
    636
    637    return H_SUCCESS;
    638}
    639
    640static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
    641                           target_ulong opcode, target_ulong *args)
    642{
    643    target_ulong rtas_r3 = args[0];
    644    uint32_t token = rtas_ld(rtas_r3, 0);
    645    uint32_t nargs = rtas_ld(rtas_r3, 1);
    646    uint32_t nret = rtas_ld(rtas_r3, 2);
    647
    648    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
    649                           nret, rtas_r3 + 12 + 4*nargs);
    650}
    651
    652static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
    653                                   target_ulong opcode, target_ulong *args)
    654{
    655    CPUState *cs = CPU(cpu);
    656    target_ulong size = args[0];
    657    target_ulong addr = args[1];
    658
    659    switch (size) {
    660    case 1:
    661        args[0] = ldub_phys(cs->as, addr);
    662        return H_SUCCESS;
    663    case 2:
    664        args[0] = lduw_phys(cs->as, addr);
    665        return H_SUCCESS;
    666    case 4:
    667        args[0] = ldl_phys(cs->as, addr);
    668        return H_SUCCESS;
    669    case 8:
    670        args[0] = ldq_phys(cs->as, addr);
    671        return H_SUCCESS;
    672    }
    673    return H_PARAMETER;
    674}
    675
    676static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
    677                                    target_ulong opcode, target_ulong *args)
    678{
    679    CPUState *cs = CPU(cpu);
    680
    681    target_ulong size = args[0];
    682    target_ulong addr = args[1];
    683    target_ulong val  = args[2];
    684
    685    switch (size) {
    686    case 1:
    687        stb_phys(cs->as, addr, val);
    688        return H_SUCCESS;
    689    case 2:
    690        stw_phys(cs->as, addr, val);
    691        return H_SUCCESS;
    692    case 4:
    693        stl_phys(cs->as, addr, val);
    694        return H_SUCCESS;
    695    case 8:
    696        stq_phys(cs->as, addr, val);
    697        return H_SUCCESS;
    698    }
    699    return H_PARAMETER;
    700}
    701
    702static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
    703                                    target_ulong opcode, target_ulong *args)
    704{
    705    CPUState *cs = CPU(cpu);
    706
    707    target_ulong dst   = args[0]; /* Destination address */
    708    target_ulong src   = args[1]; /* Source address */
    709    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
    710    target_ulong count = args[3]; /* Element count */
    711    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
    712    uint64_t tmp;
    713    unsigned int mask = (1 << esize) - 1;
    714    int step = 1 << esize;
    715
    716    if (count > 0x80000000) {
    717        return H_PARAMETER;
    718    }
    719
    720    if ((dst & mask) || (src & mask) || (op > 1)) {
    721        return H_PARAMETER;
    722    }
    723
    724    if (dst >= src && dst < (src + (count << esize))) {
    725            dst = dst + ((count - 1) << esize);
    726            src = src + ((count - 1) << esize);
    727            step = -step;
    728    }
    729
    730    while (count--) {
    731        switch (esize) {
    732        case 0:
    733            tmp = ldub_phys(cs->as, src);
    734            break;
    735        case 1:
    736            tmp = lduw_phys(cs->as, src);
    737            break;
    738        case 2:
    739            tmp = ldl_phys(cs->as, src);
    740            break;
    741        case 3:
    742            tmp = ldq_phys(cs->as, src);
    743            break;
    744        default:
    745            return H_PARAMETER;
    746        }
    747        if (op == 1) {
    748            tmp = ~tmp;
    749        }
    750        switch (esize) {
    751        case 0:
    752            stb_phys(cs->as, dst, tmp);
    753            break;
    754        case 1:
    755            stw_phys(cs->as, dst, tmp);
    756            break;
    757        case 2:
    758            stl_phys(cs->as, dst, tmp);
    759            break;
    760        case 3:
    761            stq_phys(cs->as, dst, tmp);
    762            break;
    763        }
    764        dst = dst + step;
    765        src = src + step;
    766    }
    767
    768    return H_SUCCESS;
    769}
    770
    771static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
    772                                   target_ulong opcode, target_ulong *args)
    773{
    774    /* Nothing to do on emulation, KVM will trap this in the kernel */
    775    return H_SUCCESS;
    776}
    777
    778static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
    779                                   target_ulong opcode, target_ulong *args)
    780{
    781    /* Nothing to do on emulation, KVM will trap this in the kernel */
    782    return H_SUCCESS;
    783}
    784
    785static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
    786                                           SpaprMachineState *spapr,
    787                                           target_ulong mflags,
