cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

virt.c (40507B)


      1/*
      2 * QEMU RISC-V VirtIO Board
      3 *
      4 * Copyright (c) 2017 SiFive, Inc.
      5 *
      6 * RISC-V machine with 16550a UART and VirtIO MMIO
      7 *
      8 * This program is free software; you can redistribute it and/or modify it
      9 * under the terms and conditions of the GNU General Public License,
     10 * version 2 or later, as published by the Free Software Foundation.
     11 *
     12 * This program is distributed in the hope it will be useful, but WITHOUT
     13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     15 * more details.
     16 *
     17 * You should have received a copy of the GNU General Public License along with
     18 * this program.  If not, see <http://www.gnu.org/licenses/>.
     19 */
     20
     21#include "qemu/osdep.h"
     22#include "qemu/units.h"
     23#include "qemu/error-report.h"
     24#include "qapi/error.h"
     25#include "hw/boards.h"
     26#include "hw/loader.h"
     27#include "hw/sysbus.h"
     28#include "hw/qdev-properties.h"
     29#include "hw/char/serial.h"
     30#include "target/riscv/cpu.h"
     31#include "hw/riscv/riscv_hart.h"
     32#include "hw/riscv/virt.h"
     33#include "hw/riscv/boot.h"
     34#include "hw/riscv/numa.h"
     35#include "hw/intc/riscv_aclint.h"
     36#include "hw/intc/sifive_plic.h"
     37#include "hw/misc/sifive_test.h"
     38#include "chardev/char.h"
     39#include "sysemu/device_tree.h"
     40#include "sysemu/sysemu.h"
     41#include "hw/pci/pci.h"
     42#include "hw/pci-host/gpex.h"
     43#include "hw/display/ramfb.h"
     44
     45static const MemMapEntry virt_memmap[] = {
     46    [VIRT_DEBUG] =       {        0x0,         0x100 },
     47    [VIRT_MROM] =        {     0x1000,        0xf000 },
     48    [VIRT_TEST] =        {   0x100000,        0x1000 },
     49    [VIRT_RTC] =         {   0x101000,        0x1000 },
     50    [VIRT_CLINT] =       {  0x2000000,       0x10000 },
     51    [VIRT_ACLINT_SSWI] = {  0x2F00000,        0x4000 },
     52    [VIRT_PCIE_PIO] =    {  0x3000000,       0x10000 },
     53    [VIRT_PLIC] =        {  0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
     54    [VIRT_UART0] =       { 0x10000000,         0x100 },
     55    [VIRT_VIRTIO] =      { 0x10001000,        0x1000 },
     56    [VIRT_FW_CFG] =      { 0x10100000,          0x18 },
     57    [VIRT_FLASH] =       { 0x20000000,     0x4000000 },
     58    [VIRT_PCIE_ECAM] =   { 0x30000000,    0x10000000 },
     59    [VIRT_PCIE_MMIO] =   { 0x40000000,    0x40000000 },
     60    [VIRT_DRAM] =        { 0x80000000,           0x0 },
     61};
     62
     63/* PCIe high mmio is fixed for RV32 */
     64#define VIRT32_HIGH_PCIE_MMIO_BASE  0x300000000ULL
     65#define VIRT32_HIGH_PCIE_MMIO_SIZE  (4 * GiB)
     66
     67/* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
     68#define VIRT64_HIGH_PCIE_MMIO_SIZE  (16 * GiB)
     69
     70static MemMapEntry virt_high_pcie_memmap;
     71
     72#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
     73
     74static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
     75                                       const char *name,
     76                                       const char *alias_prop_name)
     77{
     78    /*
     79     * Create a single flash device.  We use the same parameters as
     80     * the flash devices on the ARM virt board.
