cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

mc146818rtc.c (32964B)


      1/*
      2 * QEMU MC146818 RTC emulation
      3 *
      4 * Copyright (c) 2003-2004 Fabrice Bellard
      5 *
      6 * Permission is hereby granted, free of charge, to any person obtaining a copy
      7 * of this software and associated documentation files (the "Software"), to deal
      8 * in the Software without restriction, including without limitation the rights
      9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10 * copies of the Software, and to permit persons to whom the Software is
     11 * furnished to do so, subject to the following conditions:
     12 *
     13 * The above copyright notice and this permission notice shall be included in
     14 * all copies or substantial portions of the Software.
     15 *
     16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22 * THE SOFTWARE.
     23 */
     24
     25#include "qemu/osdep.h"
     26#include "qemu-common.h"
     27#include "qemu/cutils.h"
     28#include "qemu/module.h"
     29#include "qemu/bcd.h"
     30#include "hw/acpi/aml-build.h"
     31#include "hw/irq.h"
     32#include "hw/qdev-properties.h"
     33#include "hw/qdev-properties-system.h"
     34#include "qemu/timer.h"
     35#include "sysemu/sysemu.h"
     36#include "sysemu/replay.h"
     37#include "sysemu/reset.h"
     38#include "sysemu/runstate.h"
     39#include "hw/rtc/mc146818rtc.h"
     40#include "hw/rtc/mc146818rtc_regs.h"
     41#include "migration/vmstate.h"
     42#include "qapi/error.h"
     43#include "qapi/qapi-events-misc-target.h"
     44#include "qapi/visitor.h"
     45#include "hw/rtc/mc146818rtc_regs.h"
     46
     47#ifdef TARGET_I386
     48#include "qapi/qapi-commands-misc-target.h"
     49#include "hw/i386/apic.h"
     50#endif
     51
     52//#define DEBUG_CMOS
     53//#define DEBUG_COALESCED
     54
     55#ifdef DEBUG_CMOS
     56# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
     57#else
     58# define CMOS_DPRINTF(format, ...)      do { } while (0)
     59#endif
     60
     61#ifdef DEBUG_COALESCED
     62# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
     63#else
     64# define DPRINTF_C(format, ...)      do { } while (0)
     65#endif
     66
     67#define SEC_PER_MIN     60
     68#define MIN_PER_HOUR    60
     69#define SEC_PER_HOUR    3600
     70#define HOUR_PER_DAY    24
     71#define SEC_PER_DAY     86400
     72
     73#define RTC_REINJECT_ON_ACK_COUNT 20
     74#define RTC_CLOCK_RATE            32768
     75#define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
     76
     77static void rtc_set_time(RTCState *s);
     78static void rtc_update_time(RTCState *s);
     79static void rtc_set_cmos(RTCState *s, const struct tm *tm);
     80static inline int rtc_from_bcd(RTCState *s, int a);
     81static uint64_t get_next_alarm(RTCState *s);
     82
     83static inline bool rtc_running(RTCState *s)
     84{
     85    return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
     86            (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
     87}
     88
     89static uint64_t get_guest_rtc_ns(RTCState *s)
     90{
     91    uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
     92
     93    return s->base_rtc * NANOSECONDS_PER_SECOND +
     94        guest_clock - s->last_update + s->offset;
     95}
     96
     97static void rtc_coalesced_timer_update(RTCState *s)
     98{
     99    if (s->irq_coalesced == 0) {
    100        timer_del(s->coalesced_timer);
    101    } else {
    102        /* divide each RTC interval to 2 - 8 smaller intervals */
    103        int c = MIN(s->irq_coalesced, 7) + 1;
    104        int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
    105            periodic_clock_to_ns(s->period / c);
    106        timer_mod(s->coalesced_timer, next_clock);
    107    }
    108}
    109
    110static QLIST_HEAD(, RTCState) rtc_devices =
    111    QLIST_HEAD_INITIALIZER(rtc_devices);
    112
    113#ifdef TARGET_I386
    114void qmp_rtc_reset_reinjection(Error **errp)
    115{
    116    RTCState *s;
    117
    118    QLIST_FOREACH(s, &rtc_devices, link) {
    119        s->irq_coalesced = 0;
    120    }
    121}
    122