    788                                           target_ulong value1,
    789                                           target_ulong value2)
    790{
    791    if (value1) {
    792        return H_P3;
    793    }
    794    if (value2) {
    795        return H_P4;
    796    }
    797
    798    switch (mflags) {
    799    case H_SET_MODE_ENDIAN_BIG:
    800        spapr_set_all_lpcrs(0, LPCR_ILE);
    801        spapr_pci_switch_vga(spapr, true);
    802        return H_SUCCESS;
    803
    804    case H_SET_MODE_ENDIAN_LITTLE:
    805        spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
    806        spapr_pci_switch_vga(spapr, false);
    807        return H_SUCCESS;
    808    }
    809
    810    return H_UNSUPPORTED_FLAG;
    811}
    812
    813static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
    814                                                        target_ulong mflags,
    815                                                        target_ulong value1,
    816                                                        target_ulong value2)
    817{
    818    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
    819
    820    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
    821        return H_P2;
    822    }
    823    if (value1) {
    824        return H_P3;
    825    }
    826    if (value2) {
    827        return H_P4;
    828    }
    829
    830    if (mflags == 1) {
    831        /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
    832        return H_UNSUPPORTED_FLAG;
    833    }
    834
    835    if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
    836        /* AIL=2 is reserved in POWER10 (ISA v3.1) */
    837        return H_UNSUPPORTED_FLAG;
    838    }
    839
    840    spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
    841
    842    return H_SUCCESS;
    843}
    844
    845static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
    846                               target_ulong opcode, target_ulong *args)
    847{
    848    target_ulong resource = args[1];
    849    target_ulong ret = H_P2;
    850
    851    switch (resource) {
    852    case H_SET_MODE_RESOURCE_LE:
    853        ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
    854        break;
    855    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
    856        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
    857                                                  args[2], args[3]);
    858        break;
    859    }
    860
    861    return ret;
    862}
    863
    864static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
    865                                target_ulong opcode, target_ulong *args)
    866{
    867    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
    868                  opcode, " (H_CLEAN_SLB)");
    869    return H_FUNCTION;
    870}
    871
    872static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
    873                                     target_ulong opcode, target_ulong *args)
    874{
    875    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
    876                  opcode, " (H_INVALIDATE_PID)");
    877    return H_FUNCTION;
    878}
    879
    880static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
    881                                       uint64_t patbe_old, uint64_t patbe_new)
    882{
    883    /*
    884     * We have 4 Options:
    885     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
    886     * HASH->RADIX                                  : Free HPT
    887     * RADIX->HASH                                  : Allocate HPT
    888     * NOTHING->HASH                                : Allocate HPT
    889     * Note: NOTHING implies the case where we said the guest could choose
    890     *       later and so assumed radix and now it's called H_REG_PROC_TBL
    891     */
    892
    893    if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
    894        /* We assume RADIX, so this catches all the "Do Nothing" cases */
    895    } else if (!(patbe_old & PATE1_GR)) {
    896        /* HASH->RADIX : Free HPT */
    897        spapr_free_hpt(spapr);
    898    } else if (!(patbe_new & PATE1_GR)) {
    899        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
    900        spapr_setup_hpt(spapr);
    901    }
    902    return;
    903}
    904
    905#define FLAGS_MASK              0x01FULL
    906#define FLAG_MODIFY             0x10
    907#define FLAG_REGISTER           0x08
    908#define FLAG_RADIX              0x04
    909#define FLAG_HASH_PROC_TBL      0x02
    910#define FLAG_GTSE               0x01
    911
    912static target_ulong h_register_process_table(PowerPCCPU *cpu,
    913                                             SpaprMachineState *spapr,
    914                                             target_ulong opcode,
    915                                             target_ulong *args)
    916{
    917    target_ulong flags = args[0];
    918    target_ulong proc_tbl = args[1];
    919    target_ulong page_size = args[2];