     81     */
     82    DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
     83
     84    qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
     85    qdev_prop_set_uint8(dev, "width", 4);
     86    qdev_prop_set_uint8(dev, "device-width", 2);
     87    qdev_prop_set_bit(dev, "big-endian", false);
     88    qdev_prop_set_uint16(dev, "id0", 0x89);
     89    qdev_prop_set_uint16(dev, "id1", 0x18);
     90    qdev_prop_set_uint16(dev, "id2", 0x00);
     91    qdev_prop_set_uint16(dev, "id3", 0x00);
     92    qdev_prop_set_string(dev, "name", name);
     93
     94    object_property_add_child(OBJECT(s), name, OBJECT(dev));
     95    object_property_add_alias(OBJECT(s), alias_prop_name,
     96                              OBJECT(dev), "drive");
     97
     98    return PFLASH_CFI01(dev);
     99}
    100
    101static void virt_flash_create(RISCVVirtState *s)
    102{
    103    s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
    104    s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
    105}
    106
    107static void virt_flash_map1(PFlashCFI01 *flash,
    108                            hwaddr base, hwaddr size,
    109                            MemoryRegion *sysmem)
    110{
    111    DeviceState *dev = DEVICE(flash);
    112
    113    assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
    114    assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
    115    qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
    116    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    117
    118    memory_region_add_subregion(sysmem, base,
    119                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
    120                                                       0));
    121}
    122
    123static void virt_flash_map(RISCVVirtState *s,
    124                           MemoryRegion *sysmem)
    125{
    126    hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
    127    hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
    128
    129    virt_flash_map1(s->flash[0], flashbase, flashsize,
    130                    sysmem);
    131    virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
    132                    sysmem);
    133}
    134
    135static void create_pcie_irq_map(void *fdt, char *nodename,
    136                                uint32_t plic_phandle)
    137{
    138    int pin, dev;
    139    uint32_t
    140        full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
    141    uint32_t *irq_map = full_irq_map;
    142
    143    /* This code creates a standard swizzle of interrupts such that
    144     * each device's first interrupt is based on it's PCI_SLOT number.
    145     * (See pci_swizzle_map_irq_fn())
    146     *
    147     * We only need one entry per interrupt in the table (not one per
    148     * possible slot) seeing the interrupt-map-mask will allow the table
    149     * to wrap to any number of devices.
    150     */
    151    for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
    152        int devfn = dev * 0x8;
    153
    154        for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
    155            int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
    156            int i = 0;
    157
    158            irq_map[i] = cpu_to_be32(devfn << 8);
    159
    160            i += FDT_PCI_ADDR_CELLS;
    161            irq_map[i] = cpu_to_be32(pin + 1);
    162
    163            i += FDT_PCI_INT_CELLS;
    164            irq_map[i++] = cpu_to_be32(plic_phandle);
    165
    166            i += FDT_PLIC_ADDR_CELLS;
    167            irq_map[i] = cpu_to_be32(irq_nr);
    168
    169            irq_map += FDT_INT_MAP_WIDTH;
    170        }
    171    }
    172
    173    qemu_fdt_setprop(fdt, nodename, "interrupt-map",
    174                     full_irq_map, sizeof(full_irq_map));
    175
    176    qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
    177                           0x1800, 0, 0, 0x7);
    178}
    179
    180static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
    181                                   char *clust_name, uint32_t *phandle,
    182                                   bool is_32_bit, uint32_t *intc_phandles)
    183{
    184    int cpu;
    185    uint32_t cpu_phandle;
    186    MachineState *mc = MACHINE(s);
    187    char *name, *cpu_name, *core_name, *intc_name;
    188
    189    for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
    190        cpu_phandle = (*phandle)++;
    191
    192        cpu_name = g_strdup_printf("/cpus/cpu@%d",
    193            s->soc[socket].hartid_base + cpu);
    194        qemu_fdt_add_subnode(mc->fdt, cpu_name);
    195        qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
    196            (is_32_bit) ? "riscv,sv32" : "riscv,sv48");
    197        name = riscv_isa_string(&s->soc[socket].harts[cpu]);
    198        qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name);
    199        g_free(name);
    200        qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv");
    201        qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay");
    202        qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg",
    203            s->soc[socket].hartid_base + cpu);
    204        qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu");
    205        riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket);
    206        qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle);
    207
    208        intc_phandles[cpu] = (*phandle)++;
    209
    210        intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
    211        qemu_fdt_add_subnode(mc->fdt, intc_name);
    212        qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
    213            intc_phandles[cpu]);
    214        qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
    215            "riscv,cpu-intc");
    216        qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
    217        qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);
    218
    219        core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
    220        qemu_fdt_add_subnode(mc->fdt, core_name);
    221        qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle);
    222
    223        g_free(core_name);
    224        g_free(intc_name);
    225        g_free(cpu_name);
    226    }
    227}
    228
    229static void create_fdt_socket_memory(RISCVVirtState *s,
