cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

spike.c (13745B)


      1/*
      2 * QEMU RISC-V Spike Board
      3 *
      4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
      5 * Copyright (c) 2017-2018 SiFive, Inc.
      6 *
      7 * This provides a RISC-V Board with the following devices:
      8 *
      9 * 0) HTIF Console and Poweroff
     10 * 1) CLINT (Timer and IPI)
     11 * 2) PLIC (Platform Level Interrupt Controller)
     12 *
     13 * This program is free software; you can redistribute it and/or modify it
     14 * under the terms and conditions of the GNU General Public License,
     15 * version 2 or later, as published by the Free Software Foundation.
     16 *
     17 * This program is distributed in the hope it will be useful, but WITHOUT
     18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     19 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     20 * more details.
     21 *
     22 * You should have received a copy of the GNU General Public License along with
     23 * this program.  If not, see <http://www.gnu.org/licenses/>.
     24 */
     25
     26#include "qemu/osdep.h"
     27#include "qemu/error-report.h"
     28#include "qapi/error.h"
     29#include "hw/boards.h"
     30#include "hw/loader.h"
     31#include "hw/sysbus.h"
     32#include "target/riscv/cpu.h"
     33#include "hw/riscv/riscv_hart.h"
     34#include "hw/riscv/spike.h"
     35#include "hw/riscv/boot.h"
     36#include "hw/riscv/numa.h"
     37#include "hw/char/riscv_htif.h"
     38#include "hw/intc/riscv_aclint.h"
     39#include "chardev/char.h"
     40#include "sysemu/device_tree.h"
     41#include "sysemu/sysemu.h"
     42
     43static const MemMapEntry spike_memmap[] = {
     44    [SPIKE_MROM] =     {     0x1000,     0xf000 },
     45    [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
     46    [SPIKE_DRAM] =     { 0x80000000,        0x0 },
     47};
     48
     49static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
     50                       uint64_t mem_size, const char *cmdline, bool is_32_bit)
     51{
     52    void *fdt;
     53    uint64_t addr, size;
     54    unsigned long clint_addr;
     55    int cpu, socket;
     56    MachineState *mc = MACHINE(s);
     57    uint32_t *clint_cells;
     58    uint32_t cpu_phandle, intc_phandle, phandle = 1;
     59    char *name, *mem_name, *clint_name, *clust_name;
     60    char *core_name, *cpu_name, *intc_name;
     61    static const char * const clint_compat[2] = {
     62        "sifive,clint0", "riscv,clint0"
     63    };
     64
     65    fdt = s->fdt = create_device_tree(&s->fdt_size);
     66    if (!fdt) {
     67        error_report("create_device_tree() failed");
     68        exit(1);
     69    }
     70
     71    qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
     72    qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
     73    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
     74    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
     75
     76    qemu_fdt_add_subnode(fdt, "/htif");
     77    qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
     78
     79    qemu_fdt_add_subnode(fdt, "/soc");
     80    qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
     81    qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
     82    qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
     83    qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
     84
     85    qemu_fdt_add_subnode(fdt, "/cpus");
     86    qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
     87        RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
     88    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
     89    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
     90    qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
     91
     92    for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
     93        clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
     94        qemu_fdt_add_subnode(fdt, clust_name);
     95
     96        clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
     97
     98        for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
     99            cpu_phandle = phandle++;
    100
    101            cpu_name = g_strdup_printf("/cpus/cpu@%d",
    102                s->soc[socket].hartid_base + cpu);
    103            qemu_fdt_add_subnode(fdt, cpu_name);
    104            if (is_32_bit) {
    105                qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
    106            } else {
    107                qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
    108            }
    109            name = riscv_isa_string(&s->soc[socket].harts[cpu]);
    110            qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
    111            g_free(name);
    112            qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
    113            qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
    114            qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
    115                s->soc[socket].hartid_base + cpu);
    116            qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
    117            riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
    118            qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
    119
    120            intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
    121            qemu_fdt_add_subnode(fdt, intc_name);
    122            intc_phandle = phandle++;
    123            qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
    124            qemu_fdt_setprop_string(fdt, intc_name, "compatible",
    125                "riscv,cpu-intc");
    126            qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
    127            qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
    128
    129            clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
    130            clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
    131            clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