    920    target_ulong table_size = args[3];
    921    target_ulong update_lpcr = 0;
    922    uint64_t cproc;
    923
    924    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
    925        return H_PARAMETER;
    926    }
    927    if (flags & FLAG_MODIFY) {
    928        if (flags & FLAG_REGISTER) {
    929            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
    930                if (proc_tbl & 0xfff || proc_tbl >> 60) {
    931                    return H_P2;
    932                } else if (page_size) {
    933                    return H_P3;
    934                } else if (table_size > 24) {
    935                    return H_P4;
    936                }
    937                cproc = PATE1_GR | proc_tbl | table_size;
    938            } else { /* Register new HPT process table */
    939                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
    940                    /* TODO - Not Supported */
    941                    /* Technically caused by flag bits => H_PARAMETER */
    942                    return H_PARAMETER;
    943                } else { /* Hash with SLB */
    944                    if (proc_tbl >> 38) {
    945                        return H_P2;
    946                    } else if (page_size & ~0x7) {
    947                        return H_P3;
    948                    } else if (table_size > 24) {
    949                        return H_P4;
    950                    }
    951                }
    952                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
    953            }
    954
    955        } else { /* Deregister current process table */
    956            /*
    957             * Set to benign value: (current GR) | 0. This allows
    958             * deregistration in KVM to succeed even if the radix bit
    959             * in flags doesn't match the radix bit in the old PATE.
    960             */
    961            cproc = spapr->patb_entry & PATE1_GR;
    962        }
    963    } else { /* Maintain current registration */
    964        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
    965            /* Technically caused by flag bits => H_PARAMETER */
    966            return H_PARAMETER; /* Existing Process Table Mismatch */
    967        }
    968        cproc = spapr->patb_entry;
    969    }
    970
    971    /* Check if we need to setup OR free the hpt */
    972    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
    973
    974    spapr->patb_entry = cproc; /* Save new process table */
    975
    976    /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
    977    if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
    978        update_lpcr |= (LPCR_UPRT | LPCR_HR);
    979    else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
    980        update_lpcr |= LPCR_UPRT;
    981    if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
    982        update_lpcr |= LPCR_GTSE;
    983
    984    spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
    985
    986    if (kvm_enabled()) {
    987        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
    988                                       flags & FLAG_GTSE, cproc);
    989    }
    990    return H_SUCCESS;
    991}
    992
    993#define H_SIGNAL_SYS_RESET_ALL         -1
    994#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
    995
    996static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
    997                                       SpaprMachineState *spapr,
    998                                       target_ulong opcode, target_ulong *args)
    999{
   1000    target_long target = args[0];
   1001    CPUState *cs;
   1002
   1003    if (target < 0) {
   1004        /* Broadcast */
   1005        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
   1006            return H_PARAMETER;
   1007        }
   1008
   1009        CPU_FOREACH(cs) {
   1010            PowerPCCPU *c = POWERPC_CPU(cs);
   1011
   1012            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
   1013                if (c == cpu) {
   1014                    continue;
   1015                }
   1016            }
   1017            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
   1018        }
   1019        return H_SUCCESS;
   1020
   1021    } else {
   1022        /* Unicast */
   1023        cs = CPU(spapr_find_cpu(target));
   1024        if (cs) {
   1025            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
   1026            return H_SUCCESS;
   1027        }
   1028        return H_PARAMETER;
   1029    }
   1030}
   1031
   1032/* Returns either a logical PVR or zero if none was found */
   1033static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
   1034                              target_ulong *addr, bool *raw_mode_supported)
   1035{
   1036    bool explicit_match = false; /* Matched the CPU's real PVR */
   1037    uint32_t best_compat = 0;
   1038    int i;
   1039
   1040    /*
   1041     * We scan the supplied table of PVRs looking for two things
   1042     *   1. Is our real CPU PVR in the list?