    230                                     const MemMapEntry *memmap, int socket)
    231{
    232    char *mem_name;
    233    uint64_t addr, size;
    234    MachineState *mc = MACHINE(s);
    235
    236    addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
    237    size = riscv_socket_mem_size(mc, socket);
    238    mem_name = g_strdup_printf("/memory@%lx", (long)addr);
    239    qemu_fdt_add_subnode(mc->fdt, mem_name);
    240    qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg",
    241        addr >> 32, addr, size >> 32, size);
    242    qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory");
    243    riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket);
    244    g_free(mem_name);
    245}
    246
    247static void create_fdt_socket_clint(RISCVVirtState *s,
    248                                    const MemMapEntry *memmap, int socket,
    249                                    uint32_t *intc_phandles)
    250{
    251    int cpu;
    252    char *clint_name;
    253    uint32_t *clint_cells;
    254    unsigned long clint_addr;
    255    MachineState *mc = MACHINE(s);
    256    static const char * const clint_compat[2] = {
    257        "sifive,clint0", "riscv,clint0"
    258    };
    259
    260    clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
    261
    262    for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
    263        clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
    264        clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
    265        clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
    266        clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
    267    }
    268
    269    clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
    270    clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
    271    qemu_fdt_add_subnode(mc->fdt, clint_name);
    272    qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible",
    273                                  (char **)&clint_compat,
    274                                  ARRAY_SIZE(clint_compat));
    275    qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg",
    276        0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
    277    qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended",
    278        clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
    279    riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket);
    280    g_free(clint_name);
    281
    282    g_free(clint_cells);
    283}
    284
    285static void create_fdt_socket_aclint(RISCVVirtState *s,
    286                                     const MemMapEntry *memmap, int socket,
    287                                     uint32_t *intc_phandles)
    288{
    289    int cpu;
    290    char *name;
    291    unsigned long addr;
    292    uint32_t aclint_cells_size;
    293    uint32_t *aclint_mswi_cells;
    294    uint32_t *aclint_sswi_cells;
    295    uint32_t *aclint_mtimer_cells;
    296    MachineState *mc = MACHINE(s);
    297
    298    aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
    299    aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
    300    aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
    301
    302    for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
    303        aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
    304        aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
    305        aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
    306        aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
    307        aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
    308        aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
    309    }
    310    aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
    311
    312    addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
    313    name = g_strdup_printf("/soc/mswi@%lx", addr);
    314    qemu_fdt_add_subnode(mc->fdt, name);
    315    qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-mswi");
    316    qemu_fdt_setprop_cells(mc->fdt, name, "reg",
    317        0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
    318    qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
    319        aclint_mswi_cells, aclint_cells_size);
    320    qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
    321    qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
    322    riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
    323    g_free(name);
    324
    325    addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
    326        (memmap[VIRT_CLINT].size * socket);
    327    name = g_strdup_printf("/soc/mtimer@%lx", addr);
    328    qemu_fdt_add_subnode(mc->fdt, name);
    329    qemu_fdt_setprop_string(mc->fdt, name, "compatible",
    330        "riscv,aclint-mtimer");
    331    qemu_fdt_setprop_cells(mc->fdt, name, "reg",
    332        0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
    333        0x0, memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE -
    334             RISCV_ACLINT_DEFAULT_MTIME,
    335        0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
    336        0x0, RISCV_ACLINT_DEFAULT_MTIME);
    337    qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
    338        aclint_mtimer_cells, aclint_cells_size);
    339    riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
    340    g_free(name);
    341
    342    addr = memmap[VIRT_ACLINT_SSWI].base +
    343        (memmap[VIRT_ACLINT_SSWI].size * socket);
    344    name = g_strdup_printf("/soc/sswi@%lx", addr);
    345    qemu_fdt_add_subnode(mc->fdt, name);
    346    qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-sswi");
    347    qemu_fdt_setprop_cells(mc->fdt, name, "reg",
    348        0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
    349    qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
    350        aclint_sswi_cells, aclint_cells_size);
    351    qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
    352    qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
    353    riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
    354    g_free(name);
    355
    356    g_free(aclint_mswi_cells);
    357    g_free(aclint_mtimer_cells);
    358    g_free(aclint_sswi_cells);
    359}
    360
    361static void create_fdt_socket_plic(RISCVVirtState *s,