    123static bool rtc_policy_slew_deliver_irq(RTCState *s)
    124{
    125    apic_reset_irq_delivered();
    126    qemu_irq_raise(s->irq);
    127    return apic_get_irq_delivered();
    128}
    129
    130static void rtc_coalesced_timer(void *opaque)
    131{
    132    RTCState *s = opaque;
    133
    134    if (s->irq_coalesced != 0) {
    135        s->cmos_data[RTC_REG_C] |= 0xc0;
    136        DPRINTF_C("cmos: injecting from timer\n");
    137        if (rtc_policy_slew_deliver_irq(s)) {
    138            s->irq_coalesced--;
    139            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
    140                      s->irq_coalesced);
    141        }
    142    }
    143
    144    rtc_coalesced_timer_update(s);
    145}
    146#else
    147static bool rtc_policy_slew_deliver_irq(RTCState *s)
    148{
    149    assert(0);
    150    return false;
    151}
    152#endif
    153
    154static uint32_t rtc_periodic_clock_ticks(RTCState *s)
    155{
    156    int period_code;
    157
    158    if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
    159        return 0;
    160     }
    161
    162    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
    163
    164    return periodic_period_to_clock(period_code);
    165}
    166
    167/*
    168 * handle periodic timer. @old_period indicates the periodic timer update
    169 * is just due to period adjustment.
    170 */
    171static void
    172periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change)
    173{
    174    uint32_t period;
    175    int64_t cur_clock, next_irq_clock, lost_clock = 0;
    176
    177    period = rtc_periodic_clock_ticks(s);
    178    s->period = period;
    179
    180    if (!period) {
    181        s->irq_coalesced = 0;
    182        timer_del(s->periodic_timer);
    183        return;
    184    }
    185
    186    /* compute 32 khz clock */
    187    cur_clock =
    188        muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
    189
    190    /*
    191     * if the periodic timer's update is due to period re-configuration,
    192     * we should count the clock since last interrupt.
    193     */
    194    if (old_period && period_change) {
    195        int64_t last_periodic_clock, next_periodic_clock;
    196
    197        next_periodic_clock = muldiv64(s->next_periodic_time,
    198                                RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
    199        last_periodic_clock = next_periodic_clock - old_period;
    200        lost_clock = cur_clock - last_periodic_clock;
    201        assert(lost_clock >= 0);
    202    }
    203
    204    /*
    205     * s->irq_coalesced can change for two reasons:
    206     *
    207     * a) if one or more periodic timer interrupts have been lost,
    208     *    lost_clock will be more that a period.
    209     *
    210     * b) when the period may be reconfigured, we expect the OS to
    211     *    treat delayed tick as the new period.  So, when switching
    212     *    from a shorter to a longer period, scale down the missing,
    213     *    because the OS will treat past delayed ticks as longer
    214     *    (leftovers are put back into lost_clock).  When switching
    215     *    to a shorter period, scale up the missing ticks since the
    216     *    OS handler will treat past delayed ticks as shorter.
    217     */
    218    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
    219        uint32_t old_irq_coalesced = s->irq_coalesced;
    220
    221        lost_clock += old_irq_coalesced * old_period;
    222        s->irq_coalesced = lost_clock / s->period;
    223        lost_clock %= s->period;
    224        if (old_irq_coalesced != s->irq_coalesced ||
    225            old_period != s->period) {
    226            DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
    227                      "period scaled from %d to %d\n", old_irq_coalesced,
    228                      s->irq_coalesced, old_period, s->period);
    229            rtc_coalesced_timer_update(s);
    230        }
    231    } else {
    232        /*
    233         * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
    234         * is not used, we should make the time progress anyway.