   1043     *   2. What's the "best" listed logical PVR
   1044     */
   1045    for (i = 0; i < 512; ++i) {
   1046        uint32_t pvr, pvr_mask;
   1047
   1048        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
   1049        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
   1050        *addr += 8;
   1051
   1052        if (~pvr_mask & pvr) {
   1053            break; /* Terminator record */
   1054        }
   1055
   1056        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
   1057            explicit_match = true;
   1058        } else {
   1059            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
   1060                best_compat = pvr;
   1061            }
   1062        }
   1063    }
   1064
   1065    *raw_mode_supported = explicit_match;
   1066
   1067    /* Parsing finished */
   1068    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
   1069
   1070    return best_compat;
   1071}
   1072
   1073static
   1074target_ulong do_client_architecture_support(PowerPCCPU *cpu,
   1075                                            SpaprMachineState *spapr,
   1076                                            target_ulong vec,
   1077                                            target_ulong fdt_bufsize)
   1078{
   1079    target_ulong ov_table; /* Working address in data buffer */
   1080    uint32_t cas_pvr;
   1081    SpaprOptionVector *ov1_guest, *ov5_guest;
   1082    bool guest_radix;
   1083    bool raw_mode_supported = false;
   1084    bool guest_xive;
   1085    CPUState *cs;
   1086    void *fdt;
   1087    uint32_t max_compat = spapr->max_compat_pvr;
   1088
   1089    /* CAS is supposed to be called early when only the boot vCPU is active. */
   1090    CPU_FOREACH(cs) {
   1091        if (cs == CPU(cpu)) {
   1092            continue;
   1093        }
   1094        if (!cs->halted) {
   1095            warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
   1096            return H_MULTI_THREADS_ACTIVE;
   1097        }
   1098    }
   1099
   1100    cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
   1101    if (!cas_pvr && (!raw_mode_supported || max_compat)) {
   1102        /*
   1103         * We couldn't find a suitable compatibility mode, and either
   1104         * the guest doesn't support "raw" mode for this CPU, or "raw"
   1105         * mode is disabled because a maximum compat mode is set.
   1106         */
   1107        error_report("Couldn't negotiate a suitable PVR during CAS");
   1108        return H_HARDWARE;
   1109    }
   1110
   1111    /* Update CPUs */
   1112    if (cpu->compat_pvr != cas_pvr) {
   1113        Error *local_err = NULL;
   1114
   1115        if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
   1116            /* We fail to set compat mode (likely because running with KVM PR),
   1117             * but maybe we can fallback to raw mode if the guest supports it.
   1118             */
   1119            if (!raw_mode_supported) {
   1120                error_report_err(local_err);
   1121                return H_HARDWARE;
   1122            }
   1123            error_free(local_err);
   1124        }
   1125    }
   1126
   1127    /* For the future use: here @ov_table points to the first option vector */
   1128    ov_table = vec;
   1129
   1130    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
   1131    if (!ov1_guest) {
   1132        warn_report("guest didn't provide option vector 1");
   1133        return H_PARAMETER;
   1134    }
   1135    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
   1136    if (!ov5_guest) {
   1137        spapr_ovec_cleanup(ov1_guest);
   1138        warn_report("guest didn't provide option vector 5");
   1139        return H_PARAMETER;
   1140    }
   1141    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
   1142        error_report("guest requested hash and radix MMU, which is invalid.");
   1143        exit(EXIT_FAILURE);
   1144    }
   1145    if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
   1146        error_report("guest requested an invalid interrupt mode");
   1147        exit(EXIT_FAILURE);
   1148    }
   1149
   1150    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
   1151
   1152    guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
   1153
   1154    /*
   1155     * HPT resizing is a bit of a special case, because when enabled
   1156     * we assume an HPT guest will support it until it says it
   1157     * doesn't, instead of assuming it won't support it until it says
   1158     * it does.  Strictly speaking that approach could break for
   1159     * guests which don't make a CAS call, but those are so old we
   1160     * don't care about them.  Without that assumption we'd have to
   1161     * make at least a temporary allocation of an HPT sized for max
   1162     * memory, which could be impossibly difficult under KVM HV if
   1163     * maxram is large.