    362                                   const MemMapEntry *memmap, int socket,
    363                                   uint32_t *phandle, uint32_t *intc_phandles,
    364                                   uint32_t *plic_phandles)
    365{
    366    int cpu;
    367    char *plic_name;
    368    uint32_t *plic_cells;
    369    unsigned long plic_addr;
    370    MachineState *mc = MACHINE(s);
    371    static const char * const plic_compat[2] = {
    372        "sifive,plic-1.0.0", "riscv,plic0"
    373    };
    374
    375    plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
    376
    377    for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
    378        plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
    379        plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
    380        plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
    381        plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
    382    }
    383
    384    plic_phandles[socket] = (*phandle)++;
    385    plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
    386    plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
    387    qemu_fdt_add_subnode(mc->fdt, plic_name);
    388    qemu_fdt_setprop_cell(mc->fdt, plic_name,
    389        "#address-cells", FDT_PLIC_ADDR_CELLS);
    390    qemu_fdt_setprop_cell(mc->fdt, plic_name,
    391        "#interrupt-cells", FDT_PLIC_INT_CELLS);
    392    qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible",
    393                                  (char **)&plic_compat,
    394                                  ARRAY_SIZE(plic_compat));
    395    qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0);
    396    qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended",
    397        plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
    398    qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg",
    399        0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
    400    qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
    401    riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket);
    402    qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle",
    403        plic_phandles[socket]);
    404    g_free(plic_name);
    405
    406    g_free(plic_cells);
    407}
    408
    409static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
    410                               bool is_32_bit, uint32_t *phandle,
    411                               uint32_t *irq_mmio_phandle,
    412                               uint32_t *irq_pcie_phandle,
    413                               uint32_t *irq_virtio_phandle)
    414{
    415    int socket;
    416    char *clust_name;
    417    uint32_t *intc_phandles;
    418    MachineState *mc = MACHINE(s);
    419    uint32_t xplic_phandles[MAX_NODES];
    420
    421    qemu_fdt_add_subnode(mc->fdt, "/cpus");
    422    qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency",
    423                          RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
    424    qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0);
    425    qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1);
    426    qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map");
    427
    428    for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
    429        clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
    430        qemu_fdt_add_subnode(mc->fdt, clust_name);
    431
    432        intc_phandles = g_new0(uint32_t, s->soc[socket].num_harts);
    433
    434        create_fdt_socket_cpus(s, socket, clust_name, phandle,
    435            is_32_bit, intc_phandles);
    436
    437        create_fdt_socket_memory(s, memmap, socket);
    438
    439        if (s->have_aclint) {
    440            create_fdt_socket_aclint(s, memmap, socket, intc_phandles);
    441        } else {
    442            create_fdt_socket_clint(s, memmap, socket, intc_phandles);
    443        }
    444
    445        create_fdt_socket_plic(s, memmap, socket, phandle,
    446            intc_phandles, xplic_phandles);
    447
    448        g_free(intc_phandles);
    449        g_free(clust_name);
    450    }
    451
    452    for (socket = 0; socket < riscv_socket_count(mc); socket++) {
    453        if (socket == 0) {
    454            *irq_mmio_phandle = xplic_phandles[socket];
    455            *irq_virtio_phandle = xplic_phandles[socket];
    456            *irq_pcie_phandle = xplic_phandles[socket];
    457        }
    458        if (socket == 1) {
    459            *irq_virtio_phandle = xplic_phandles[socket];
    460            *irq_pcie_phandle = xplic_phandles[socket];
    461        }
    462        if (socket == 2) {
    463            *irq_pcie_phandle = xplic_phandles[socket];
    464        }
    465    }
    466
    467    riscv_socket_fdt_write_distance_matrix(mc, mc->fdt);
    468}
    469
    470static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
    471                              uint32_t irq_virtio_phandle)
    472{
    473    int i;
    474    char *name;
    475    MachineState *mc = MACHINE(s);
    476
    477    for (i = 0; i < VIRTIO_COUNT; i++) {
    478        name = g_strdup_printf("/soc/virtio_mmio@%lx",
    479            (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
    480        qemu_fdt_add_subnode(mc->fdt, name);
    481        qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio");
    482        qemu_fdt_setprop_cells(mc->fdt, name, "reg",
    483            0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
    484            0x0, memmap[VIRT_VIRTIO].size);
    485        qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
    486            irq_virtio_phandle);
    487        qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", VIRTIO_IRQ + i);
    488        g_free(name);
    489    }
    490}
    491
    492static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
    493                            uint32_t irq_pcie_phandle)
    494{
    495    char *name;
    496    MachineState *mc = MACHINE(s);
    497
    498    name = g_strdup_printf("/soc/pci@%lx",
    499        (long) memmap[VIRT_PCIE_ECAM].base);
    500    qemu_fdt_add_subnode(mc->fdt, name);
    501    qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells",
    502        FDT_PCI_ADDR_CELLS);
    503    qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells",