    235         */
    236        lost_clock = MIN(lost_clock, period);
    237    }
    238
    239    assert(lost_clock >= 0 && lost_clock <= period);
    240
    241    next_irq_clock = cur_clock + period - lost_clock;
    242    s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
    243    timer_mod(s->periodic_timer, s->next_periodic_time);
    244}
    245
    246static void rtc_periodic_timer(void *opaque)
    247{
    248    RTCState *s = opaque;
    249
    250    periodic_timer_update(s, s->next_periodic_time, s->period, false);
    251    s->cmos_data[RTC_REG_C] |= REG_C_PF;
    252    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
    253        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
    254        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
    255            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
    256                s->irq_reinject_on_ack_count = 0;
    257            if (!rtc_policy_slew_deliver_irq(s)) {
    258                s->irq_coalesced++;
    259                rtc_coalesced_timer_update(s);
    260                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
    261                          s->irq_coalesced);
    262            }
    263        } else
    264            qemu_irq_raise(s->irq);
    265    }
    266}
    267
    268/* handle update-ended timer */
    269static void check_update_timer(RTCState *s)
    270{
    271    uint64_t next_update_time;
    272    uint64_t guest_nsec;
    273    int next_alarm_sec;
    274
    275    /* From the data sheet: "Holding the dividers in reset prevents
    276     * interrupts from operating, while setting the SET bit allows"
    277     * them to occur.
    278     */
    279    if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
    280        assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
    281        timer_del(s->update_timer);
    282        return;
    283    }
    284
    285    guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
    286    next_update_time = qemu_clock_get_ns(rtc_clock)
    287        + NANOSECONDS_PER_SECOND - guest_nsec;
    288
    289    /* Compute time of next alarm.  One second is already accounted
    290     * for in next_update_time.
    291     */
    292    next_alarm_sec = get_next_alarm(s);
    293    s->next_alarm_time = next_update_time +
    294                         (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
    295
    296    /* If update_in_progress latched the UIP bit, we must keep the timer
    297     * programmed to the next second, so that UIP is cleared.  Otherwise,
    298     * if UF is already set, we might be able to optimize.
    299     */
    300    if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
    301        (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
    302        /* If AF cannot change (i.e. either it is set already, or
    303         * SET=1 and then the time is not updated), nothing to do.
    304         */
    305        if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
    306            (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
    307            timer_del(s->update_timer);
    308            return;
    309        }
    310
    311        /* UF is set, but AF is clear.  Program the timer to target
    312         * the alarm time.  */
    313        next_update_time = s->next_alarm_time;
    314    }
    315    if (next_update_time != timer_expire_time_ns(s->update_timer)) {
    316        timer_mod(s->update_timer, next_update_time);
    317    }
    318}
    319
    320static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
    321{
    322    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
    323        hour %= 12;
    324        if (s->cmos_data[RTC_HOURS] & 0x80) {
    325            hour += 12;
    326        }
    327    }
    328    return hour;
    329}
    330
    331static uint64_t get_next_alarm(RTCState *s)
    332{
    333    int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
    334    int32_t hour, min, sec;
    335
    336    rtc_update_time(s);
    337
    338    alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
    339    alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
    340    alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
    341    alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
    342
    343    cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
    344    cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
    345    cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
    346    cur_hour = convert_hour(s, cur_hour);
    347
    348    if (alarm_hour == -1) {
    349        alarm_hour = cur_hour;
    350        if (alarm_min == -1) {
    351            alarm_min = cur_min;
    352            if (alarm_sec == -1) {
    353                alarm_sec = cur_sec + 1;
    354            } else if (cur_sec > alarm_sec) {
    355                alarm_min++;
    356            }
    357        } else if (cur_min == alarm_min) {
    358            if (alarm_sec == -1) {
    359                alarm_sec = cur_sec + 1;
    360            } else {