   1164     */
   1165    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
   1166        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
   1167
   1168        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
   1169            error_report(
   1170                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
   1171            exit(1);
   1172        }
   1173
   1174        if (spapr->htab_shift < maxshift) {
   1175            /* Guest doesn't know about HPT resizing, so we
   1176             * pre-emptively resize for the maximum permitted RAM.  At
   1177             * the point this is called, nothing should have been
   1178             * entered into the existing HPT */
   1179            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
   1180            push_sregs_to_kvm_pr(spapr);
   1181        }
   1182    }
   1183
   1184    /* NOTE: there are actually a number of ov5 bits where input from the
   1185     * guest is always zero, and the platform/QEMU enables them independently
   1186     * of guest input. To model these properly we'd want some sort of mask,
   1187     * but since they only currently apply to memory migration as defined
   1188     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
   1189     * to worry about this for now.
   1190     */
   1191
   1192    /* full range of negotiated ov5 capabilities */
   1193    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
   1194    spapr_ovec_cleanup(ov5_guest);
   1195
   1196    spapr_check_mmu_mode(guest_radix);
   1197
   1198    spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
   1199    spapr_ovec_cleanup(ov1_guest);
   1200
   1201    /*
   1202     * Check for NUMA affinity conditions now that we know which NUMA
   1203     * affinity the guest will use.
   1204     */
   1205    spapr_numa_associativity_check(spapr);
   1206
   1207    /*
   1208     * Ensure the guest asks for an interrupt mode we support;
   1209     * otherwise terminate the boot.
   1210     */
   1211    if (guest_xive) {
   1212        if (!spapr->irq->xive) {
   1213            error_report(
   1214"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
   1215            exit(EXIT_FAILURE);
   1216        }
   1217    } else {
   1218        if (!spapr->irq->xics) {
   1219            error_report(
   1220"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
   1221            exit(EXIT_FAILURE);
   1222        }
   1223    }
   1224
   1225    spapr_irq_update_active_intc(spapr);
   1226
   1227    /*
   1228     * Process all pending hot-plug/unplug requests now. An updated full
   1229     * rendered FDT will be returned to the guest.
   1230     */
   1231    spapr_drc_reset_all(spapr);
   1232    spapr_clear_pending_hotplug_events(spapr);
   1233
   1234    /*
   1235     * If spapr_machine_reset() did not set up a HPT but one is necessary
   1236     * (because the guest isn't going to use radix) then set it up here.
   1237     */
   1238    if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
   1239        /* legacy hash or new hash: */
   1240        spapr_setup_hpt(spapr);
   1241    }
   1242
   1243    fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
   1244    g_free(spapr->fdt_blob);
   1245    spapr->fdt_size = fdt_totalsize(fdt);
   1246    spapr->fdt_initial_size = spapr->fdt_size;
   1247    spapr->fdt_blob = fdt;
   1248
   1249    return H_SUCCESS;
   1250}
   1251
   1252static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
   1253                                                  SpaprMachineState *spapr,
   1254                                                  target_ulong opcode,
   1255                                                  target_ulong *args)
   1256{
   1257    target_ulong vec = ppc64_phys_to_real(args[0]);
   1258    target_ulong fdt_buf = args[1];
   1259    target_ulong fdt_bufsize = args[2];
   1260    target_ulong ret;
   1261    SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
   1262
   1263    if (fdt_bufsize < sizeof(hdr)) {
   1264        error_report("SLOF provided insufficient CAS buffer "
   1265                     TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
   1266        exit(EXIT_FAILURE);
   1267    }
   1268
   1269    fdt_bufsize -= sizeof(hdr);
   1270
   1271    ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
   1272    if (ret == H_SUCCESS) {
   1273        _FDT((fdt_pack(spapr->fdt_blob)));
   1274        spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
   1275        spapr->fdt_initial_size = spapr->fdt_size;
   1276
   1277        cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
   1278        cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
   1279                                  spapr->fdt_size);
   1280        trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
   1281    }
   1282
   1283    return ret;
   1284}
   1285
   1286target_ulong spapr_vof_client_architecture_support(MachineState *ms,
   1287                                                   CPUState *cs,
   1288                                                   target_ulong ovec_addr)
   1289{
   1290    SpaprMachineState *spapr = SPAPR_MACHINE(ms);
   1291
   1292    target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
   1293                                                      ovec_addr, FDT_MAX_SIZE);
   1294
   1295    /*
   1296     * This adds stdout and generates phandles for boottime and CAS FDTs.