    504        FDT_PCI_INT_CELLS);
    505    qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2);
    506    qemu_fdt_setprop_string(mc->fdt, name, "compatible",
    507        "pci-host-ecam-generic");
    508    qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci");
    509    qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0);
    510    qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0,
    511        memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
    512    qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0);
    513    qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0,
    514        memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
    515    qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges",
    516        1, FDT_PCI_RANGE_IOPORT, 2, 0,
    517        2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
    518        1, FDT_PCI_RANGE_MMIO,
    519        2, memmap[VIRT_PCIE_MMIO].base,
    520        2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
    521        1, FDT_PCI_RANGE_MMIO_64BIT,
    522        2, virt_high_pcie_memmap.base,
    523        2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
    524
    525    create_pcie_irq_map(mc->fdt, name, irq_pcie_phandle);
    526    g_free(name);
    527}
    528
    529static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
    530                             uint32_t *phandle)
    531{
    532    char *name;
    533    uint32_t test_phandle;
    534    MachineState *mc = MACHINE(s);
    535
    536    test_phandle = (*phandle)++;
    537    name = g_strdup_printf("/soc/test@%lx",
    538        (long)memmap[VIRT_TEST].base);
    539    qemu_fdt_add_subnode(mc->fdt, name);
    540    {
    541        static const char * const compat[3] = {
    542            "sifive,test1", "sifive,test0", "syscon"
    543        };
    544        qemu_fdt_setprop_string_array(mc->fdt, name, "compatible",
    545                                      (char **)&compat, ARRAY_SIZE(compat));
    546    }
    547    qemu_fdt_setprop_cells(mc->fdt, name, "reg",
    548        0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
    549    qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle);
    550    test_phandle = qemu_fdt_get_phandle(mc->fdt, name);
    551    g_free(name);
    552
    553    name = g_strdup_printf("/soc/reboot");
    554    qemu_fdt_add_subnode(mc->fdt, name);
    555    qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot");
    556    qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
    557    qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
    558    qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET);
    559    g_free(name);
    560
    561    name = g_strdup_printf("/soc/poweroff");
    562    qemu_fdt_add_subnode(mc->fdt, name);
    563    qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff");
    564    qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
    565    qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
    566    qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS);
    567    g_free(name);
    568}
    569
    570static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
    571                            uint32_t irq_mmio_phandle)
    572{
    573    char *name;
    574    MachineState *mc = MACHINE(s);
    575
    576    name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base);
    577    qemu_fdt_add_subnode(mc->fdt, name);
    578    qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a");
    579    qemu_fdt_setprop_cells(mc->fdt, name, "reg",
    580        0x0, memmap[VIRT_UART0].base,
    581        0x0, memmap[VIRT_UART0].size);
    582    qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400);
    583    qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle);
    584    qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ);
    585
    586    qemu_fdt_add_subnode(mc->fdt, "/chosen");
    587    qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name);
    588    g_free(name);
    589}
    590
    591static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
    592                           uint32_t irq_mmio_phandle)
    593{
    594    char *name;
    595    MachineState *mc = MACHINE(s);
    596
    597    name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
    598    qemu_fdt_add_subnode(mc->fdt, name);
    599    qemu_fdt_setprop_string(mc->fdt, name, "compatible",
    600        "google,goldfish-rtc");
    601    qemu_fdt_setprop_cells(mc->fdt, name, "reg",
    602        0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
    603    qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
    604        irq_mmio_phandle);
    605    qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ);
    606    g_free(name);
    607}
    608
    609static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
    610{
    611    char *name;
    612    MachineState *mc = MACHINE(s);
    613    hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
    614    hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
    615
    616    name = g_strdup_printf("/flash@%" PRIx64, flashbase);
    617    qemu_fdt_add_subnode(mc->fdt, name);
    618    qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash");
    619    qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg",
    620                                 2, flashbase, 2, flashsize,
    621                                 2, flashbase + flashsize, 2, flashsize);
    622    qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4);
    623    g_free(name);
    624}
    625
    626static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
    627                       uint64_t mem_size, const char *cmdline, bool is_32_bit)
    628{
    629    MachineState *mc = MACHINE(s);
    630    uint32_t phandle = 1, irq_mmio_phandle = 1;
    631    uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
    632
    633    if (mc->dtb) {
    634        mc->fdt = load_device_tree(mc->dtb, &s->fdt_size);
    635        if (!mc->fdt) {
    636            error_report("load_device_tree() failed");
    637            exit(1);
    638        }
    639        goto update_bootargs;
    640    } else {
    641        mc->fdt = create_device_tree(&s->fdt_size);
    642        if (!mc->fdt) {
    643            error_report("create_device_tree() failed");
    644            exit(1);
    645        }