    361                if (cur_sec > alarm_sec) {
    362                    alarm_hour++;
    363                }
    364            }
    365            if (alarm_sec == SEC_PER_MIN) {
    366                /* wrap to next hour, minutes is not in don't care mode */
    367                alarm_sec = 0;
    368                alarm_hour++;
    369            }
    370        } else if (cur_min > alarm_min) {
    371            alarm_hour++;
    372        }
    373    } else if (cur_hour == alarm_hour) {
    374        if (alarm_min == -1) {
    375            alarm_min = cur_min;
    376            if (alarm_sec == -1) {
    377                alarm_sec = cur_sec + 1;
    378            } else if (cur_sec > alarm_sec) {
    379                alarm_min++;
    380            }
    381
    382            if (alarm_sec == SEC_PER_MIN) {
    383                alarm_sec = 0;
    384                alarm_min++;
    385            }
    386            /* wrap to next day, hour is not in don't care mode */
    387            alarm_min %= MIN_PER_HOUR;
    388        } else if (cur_min == alarm_min) {
    389            if (alarm_sec == -1) {
    390                alarm_sec = cur_sec + 1;
    391            }
    392            /* wrap to next day, hours+minutes not in don't care mode */
    393            alarm_sec %= SEC_PER_MIN;
    394        }
    395    }
    396
    397    /* values that are still don't care fire at the next min/sec */
    398    if (alarm_min == -1) {
    399        alarm_min = 0;
    400    }
    401    if (alarm_sec == -1) {
    402        alarm_sec = 0;
    403    }
    404
    405    /* keep values in range */
    406    if (alarm_sec == SEC_PER_MIN) {
    407        alarm_sec = 0;
    408        alarm_min++;
    409    }
    410    if (alarm_min == MIN_PER_HOUR) {
    411        alarm_min = 0;
    412        alarm_hour++;
    413    }
    414    alarm_hour %= HOUR_PER_DAY;
    415
    416    hour = alarm_hour - cur_hour;
    417    min = hour * MIN_PER_HOUR + alarm_min - cur_min;
    418    sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
    419    return sec <= 0 ? sec + SEC_PER_DAY : sec;
    420}
    421
    422static void rtc_update_timer(void *opaque)
    423{
    424    RTCState *s = opaque;
    425    int32_t irqs = REG_C_UF;
    426    int32_t new_irqs;
    427
    428    assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
    429
    430    /* UIP might have been latched, update time and clear it.  */
    431    rtc_update_time(s);
    432    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
    433
    434    if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
    435        irqs |= REG_C_AF;
    436        if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
    437            qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
    438        }
    439    }
    440
    441    new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
    442    s->cmos_data[RTC_REG_C] |= irqs;
    443    if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
    444        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
    445        qemu_irq_raise(s->irq);
    446    }
    447    check_update_timer(s);
    448}
    449
    450static void cmos_ioport_write(void *opaque, hwaddr addr,
    451                              uint64_t data, unsigned size)
    452{
    453    RTCState *s = opaque;
    454    uint32_t old_period;
    455    bool update_periodic_timer;
    456
    457    if ((addr & 1) == 0) {
    458        s->cmos_index = data & 0x7f;
    459    } else {
    460        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
    461                     s->cmos_index, data);
    462        switch(s->cmos_index) {
    463        case RTC_SECONDS_ALARM:
    464        case RTC_MINUTES_ALARM:
    465        case RTC_HOURS_ALARM:
    466            s->cmos_data[s->cmos_index] = data;
    467            check_update_timer(s);
    468            break;
    469        case RTC_IBM_PS2_CENTURY_BYTE:
    470            s->cmos_index = RTC_CENTURY;
    471            /* fall through */
    472        case RTC_CENTURY:
    473        case RTC_SECONDS:
    474        case RTC_MINUTES:
    475        case RTC_HOURS:
    476        case RTC_DAY_OF_WEEK:
    477        case RTC_DAY_OF_MONTH:
    478        case RTC_MONTH:
    479        case RTC_YEAR:
    480            s->cmos_data[s->cmos_index] = data;
    481            /* if in set mode, do not update the time */
    482            if (rtc_running(s)) {
    483                rtc_set_time(s);
    484                check_update_timer(s);
    485            }
    486            break;
    487        case RTC_REG_A:
    488            update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
    489            old_period = rtc_periodic_clock_ticks(s);
    490
    491            if ((data & 0x60) == 0x60) {
    492                if (rtc_running(s)) {
    493                    rtc_update_time(s);
    494                }
    495                /* What happens to UIP when divider reset is enabled is
    496                 * unclear from the datasheet.  Shouldn't matter much
    497                 * though.