    132            clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
    133
    134            core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
    135            qemu_fdt_add_subnode(fdt, core_name);
    136            qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
    137
    138            g_free(core_name);
    139            g_free(intc_name);
    140            g_free(cpu_name);
    141        }
    142
    143        addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
    144        size = riscv_socket_mem_size(mc, socket);
    145        mem_name = g_strdup_printf("/memory@%lx", (long)addr);
    146        qemu_fdt_add_subnode(fdt, mem_name);
    147        qemu_fdt_setprop_cells(fdt, mem_name, "reg",
    148            addr >> 32, addr, size >> 32, size);
    149        qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
    150        riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
    151        g_free(mem_name);
    152
    153        clint_addr = memmap[SPIKE_CLINT].base +
    154            (memmap[SPIKE_CLINT].size * socket);
    155        clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
    156        qemu_fdt_add_subnode(fdt, clint_name);
    157        qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
    158            (char **)&clint_compat, ARRAY_SIZE(clint_compat));
    159        qemu_fdt_setprop_cells(fdt, clint_name, "reg",
    160            0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
    161        qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
    162            clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
    163        riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
    164
    165        g_free(clint_name);
    166        g_free(clint_cells);
    167        g_free(clust_name);
    168    }
    169
    170    riscv_socket_fdt_write_distance_matrix(mc, fdt);
    171
    172    if (cmdline) {
    173        qemu_fdt_add_subnode(fdt, "/chosen");
    174        qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
    175    }
    176}
    177
    178static void spike_board_init(MachineState *machine)
    179{
    180    const MemMapEntry *memmap = spike_memmap;
    181    SpikeState *s = SPIKE_MACHINE(machine);
    182    MemoryRegion *system_memory = get_system_memory();
    183    MemoryRegion *main_mem = g_new(MemoryRegion, 1);
    184    MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
    185    target_ulong firmware_end_addr, kernel_start_addr;
    186    uint32_t fdt_load_addr;
    187    uint64_t kernel_entry;
    188    char *soc_name;
    189    int i, base_hartid, hart_count;
    190
    191    /* Check socket count limit */
    192    if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
    193        error_report("number of sockets/nodes should be less than %d",
    194            SPIKE_SOCKETS_MAX);
    195        exit(1);
    196    }
    197
    198    /* Initialize sockets */
    199    for (i = 0; i < riscv_socket_count(machine); i++) {
    200        if (!riscv_socket_check_hartids(machine, i)) {
    201            error_report("discontinuous hartids in socket%d", i);
    202            exit(1);
    203        }
    204
    205        base_hartid = riscv_socket_first_hartid(machine, i);
    206        if (base_hartid < 0) {
    207            error_report("can't find hartid base for socket%d", i);
    208            exit(1);
    209        }
    210
    211        hart_count = riscv_socket_hart_count(machine, i);
    212        if (hart_count < 0) {
    213            error_report("can't find hart count for socket%d", i);
    214            exit(1);
    215        }
    216
    217        soc_name = g_strdup_printf("soc%d", i);
    218        object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
    219                                TYPE_RISCV_HART_ARRAY);
    220        g_free(soc_name);
    221        object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
    222                                machine->cpu_type, &error_abort);
    223        object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
    224                                base_hartid, &error_abort);
    225        object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
    226                                hart_count, &error_abort);
    227        sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
    228
    229        /* Core Local Interruptor (timer and IPI) for each socket */
    230        riscv_aclint_swi_create(
    231            memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
    232            base_hartid, hart_count, false);
    233        riscv_aclint_mtimer_create(
    234            memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
    235                RISCV_ACLINT_SWI_SIZE,
    236            RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
    237            RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
    238            RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
    239    }
    240
    241    /* register system main memory (actual RAM) */
    242    memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
    243                           machine->ram_size, &error_fatal);
    244    memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
    245        main_mem);
    246
    247    /* create device tree */
    248    create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
    249               riscv_is_32bit(&s->soc[0]));
    250
    251    /* boot rom */
    252    memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
    253                           memmap[SPIKE_MROM].size, &error_fatal);
    254    memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
    255                                mask_rom);
    256
    257    /*
    258     * Not like other RISC-V machines that use plain binary bios images,
    259     * keeping ELF files here was intentional because BIN files don't work
    260     * for the Spike machine as HTIF emulation depends on ELF parsing.