    646    }
    647
    648    qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu");
    649    qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio");
    650    qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2);
    651    qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2);
    652
    653    qemu_fdt_add_subnode(mc->fdt, "/soc");
    654    qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0);
    655    qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus");
    656    qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2);
    657    qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2);
    658
    659    create_fdt_sockets(s, memmap, is_32_bit, &phandle,
    660        &irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle);
    661
    662    create_fdt_virtio(s, memmap, irq_virtio_phandle);
    663
    664    create_fdt_pcie(s, memmap, irq_pcie_phandle);
    665
    666    create_fdt_reset(s, memmap, &phandle);
    667
    668    create_fdt_uart(s, memmap, irq_mmio_phandle);
    669
    670    create_fdt_rtc(s, memmap, irq_mmio_phandle);
    671
    672    create_fdt_flash(s, memmap);
    673
    674update_bootargs:
    675    if (cmdline) {
    676        qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline);
    677    }
    678}
    679
    680static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
    681                                          hwaddr ecam_base, hwaddr ecam_size,
    682                                          hwaddr mmio_base, hwaddr mmio_size,
    683                                          hwaddr high_mmio_base,
    684                                          hwaddr high_mmio_size,
    685                                          hwaddr pio_base,
    686                                          DeviceState *plic)
    687{
    688    DeviceState *dev;
    689    MemoryRegion *ecam_alias, *ecam_reg;
    690    MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
    691    qemu_irq irq;
    692    int i;
    693
    694    dev = qdev_new(TYPE_GPEX_HOST);
    695
    696    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    697
    698    ecam_alias = g_new0(MemoryRegion, 1);
    699    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
    700    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
    701                             ecam_reg, 0, ecam_size);
    702    memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
    703
    704    mmio_alias = g_new0(MemoryRegion, 1);
    705    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
    706    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
    707                             mmio_reg, mmio_base, mmio_size);
    708    memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
    709
    710    /* Map high MMIO space */
    711    high_mmio_alias = g_new0(MemoryRegion, 1);
    712    memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
    713                             mmio_reg, high_mmio_base, high_mmio_size);
    714    memory_region_add_subregion(get_system_memory(), high_mmio_base,
    715                                high_mmio_alias);
    716
    717    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
    718
    719    for (i = 0; i < GPEX_NUM_IRQS; i++) {
    720        irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
    721
    722        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
    723        gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
    724    }
    725
    726    return dev;
    727}
    728
    729static FWCfgState *create_fw_cfg(const MachineState *mc)
    730{
    731    hwaddr base = virt_memmap[VIRT_FW_CFG].base;
    732    hwaddr size = virt_memmap[VIRT_FW_CFG].size;
    733    FWCfgState *fw_cfg;
    734    char *nodename;
    735
    736    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
    737                                  &address_space_memory);
    738    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus);
    739
    740    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
    741    qemu_fdt_add_subnode(mc->fdt, nodename);
    742    qemu_fdt_setprop_string(mc->fdt, nodename,
    743                            "compatible", "qemu,fw-cfg-mmio");
    744    qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg",
    745                                 2, base, 2, size);
    746    qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0);
    747    g_free(nodename);
    748    return fw_cfg;
    749}
    750
    751/*
    752 * Return the per-socket PLIC hart topology configuration string
    753 * (caller must free with g_free())
    754 */
    755static char *plic_hart_config_string(int hart_count)
    756{
    757    g_autofree const char **vals = g_new(const char *, hart_count + 1);
    758    int i;
    759
    760    for (i = 0; i < hart_count; i++) {
    761        vals[i] = VIRT_PLIC_HART_CONFIG;
    762    }
    763    vals[i] = NULL;
    764
    765    /* g_strjoinv() obliges us to cast away const here */
    766    return g_strjoinv(",", (char **)vals);
    767}
    768
    769static void virt_machine_init(MachineState *machine)
    770{
    771    const MemMapEntry *memmap = virt_memmap;
    772    RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
    773    MemoryRegion *system_memory = get_system_memory();
    774    MemoryRegion *main_mem = g_new(MemoryRegion, 1);
    775    MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
    776    char *plic_hart_config, *soc_name;
    777    target_ulong start_addr = memmap[VIRT_DRAM].base;
    778    target_ulong firmware_end_addr, kernel_start_addr;
    779    uint32_t fdt_load_addr;
    780    uint64_t kernel_entry;
    781    DeviceState *mmio_plic, *virtio_plic, *pcie_plic;
    782    int i, base_hartid, hart_count;
    783
    784    /* Check socket count limit */
    785    if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
    786        error_report("number of sockets/nodes should be less than %d",
    787            VIRT_SOCKETS_MAX);
    788        exit(1);
    789    }
    790
    791    /* Initialize sockets */
    792    mmio_plic = virtio_plic = pcie_plic = NULL;
    793    for (i = 0; i < riscv_socket_count(machine); i++) {
    794        if (!riscv_socket_check_hartids(machine, i)) {
    795            error_report("discontinuous hartids in socket%d", i);
    796            exit(1);
    797        }
    798