    498                 */
    499                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
    500            } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
    501                    (data & 0x70)  <= 0x20) {
    502                /* when the divider reset is removed, the first update cycle
    503                 * begins one-half second later*/
    504                if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
    505                    s->offset = 500000000;
    506                    rtc_set_time(s);
    507                }
    508                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
    509            }
    510            /* UIP bit is read only */
    511            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
    512                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
    513
    514            if (update_periodic_timer) {
    515                periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
    516                                      old_period, true);
    517            }
    518
    519            check_update_timer(s);
    520            break;
    521        case RTC_REG_B:
    522            update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
    523                                       & REG_B_PIE;
    524            old_period = rtc_periodic_clock_ticks(s);
    525
    526            if (data & REG_B_SET) {
    527                /* update cmos to when the rtc was stopping */
    528                if (rtc_running(s)) {
    529                    rtc_update_time(s);
    530                }
    531                /* set mode: reset UIP mode */
    532                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
    533                data &= ~REG_B_UIE;
    534            } else {
    535                /* if disabling set mode, update the time */
    536                if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
    537                    (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
    538                    s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
    539                    rtc_set_time(s);
    540                }
    541            }
    542            /* if an interrupt flag is already set when the interrupt
    543             * becomes enabled, raise an interrupt immediately.  */
    544            if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
    545                s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
    546                qemu_irq_raise(s->irq);
    547            } else {
    548                s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
    549                qemu_irq_lower(s->irq);
    550            }
    551            s->cmos_data[RTC_REG_B] = data;
    552
    553            if (update_periodic_timer) {
    554                periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
    555                                      old_period, true);
    556            }
    557
    558            check_update_timer(s);
    559            break;
    560        case RTC_REG_C:
    561        case RTC_REG_D:
    562            /* cannot write to them */
    563            break;
    564        default:
    565            s->cmos_data[s->cmos_index] = data;
    566            break;
    567        }
    568    }
    569}
    570
    571static inline int rtc_to_bcd(RTCState *s, int a)
    572{
    573    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
    574        return a;
    575    } else {
    576        return ((a / 10) << 4) | (a % 10);
    577    }
    578}
    579
    580static inline int rtc_from_bcd(RTCState *s, int a)
    581{
    582    if ((a & 0xc0) == 0xc0) {
    583        return -1;
    584    }
    585    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
    586        return a;
    587    } else {
    588        return ((a >> 4) * 10) + (a & 0x0f);
    589    }
    590}
    591
    592static void rtc_get_time(RTCState *s, struct tm *tm)
    593{
    594    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
    595    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
    596    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
    597    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
    598        tm->tm_hour %= 12;
    599        if (s->cmos_data[RTC_HOURS] & 0x80) {
    600            tm->tm_hour += 12;
    601        }
    602    }
    603    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
    604    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
    605    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
    606    tm->tm_year =
    607        rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
    608        rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
    609}
    610
    611static void rtc_set_time(RTCState *s)
    612{
    613    struct tm tm;
    614
    615    rtc_get_time(s, &tm);
    616    s->base_rtc = mktimegm(&tm);
    617    s->last_update = qemu_clock_get_ns(rtc_clock);
    618
    619    qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
    620}
    621
    622static void rtc_set_cmos(RTCState *s, const struct tm *tm)
    623{
    624    int year;
    625
    626    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
    627    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
    628    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
    629        /* 24 hour format */
    630        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
    631    } else {
    632        /* 12 hour format */
    633        int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
    634        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
    635        if (tm->tm_hour >= 12)
    636            s->cmos_data[RTC_HOURS] |= 0x80;
    637    }
