cadence_ttc.c (12880B)
1/* 2 * Xilinx Zynq cadence TTC model 3 * 4 * Copyright (c) 2011 Xilinx Inc. 5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com) 6 * Copyright (c) 2012 PetaLogix Pty Ltd. 7 * Written By Haibing Ma 8 * M. Habib 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19#include "qemu/osdep.h" 20#include "hw/irq.h" 21#include "hw/sysbus.h" 22#include "migration/vmstate.h" 23#include "qemu/module.h" 24#include "qemu/timer.h" 25#include "qom/object.h" 26 27#ifdef CADENCE_TTC_ERR_DEBUG 28#define DB_PRINT(...) do { \ 29 fprintf(stderr, ": %s: ", __func__); \ 30 fprintf(stderr, ## __VA_ARGS__); \ 31 } while (0) 32#else 33 #define DB_PRINT(...) 34#endif 35 36#define COUNTER_INTR_IV 0x00000001 37#define COUNTER_INTR_M1 0x00000002 38#define COUNTER_INTR_M2 0x00000004 39#define COUNTER_INTR_M3 0x00000008 40#define COUNTER_INTR_OV 0x00000010 41#define COUNTER_INTR_EV 0x00000020 42 43#define COUNTER_CTRL_DIS 0x00000001 44#define COUNTER_CTRL_INT 0x00000002 45#define COUNTER_CTRL_DEC 0x00000004 46#define COUNTER_CTRL_MATCH 0x00000008 47#define COUNTER_CTRL_RST 0x00000010 48 49#define CLOCK_CTRL_PS_EN 0x00000001 50#define CLOCK_CTRL_PS_V 0x0000001e 51 52typedef struct { 53 QEMUTimer *timer; 54 int freq; 55 56 uint32_t reg_clock; 57 uint32_t reg_count; 58 uint32_t reg_value; 59 uint16_t reg_interval; 60 uint16_t reg_match[3]; 61 uint32_t reg_intr; 62 uint32_t reg_intr_en; 63 uint32_t reg_event_ctrl; 64 uint32_t reg_event; 65 66 uint64_t cpu_time; 67 unsigned int cpu_time_valid; 68 69 qemu_irq irq; 70} CadenceTimerState; 71 72#define TYPE_CADENCE_TTC "cadence_ttc" 73OBJECT_DECLARE_SIMPLE_TYPE(CadenceTTCState, CADENCE_TTC) 74 75struct CadenceTTCState { 76 SysBusDevice parent_obj; 77 78 MemoryRegion iomem; 79 CadenceTimerState timer[3]; 80}; 81 82static void cadence_timer_update(CadenceTimerState *s) 83{ 84 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en)); 85} 86 87static CadenceTimerState *cadence_timer_from_addr(void *opaque, 88 hwaddr offset) 89{ 90 unsigned int index; 91 CadenceTTCState *s = (CadenceTTCState *)opaque; 92 93 index = (offset >> 2) % 3; 94 95 return &s->timer[index]; 96} 97 98static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps) 99{ 100 /* timer_steps has max value of 0x100000000. double check it 101 * (or overflow can happen below) */ 102 assert(timer_steps <= 1ULL << 32); 103 104 uint64_t r = timer_steps * 1000000000ULL; 105 if (s->reg_clock & CLOCK_CTRL_PS_EN) { 106 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1); 107 } else { 108 r >>= 16; 109 } 110 r /= (uint64_t)s->freq; 111 return r; 112} 113 114static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns) 115{ 116 uint64_t to_divide = 1000000000ULL; 117 118 uint64_t r = ns; 119 /* for very large intervals (> 8s) do some division first to stop 120 * overflow (costs some prescision) */ 121 while (r >= 8ULL << 30 && to_divide > 1) { 122 r /= 1000; 123 to_divide /= 1000; 124 } 125 r <<= 16; 126 /* keep early-dividing as needed */ 127 while (r >= 8ULL << 30 && to_divide > 1) { 128 r /= 1000; 129 to_divide /= 1000; 130 } 131 r *= (uint64_t)s->freq; 132 if (s->reg_clock & CLOCK_CTRL_PS_EN) { 133 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1); 134 } 135 136 r /= to_divide; 137 return r; 138} 139 140/* determine if x is in between a and b, exclusive of a, inclusive of b */ 141 142static inline int64_t is_between(int64_t x, int64_t a, int64_t b) 143{ 144 if (a < b) { 145 return x > a && x <= b; 146 } 147 return x < a && x >= b; 148} 149 150static void cadence_timer_run(CadenceTimerState *s) 151{ 152 int i; 153 int64_t event_interval, next_value; 154 155 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */ 156 157 if (s->reg_count & COUNTER_CTRL_DIS) { 158 s->cpu_time_valid = 0; 159 return; 160 } 161 162 { /* figure out what's going to happen next (rollover or match) */ 163 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ? 