    799        base_hartid = riscv_socket_first_hartid(machine, i);
    800        if (base_hartid < 0) {
    801            error_report("can't find hartid base for socket%d", i);
    802            exit(1);
    803        }
    804
    805        hart_count = riscv_socket_hart_count(machine, i);
    806        if (hart_count < 0) {
    807            error_report("can't find hart count for socket%d", i);
    808            exit(1);
    809        }
    810
    811        soc_name = g_strdup_printf("soc%d", i);
    812        object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
    813                                TYPE_RISCV_HART_ARRAY);
    814        g_free(soc_name);
    815        object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
    816                                machine->cpu_type, &error_abort);
    817        object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
    818                                base_hartid, &error_abort);
    819        object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
    820                                hart_count, &error_abort);
    821        sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
    822
    823        /* Per-socket CLINT */
    824        riscv_aclint_swi_create(
    825            memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
    826            base_hartid, hart_count, false);
    827        riscv_aclint_mtimer_create(
    828            memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size +
    829                RISCV_ACLINT_SWI_SIZE,
    830            RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
    831            RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
    832            RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
    833
    834        /* Per-socket ACLINT SSWI */
    835        if (s->have_aclint) {
    836            riscv_aclint_swi_create(
    837                memmap[VIRT_ACLINT_SSWI].base +
    838                    i * memmap[VIRT_ACLINT_SSWI].size,
    839                base_hartid, hart_count, true);
    840        }
    841
    842        /* Per-socket PLIC hart topology configuration string */
    843        plic_hart_config = plic_hart_config_string(hart_count);
    844
    845        /* Per-socket PLIC */
    846        s->plic[i] = sifive_plic_create(
    847            memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size,
    848            plic_hart_config, hart_count, base_hartid,
    849            VIRT_PLIC_NUM_SOURCES,
    850            VIRT_PLIC_NUM_PRIORITIES,
    851            VIRT_PLIC_PRIORITY_BASE,
    852            VIRT_PLIC_PENDING_BASE,
    853            VIRT_PLIC_ENABLE_BASE,
    854            VIRT_PLIC_ENABLE_STRIDE,
    855            VIRT_PLIC_CONTEXT_BASE,
    856            VIRT_PLIC_CONTEXT_STRIDE,
    857            memmap[VIRT_PLIC].size);
    858        g_free(plic_hart_config);
    859
    860        /* Try to use different PLIC instance based device type */
    861        if (i == 0) {
    862            mmio_plic = s->plic[i];
    863            virtio_plic = s->plic[i];
    864            pcie_plic = s->plic[i];
    865        }
    866        if (i == 1) {
    867            virtio_plic = s->plic[i];
    868            pcie_plic = s->plic[i];
    869        }
    870        if (i == 2) {
    871            pcie_plic = s->plic[i];
    872        }
    873    }
    874
    875    if (riscv_is_32bit(&s->soc[0])) {
    876#if HOST_LONG_BITS == 64
    877        /* limit RAM size in a 32-bit system */
    878        if (machine->ram_size > 10 * GiB) {
    879            machine->ram_size = 10 * GiB;
    880            error_report("Limiting RAM size to 10 GiB");
    881        }
    882#endif
    883        virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
    884        virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
    885    } else {
    886        virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
    887        virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
    888        virt_high_pcie_memmap.base =
    889            ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
    890    }
    891
    892    /* register system main memory (actual RAM) */
    893    memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
    894                           machine->ram_size, &error_fatal);
    895    memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
    896        main_mem);
    897
    898    /* create device tree */
    899    create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
    900               riscv_is_32bit(&s->soc[0]));
    901
    902    /* boot rom */
    903    memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
    904                           memmap[VIRT_MROM].size, &error_fatal);
    905    memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
    906                                mask_rom);
    907
    908    if (riscv_is_32bit(&s->soc[0])) {
    909        firmware_end_addr = riscv_find_and_load_firmware(machine,
    910                                    RISCV32_BIOS_BIN, start_addr, NULL);
    911    } else {
    912        firmware_end_addr = riscv_find_and_load_firmware(machine,
    913                                    RISCV64_BIOS_BIN, start_addr, NULL);
    914    }
    915
    916    if (machine->kernel_filename) {
    917        kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
    918                                                         firmware_end_addr);
    919
    920        kernel_entry = riscv_load_kernel(machine->kernel_filename,
    921                                         kernel_start_addr, NULL);
    922
    923        if (machine->initrd_filename) {
    924            hwaddr start;
    925            hwaddr end = riscv_load_initrd(machine->initrd_filename,
    926                                           machine->ram_size, kernel_entry,
    927                                           &start);
    928            qemu_fdt_setprop_cell(machine->fdt, "/chosen",
    929                                  "linux,initrd-start", start);
    930            qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end",
    931                                  end);
    932        }
    933    } else {
    934       /*
    935        * If dynamic firmware is used, it doesn't know where is the next mode
    936        * if kernel argument is not set.