    638    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
    639    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
    640    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
    641    year = tm->tm_year + 1900 - s->base_year;
    642    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
    643    s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
    644}
    645
    646static void rtc_update_time(RTCState *s)
    647{
    648    struct tm ret;
    649    time_t guest_sec;
    650    int64_t guest_nsec;
    651
    652    guest_nsec = get_guest_rtc_ns(s);
    653    guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
    654    gmtime_r(&guest_sec, &ret);
    655
    656    /* Is SET flag of Register B disabled? */
    657    if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
    658        rtc_set_cmos(s, &ret);
    659    }
    660}
    661
    662static int update_in_progress(RTCState *s)
    663{
    664    int64_t guest_nsec;
    665
    666    if (!rtc_running(s)) {
    667        return 0;
    668    }
    669    if (timer_pending(s->update_timer)) {
    670        int64_t next_update_time = timer_expire_time_ns(s->update_timer);
    671        /* Latch UIP until the timer expires.  */
    672        if (qemu_clock_get_ns(rtc_clock) >=
    673            (next_update_time - UIP_HOLD_LENGTH)) {
    674            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
    675            return 1;
    676        }
    677    }
    678
    679    guest_nsec = get_guest_rtc_ns(s);
    680    /* UIP bit will be set at last 244us of every second. */
    681    if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
    682        (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
    683        return 1;
    684    }
    685    return 0;
    686}
    687
    688static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
    689                                 unsigned size)
    690{
    691    RTCState *s = opaque;
    692    int ret;
    693    if ((addr & 1) == 0) {
    694        return 0xff;
    695    } else {
    696        switch(s->cmos_index) {
    697        case RTC_IBM_PS2_CENTURY_BYTE:
    698            s->cmos_index = RTC_CENTURY;
    699            /* fall through */
    700        case RTC_CENTURY:
    701        case RTC_SECONDS:
    702        case RTC_MINUTES:
    703        case RTC_HOURS:
    704        case RTC_DAY_OF_WEEK:
    705        case RTC_DAY_OF_MONTH:
    706        case RTC_MONTH:
    707        case RTC_YEAR:
    708            /* if not in set mode, calibrate cmos before
    709             * reading*/
    710            if (rtc_running(s)) {
    711                rtc_update_time(s);
    712            }
    713            ret = s->cmos_data[s->cmos_index];
    714            break;
    715        case RTC_REG_A:
    716            ret = s->cmos_data[s->cmos_index];
    717            if (update_in_progress(s)) {
    718                ret |= REG_A_UIP;
    719            }
    720            break;
    721        case RTC_REG_C:
    722            ret = s->cmos_data[s->cmos_index];
    723            qemu_irq_lower(s->irq);
    724            s->cmos_data[RTC_REG_C] = 0x00;
    725            if (ret & (REG_C_UF | REG_C_AF)) {
    726                check_update_timer(s);
    727            }
    728
    729            if(s->irq_coalesced &&
    730                    (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
    731                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
    732                s->irq_reinject_on_ack_count++;
    733                s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
    734                DPRINTF_C("cmos: injecting on ack\n");
    735                if (rtc_policy_slew_deliver_irq(s)) {
    736                    s->irq_coalesced--;
    737                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
    738                              s->irq_coalesced);
    739                }
    740            }
    741            break;
    742        default:
    743            ret = s->cmos_data[s->cmos_index];
    744            break;
    745        }
    746        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
    747                     s->cmos_index, ret);
    748        return ret;
    749    }
    750}
    751
    752void rtc_set_memory(ISADevice *dev, int addr, int val)
    753{
    754    RTCState *s = MC146818_RTC(dev);
    755    if (addr >= 0 && addr <= 127)
    756        s->cmos_data[addr] = val;
    757}
    758
    759int rtc_get_memory(ISADevice *dev, int addr)
    760{
    761    RTCState *s = MC146818_RTC(dev);
    762    assert(addr >= 0 && addr <= 127);
    763    return s->cmos_data[addr];
    764}
    765
    766static void rtc_set_date_from_host(ISADevice *dev)
    767{
    768    RTCState *s = MC146818_RTC(dev);
    769    struct tm tm;
    770
    771    qemu_get_timedate(&tm, 0);
    772
    773    s->base_rtc = mktimegm(&tm);
    774    s->last_update = qemu_clock_get_ns(rtc_clock);
    775    s->offset = 0;
    776
    777    /* set the CMOS date */
    778    rtc_set_cmos(s, &tm);
    779}
    780
    781static int rtc_pre_save(void *opaque)
    782{
    783    RTCState *s = opaque;
    784
    785    rtc_update_time(s);
    786
    787    return 0;
    788}
    789
    790static int rtc_post_load(void *opaque, int version_id)
    791{
    792    RTCState *s = opaque;
    793
    794    if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
    795        rtc_set_time(s);
    796        s->offset = 0;
    797        check_update_timer(s);
    798    }
    799    s->period = rtc_periodic_clock_ticks(s);
    800
    801    /* The periodic timer is deterministic in record/replay mode,
    802     * so there is no need to update it after loading the vmstate.
    803     * Reading RTC here would misalign record and replay.