    261     */
    262    if (riscv_is_32bit(&s->soc[0])) {
    263        firmware_end_addr = riscv_find_and_load_firmware(machine,
    264                                    RISCV32_BIOS_ELF, memmap[SPIKE_DRAM].base,
    265                                    htif_symbol_callback);
    266    } else {
    267        firmware_end_addr = riscv_find_and_load_firmware(machine,
    268                                    RISCV64_BIOS_ELF, memmap[SPIKE_DRAM].base,
    269                                    htif_symbol_callback);
    270    }
    271
    272    if (machine->kernel_filename) {
    273        kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
    274                                                         firmware_end_addr);
    275
    276        kernel_entry = riscv_load_kernel(machine->kernel_filename,
    277                                         kernel_start_addr,
    278                                         htif_symbol_callback);
    279
    280        if (machine->initrd_filename) {
    281            hwaddr start;
    282            hwaddr end = riscv_load_initrd(machine->initrd_filename,
    283                                           machine->ram_size, kernel_entry,
    284                                           &start);
    285            qemu_fdt_setprop_cell(s->fdt, "/chosen",
    286                                  "linux,initrd-start", start);
    287            qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
    288                                  end);
    289        }
    290    } else {
    291       /*
    292        * If dynamic firmware is used, it doesn't know where is the next mode
    293        * if kernel argument is not set.
    294        */
    295        kernel_entry = 0;
    296    }
    297
    298    /* Compute the fdt load address in dram */
    299    fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
    300                                   machine->ram_size, s->fdt);
    301    /* load the reset vector */
    302    riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
    303                              memmap[SPIKE_MROM].base,
    304                              memmap[SPIKE_MROM].size, kernel_entry,
    305                              fdt_load_addr, s->fdt);
    306
    307    /* initialize HTIF using symbols found in load_kernel */
    308    htif_mm_init(system_memory, mask_rom,
    309                 &s->soc[0].harts[0].env, serial_hd(0));
    310}
    311
    312static void spike_machine_instance_init(Object *obj)
    313{
    314}
    315
    316static void spike_machine_class_init(ObjectClass *oc, void *data)
    317{
    318    MachineClass *mc = MACHINE_CLASS(oc);
    319
    320    mc->desc = "RISC-V Spike board";
    321    mc->init = spike_board_init;
    322    mc->max_cpus = SPIKE_CPUS_MAX;
    323    mc->is_default = true;
    324    mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
    325    mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
    326    mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
    327    mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
    328    mc->numa_mem_supported = true;
    329}
    330
    331static const TypeInfo spike_machine_typeinfo = {
    332    .name       = MACHINE_TYPE_NAME("spike"),
    333    .parent     = TYPE_MACHINE,
    334    .class_init = spike_machine_class_init,
    335    .instance_init = spike_machine_instance_init,
    336    .instance_size = sizeof(SpikeState),
    337};
    338
    339static void spike_machine_init_register_types(void)
    340{
    341    type_register_static(&spike_machine_typeinfo);
    342}
    343
    344type_init(spike_machine_init_register_types)