    937        */
    938        kernel_entry = 0;
    939    }
    940
    941    if (drive_get(IF_PFLASH, 0, 0)) {
    942        /*
    943         * Pflash was supplied, let's overwrite the address we jump to after
    944         * reset to the base of the flash.
    945         */
    946        start_addr = virt_memmap[VIRT_FLASH].base;
    947    }
    948
    949    /*
    950     * Init fw_cfg.  Must be done before riscv_load_fdt, otherwise the device
    951     * tree cannot be altered and we get FDT_ERR_NOSPACE.
    952     */
    953    s->fw_cfg = create_fw_cfg(machine);
    954    rom_set_fw(s->fw_cfg);
    955
    956    /* Compute the fdt load address in dram */
    957    fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
    958                                   machine->ram_size, machine->fdt);
    959    /* load the reset vector */
    960    riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
    961                              virt_memmap[VIRT_MROM].base,
    962                              virt_memmap[VIRT_MROM].size, kernel_entry,
    963                              fdt_load_addr, machine->fdt);
    964
    965    /* SiFive Test MMIO device */
    966    sifive_test_create(memmap[VIRT_TEST].base);
    967
    968    /* VirtIO MMIO devices */
    969    for (i = 0; i < VIRTIO_COUNT; i++) {
    970        sysbus_create_simple("virtio-mmio",
    971            memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
    972            qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i));
    973    }
    974
    975    gpex_pcie_init(system_memory,
    976                   memmap[VIRT_PCIE_ECAM].base,
    977                   memmap[VIRT_PCIE_ECAM].size,
    978                   memmap[VIRT_PCIE_MMIO].base,
    979                   memmap[VIRT_PCIE_MMIO].size,
    980                   virt_high_pcie_memmap.base,
    981                   virt_high_pcie_memmap.size,
    982                   memmap[VIRT_PCIE_PIO].base,
    983                   DEVICE(pcie_plic));
    984
    985    serial_mm_init(system_memory, memmap[VIRT_UART0].base,
    986        0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193,
    987        serial_hd(0), DEVICE_LITTLE_ENDIAN);
    988
    989    sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
    990        qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ));
    991
    992    virt_flash_create(s);
    993
    994    for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
    995        /* Map legacy -drive if=pflash to machine properties */
    996        pflash_cfi01_legacy_drive(s->flash[i],
    997                                  drive_get(IF_PFLASH, 0, i));
    998    }
    999    virt_flash_map(s, system_memory);
   1000}
   1001
   1002static void virt_machine_instance_init(Object *obj)
   1003{
   1004}
   1005
   1006static bool virt_get_aclint(Object *obj, Error **errp)
   1007{
   1008    MachineState *ms = MACHINE(obj);
   1009    RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
   1010
   1011    return s->have_aclint;
   1012}
   1013
   1014static void virt_set_aclint(Object *obj, bool value, Error **errp)
   1015{
   1016    MachineState *ms = MACHINE(obj);
   1017    RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
   1018
   1019    s->have_aclint = value;
   1020}
   1021
   1022static void virt_machine_class_init(ObjectClass *oc, void *data)
   1023{
   1024    MachineClass *mc = MACHINE_CLASS(oc);
   1025
   1026    mc->desc = "RISC-V VirtIO board";
   1027    mc->init = virt_machine_init;
   1028    mc->max_cpus = VIRT_CPUS_MAX;
   1029    mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
   1030    mc->pci_allow_0_address = true;
   1031    mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
   1032    mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
   1033    mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
   1034    mc->numa_mem_supported = true;
   1035
   1036    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
   1037
   1038    object_class_property_add_bool(oc, "aclint", virt_get_aclint,
   1039                                   virt_set_aclint);
   1040    object_class_property_set_description(oc, "aclint",
   1041                                          "Set on/off to enable/disable "
   1042                                          "emulating ACLINT devices");
   1043}
   1044
   1045static const TypeInfo virt_machine_typeinfo = {
   1046    .name       = MACHINE_TYPE_NAME("virt"),
   1047    .parent     = TYPE_MACHINE,
   1048    .class_init = virt_machine_class_init,
   1049    .instance_init = virt_machine_instance_init,
   1050    .instance_size = sizeof(RISCVVirtState),
   1051};
   1052
   1053static void virt_machine_init_register_types(void)
   1054{
   1055    type_register_static(&virt_machine_typeinfo);
   1056}
   1057
   1058type_init(virt_machine_init_register_types)