    804     */
    805    if (replay_mode == REPLAY_MODE_NONE) {
    806        uint64_t now = qemu_clock_get_ns(rtc_clock);
    807        if (now < s->next_periodic_time ||
    808            now > (s->next_periodic_time + get_max_clock_jump())) {
    809            periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
    810        }
    811    }
    812
    813    if (version_id >= 2) {
    814        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
    815            rtc_coalesced_timer_update(s);
    816        }
    817    }
    818    return 0;
    819}
    820
    821static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
    822{
    823    RTCState *s = (RTCState *)opaque;
    824    return s->irq_reinject_on_ack_count != 0;
    825}
    826
    827static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
    828    .name = "mc146818rtc/irq_reinject_on_ack_count",
    829    .version_id = 1,
    830    .minimum_version_id = 1,
    831    .needed = rtc_irq_reinject_on_ack_count_needed,
    832    .fields = (VMStateField[]) {
    833        VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
    834        VMSTATE_END_OF_LIST()
    835    }
    836};
    837
    838static const VMStateDescription vmstate_rtc = {
    839    .name = "mc146818rtc",
    840    .version_id = 3,
    841    .minimum_version_id = 1,
    842    .pre_save = rtc_pre_save,
    843    .post_load = rtc_post_load,
    844    .fields = (VMStateField[]) {
    845        VMSTATE_BUFFER(cmos_data, RTCState),
    846        VMSTATE_UINT8(cmos_index, RTCState),
    847        VMSTATE_UNUSED(7*4),
    848        VMSTATE_TIMER_PTR(periodic_timer, RTCState),
    849        VMSTATE_INT64(next_periodic_time, RTCState),
    850        VMSTATE_UNUSED(3*8),
    851        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
    852        VMSTATE_UINT32_V(period, RTCState, 2),
    853        VMSTATE_UINT64_V(base_rtc, RTCState, 3),
    854        VMSTATE_UINT64_V(last_update, RTCState, 3),
    855        VMSTATE_INT64_V(offset, RTCState, 3),
    856        VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
    857        VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
    858        VMSTATE_END_OF_LIST()
    859    },
    860    .subsections = (const VMStateDescription*[]) {
    861        &vmstate_rtc_irq_reinject_on_ack_count,
    862        NULL
    863    }
    864};
    865
    866/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
    867   BIOS will read it and start S3 resume at POST Entry */
    868static void rtc_notify_suspend(Notifier *notifier, void *data)
    869{
    870    RTCState *s = container_of(notifier, RTCState, suspend_notifier);
    871    rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
    872}
    873
    874static const MemoryRegionOps cmos_ops = {
    875    .read = cmos_ioport_read,
    876    .write = cmos_ioport_write,
    877    .impl = {
    878        .min_access_size = 1,
    879        .max_access_size = 1,
    880    },
    881    .endianness = DEVICE_LITTLE_ENDIAN,
    882};
    883
    884static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
    885{
    886    RTCState *s = MC146818_RTC(obj);
    887
    888    rtc_update_time(s);
    889    rtc_get_time(s, current_tm);
    890}
    891
    892static void rtc_realizefn(DeviceState *dev, Error **errp)
    893{
    894    ISADevice *isadev = ISA_DEVICE(dev);
    895    RTCState *s = MC146818_RTC(dev);
    896
    897    s->cmos_data[RTC_REG_A] = 0x26;
    898    s->cmos_data[RTC_REG_B] = 0x02;
    899    s->cmos_data[RTC_REG_C] = 0x00;
    900    s->cmos_data[RTC_REG_D] = 0x80;
    901
    902    /* This is for historical reasons.  The default base year qdev property
    903     * was set to 2000 for most machine types before the century byte was
    904     * implemented.
    905     *
    906     * This if statement means that the century byte will be always 0
    907     * (at least until 2079...) for base_year = 1980, but will be set
    908     * correctly for base_year = 2000.