   1297     * It is alright to update the FDT here as do_client_architecture_support()
   1298     * does not pack it.
   1299     */
   1300    spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
   1301
   1302    return ret;
   1303}
   1304
   1305static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
   1306                                              SpaprMachineState *spapr,
   1307                                              target_ulong opcode,
   1308                                              target_ulong *args)
   1309{
   1310    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
   1311                               ~H_CPU_CHAR_THR_RECONF_TRIG;
   1312    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
   1313    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
   1314    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
   1315    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
   1316    uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
   1317                                                     SPAPR_CAP_CCF_ASSIST);
   1318
   1319    switch (safe_cache) {
   1320    case SPAPR_CAP_WORKAROUND:
   1321        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
   1322        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
   1323        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
   1324        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
   1325        break;
   1326    case SPAPR_CAP_FIXED:
   1327        behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
   1328        behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
   1329        break;
   1330    default: /* broken */
   1331        assert(safe_cache == SPAPR_CAP_BROKEN);
   1332        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
   1333        break;
   1334    }
   1335
   1336    switch (safe_bounds_check) {
   1337    case SPAPR_CAP_WORKAROUND:
   1338        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
   1339        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
   1340        break;
   1341    case SPAPR_CAP_FIXED:
   1342        break;
   1343    default: /* broken */
   1344        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
   1345        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
   1346        break;
   1347    }
   1348
   1349    switch (safe_indirect_branch) {
   1350    case SPAPR_CAP_FIXED_NA:
   1351        break;
   1352    case SPAPR_CAP_FIXED_CCD:
   1353        characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
   1354        break;
   1355    case SPAPR_CAP_FIXED_IBS:
   1356        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
   1357        break;
   1358    case SPAPR_CAP_WORKAROUND:
   1359        behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
   1360        if (count_cache_flush_assist) {
   1361            characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
   1362        }
   1363        break;
   1364    default: /* broken */
   1365        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
   1366        break;
   1367    }
   1368
   1369    args[0] = characteristics;
   1370    args[1] = behaviour;
   1371    return H_SUCCESS;
   1372}
   1373
   1374static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
   1375                                target_ulong opcode, target_ulong *args)
   1376{
   1377    target_ulong dt = ppc64_phys_to_real(args[0]);
   1378    struct fdt_header hdr = { 0 };
   1379    unsigned cb;
   1380    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
   1381    void *fdt;
   1382
   1383    cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
   1384    cb = fdt32_to_cpu(hdr.totalsize);
   1385
   1386    if (!smc->update_dt_enabled) {
   1387        return H_SUCCESS;
   1388    }
   1389
   1390    /* Check that the fdt did not grow out of proportion */
   1391    if (cb > spapr->fdt_initial_size * 2) {
   1392        trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
   1393                                          fdt32_to_cpu(hdr.magic));
   1394        return H_PARAMETER;
   1395    }
   1396
   1397    fdt = g_malloc0(cb);
   1398    cpu_physical_memory_read(dt, fdt, cb);
   1399
   1400    /* Check the fdt consistency */
   1401    if (fdt_check_full(fdt, cb)) {
   1402        trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
   1403                                           fdt32_to_cpu(hdr.magic));
   1404        return H_PARAMETER;
   1405    }
   1406
   1407    g_free(spapr->fdt_blob);
   1408    spapr->fdt_size = cb;
   1409    spapr->fdt_blob = fdt;
   1410    trace_spapr_update_dt(cb);
   1411
   1412    return H_SUCCESS;
   1413}
   1414
   1415static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
   1416static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
   1417static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
   1418
   1419void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
   1420{
   1421    spapr_hcall_fn *slot;
   1422
   1423    if (opcode <= MAX_HCALL_OPCODE) {
   1424        assert((opcode & 0x3) == 0);
   1425
   1426        slot = &papr_hypercall_table[opcode / 4];