    909     */
    910    if (s->base_year == 2000) {
    911        s->base_year = 0;
    912    }
    913
    914    rtc_set_date_from_host(isadev);
    915
    916    switch (s->lost_tick_policy) {
    917#ifdef TARGET_I386
    918    case LOST_TICK_POLICY_SLEW:
    919        s->coalesced_timer =
    920            timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
    921        break;
    922#endif
    923    case LOST_TICK_POLICY_DISCARD:
    924        break;
    925    default:
    926        error_setg(errp, "Invalid lost tick policy.");
    927        return;
    928    }
    929
    930    s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
    931    s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
    932    check_update_timer(s);
    933
    934    s->suspend_notifier.notify = rtc_notify_suspend;
    935    qemu_register_suspend_notifier(&s->suspend_notifier);
    936
    937    memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
    938    isa_register_ioport(isadev, &s->io, RTC_ISA_BASE);
    939
    940    /* register rtc 0x70 port for coalesced_pio */
    941    memory_region_set_flush_coalesced(&s->io);
    942    memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
    943                          s, "rtc-index", 1);
    944    memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
    945    memory_region_add_coalescing(&s->coalesced_io, 0, 1);
    946
    947    qdev_set_legacy_instance_id(dev, RTC_ISA_BASE, 3);
    948
    949    object_property_add_tm(OBJECT(s), "date", rtc_get_date);
    950
    951    qdev_init_gpio_out(dev, &s->irq, 1);
    952    QLIST_INSERT_HEAD(&rtc_devices, s, link);
    953}
    954
    955ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
    956{
    957    DeviceState *dev;
    958    ISADevice *isadev;
    959
    960    isadev = isa_new(TYPE_MC146818_RTC);
    961    dev = DEVICE(isadev);
    962    qdev_prop_set_int32(dev, "base_year", base_year);
    963    isa_realize_and_unref(isadev, bus, &error_fatal);
    964    if (intercept_irq) {
    965        qdev_connect_gpio_out(dev, 0, intercept_irq);
    966    } else {
    967        isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
    968    }
    969
    970    object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
    971                              "date");
    972
    973    return isadev;
    974}
    975
    976static Property mc146818rtc_properties[] = {
    977    DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
    978    DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
    979                               lost_tick_policy, LOST_TICK_POLICY_DISCARD),
    980    DEFINE_PROP_END_OF_LIST(),
    981};
    982
    983static void rtc_reset_enter(Object *obj, ResetType type)
    984{
    985    RTCState *s = MC146818_RTC(obj);
    986
    987    /* Reason: VM do suspend self will set 0xfe
    988     * Reset any values other than 0xfe(Guest suspend case) */
    989    if (s->cmos_data[0x0f] != 0xfe) {
    990        s->cmos_data[0x0f] = 0x00;
    991    }
    992
    993    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
    994    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
    995    check_update_timer(s);
    996
    997
    998    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
    999        s->irq_coalesced = 0;
   1000        s->irq_reinject_on_ack_count = 0;
   1001    }
   1002}
   1003
   1004static void rtc_reset_hold(Object *obj)
   1005{
   1006    RTCState *s = MC146818_RTC(obj);
   1007
   1008    qemu_irq_lower(s->irq);
   1009}
   1010
   1011static void rtc_build_aml(ISADevice *isadev, Aml *scope)
   1012{
   1013    Aml *dev;
   1014    Aml *crs;
   1015
   1016    /*
   1017     * Reserving 8 io ports here, following what physical hardware
   1018     * does, even though qemu only responds to the first two ports.
   1019     */
   1020    crs = aml_resource_template();
   1021    aml_append(crs, aml_io(AML_DECODE16, RTC_ISA_BASE, RTC_ISA_BASE,
   1022                           0x01, 0x08));
   1023    aml_append(crs, aml_irq_no_flags(RTC_ISA_IRQ));
   1024
   1025    dev = aml_device("RTC");
   1026    aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
   1027    aml_append(dev, aml_name_decl("_CRS", crs));
   1028
   1029    aml_append(scope, dev);
   1030}
   1031
   1032static void rtc_class_initfn(ObjectClass *klass, void *data)
   1033{
   1034    DeviceClass *dc = DEVICE_CLASS(klass);
   1035    ResettableClass *rc = RESETTABLE_CLASS(klass);
   1036    ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
   1037
   1038    dc->realize = rtc_realizefn;
   1039    dc->vmsd = &vmstate_rtc;
   1040    rc->phases.enter = rtc_reset_enter;
   1041    rc->phases.hold = rtc_reset_hold;
   1042    isa->build_aml = rtc_build_aml;
   1043    device_class_set_props(dc, mc146818rtc_properties);
   1044    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
   1045}
   1046
   1047static const TypeInfo mc146818rtc_info = {
   1048    .name          = TYPE_MC146818_RTC,
   1049    .parent        = TYPE_ISA_DEVICE,
   1050    .instance_size = sizeof(RTCState),
   1051    .class_init    = rtc_class_initfn,
   1052};
   1053
   1054static void mc146818rtc_register_types(void)
   1055{
   1056    type_register_static(&mc146818rtc_info);
   1057}
   1058
   1059type_init(mc146818rtc_register_types)