   1427    } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
   1428        /* we only have SVM-related hcall numbers assigned in multiples of 4 */
   1429        assert((opcode & 0x3) == 0);
   1430
   1431        slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
   1432    } else {
   1433        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
   1434
   1435        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
   1436    }
   1437
   1438    assert(!(*slot));
   1439    *slot = fn;
   1440}
   1441
   1442target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
   1443                             target_ulong *args)
   1444{
   1445    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
   1446
   1447    if ((opcode <= MAX_HCALL_OPCODE)
   1448        && ((opcode & 0x3) == 0)) {
   1449        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
   1450
   1451        if (fn) {
   1452            return fn(cpu, spapr, opcode, args);
   1453        }
   1454    } else if ((opcode >= SVM_HCALL_BASE) &&
   1455               (opcode <= SVM_HCALL_MAX)) {
   1456        spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
   1457
   1458        if (fn) {
   1459            return fn(cpu, spapr, opcode, args);
   1460        }
   1461    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
   1462               (opcode <= KVMPPC_HCALL_MAX)) {
   1463        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
   1464
   1465        if (fn) {
   1466            return fn(cpu, spapr, opcode, args);
   1467        }
   1468    }
   1469
   1470    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
   1471                  opcode);
   1472    return H_FUNCTION;
   1473}
   1474
   1475#ifndef CONFIG_TCG
   1476static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
   1477                            target_ulong opcode, target_ulong *args)
   1478{
   1479    g_assert_not_reached();
   1480}
   1481
   1482static void hypercall_register_softmmu(void)
   1483{
   1484    /* hcall-pft */
   1485    spapr_register_hypercall(H_ENTER, h_softmmu);
   1486    spapr_register_hypercall(H_REMOVE, h_softmmu);
   1487    spapr_register_hypercall(H_PROTECT, h_softmmu);
   1488    spapr_register_hypercall(H_READ, h_softmmu);
   1489
   1490    /* hcall-bulk */
   1491    spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
   1492}
   1493#else
   1494static void hypercall_register_softmmu(void)
   1495{
   1496    /* DO NOTHING */
   1497}
   1498#endif
   1499
   1500static void hypercall_register_types(void)
   1501{
   1502    hypercall_register_softmmu();
   1503
   1504    /* hcall-hpt-resize */
   1505    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
   1506    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
   1507
   1508    /* hcall-splpar */
   1509    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
   1510    spapr_register_hypercall(H_CEDE, h_cede);
   1511    spapr_register_hypercall(H_CONFER, h_confer);
   1512    spapr_register_hypercall(H_PROD, h_prod);
   1513
   1514    /* hcall-join */
   1515    spapr_register_hypercall(H_JOIN, h_join);
   1516
   1517    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
   1518
   1519    /* processor register resource access h-calls */
   1520    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
   1521    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
   1522    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
   1523    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
   1524    spapr_register_hypercall(H_SET_MODE, h_set_mode);
   1525
   1526    /* In Memory Table MMU h-calls */
   1527    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
   1528    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
   1529    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
   1530
   1531    /* hcall-get-cpu-characteristics */
   1532    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
   1533                             h_get_cpu_characteristics);
   1534
   1535    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
   1536     * here between the "CI" and the "CACHE" variants, they will use whatever
   1537     * mapping attributes qemu is using. When using KVM, the kernel will
   1538     * enforce the attributes more strongly
   1539     */
   1540    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
   1541    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
   1542    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
   1543    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
   1544    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
   1545    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
   1546    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
   1547
   1548    /* qemu/KVM-PPC specific hcalls */
   1549    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
   1550
   1551    /* ibm,client-architecture-support support */
   1552    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
   1553
   1554    spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
   1555}
   1556
   1557type_init(hypercall_register_types)