164 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16; 165 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval; 166 for (i = 0; i < 3; ++i) { 167 int64_t cand = (uint64_t)s->reg_match[i] << 16; 168 if (is_between(cand, (uint64_t)s->reg_value, next_value)) { 169 next_value = cand; 170 } 171 } 172 } 173 DB_PRINT("next timer event value: %09llx\n", 174 (unsigned long long)next_value); 175 176 event_interval = next_value - (int64_t)s->reg_value; 177 event_interval = (event_interval < 0) ? -event_interval : event_interval; 178 179 timer_mod(s->timer, s->cpu_time + 180 cadence_timer_get_ns(s, event_interval)); 181} 182 183static void cadence_timer_sync(CadenceTimerState *s) 184{ 185 int i; 186 int64_t r, x; 187 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ? 188 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16; 189 uint64_t old_time = s->cpu_time; 190 191 s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 192 DB_PRINT("cpu time: %lld ns\n", (long long)old_time); 193 194 if (!s->cpu_time_valid || old_time == s->cpu_time) { 195 s->cpu_time_valid = 1; 196 return; 197 } 198 199 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time); 200 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r); 201 202 for (i = 0; i < 3; ++i) { 203 int64_t m = (int64_t)s->reg_match[i] << 16; 204 if (m > interval) { 205 continue; 206 } 207 /* check to see if match event has occurred. check m +/- interval 208 * to account for match events in wrap around cases */ 209 if (is_between(m, s->reg_value, x) || 210 is_between(m + interval, s->reg_value, x) || 211 is_between(m - interval, s->reg_value, x)) { 212 s->reg_intr |= (2 << i); 213 } 214 } 215 if ((x < 0) || (x >= interval)) { 216 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ? 217 COUNTER_INTR_IV : COUNTER_INTR_OV; 218 } 219 while (x < 0) { 220 x += interval; 221 } 222 s->reg_value = (uint32_t)(x % interval); 223 cadence_timer_update(s); 224} 225 226static void cadence_timer_tick(void *opaque) 227{ 228 CadenceTimerState *s = opaque; 229 230 DB_PRINT("\n"); 231 cadence_timer_sync(s); 232 cadence_timer_run(s); 233} 234 235static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset) 236{ 237 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset); 238 uint32_t value; 239 240 cadence_timer_sync(s); 241 cadence_timer_run(s); 242 243 switch (offset) { 244 case 0x00: /* clock control */ 245 case 0x04: 246 case 0x08: 247 return s->reg_clock; 248 249 case 0x0c: /* counter control */ 250 case 0x10: 251 case 0x14: 252 return s->reg_count; 253 254 case 0x18: /* counter value */ 255 case 0x1c: 256 case 0x20: 257 return (uint16_t)(s->reg_value >> 16); 258 259 case 0x24: /* reg_interval counter */ 260 case 0x28: 261 case 0x2c: 262 return s->reg_interval; 263 264 case 0x30: /* match 1 counter */ 265 case 0x34: 266 case 0x38: 267 return s->reg_match[0]; 268 269 case 0x3c: /* match 2 counter */ 270 case 0x40: 271 case 0x44: 272 return s->reg_match[1]; 273 274 case 0x48: /* match 3 counter */ 275 case 0x4c: 276 case 0x50: 277 return s->reg_match[2]; 278 279 case 0x54: /* interrupt register */ 280 case 0x58: 281 case 0x5c: 282 /* cleared after read */ 283 value = s->reg_intr; 284 s->reg_intr = 0; 285 cadence_timer_update(s); 286 return value; 287 288 case 0x60: /* interrupt enable */ 289 case 0x64: 290 case 0x68: 291 return s->reg_intr_en; 292 293 case 0x6c: 294 case 0x70: 295 case 0x74: 296 return s->reg_event_ctrl; 297 298 case 0x78: 299 case 0x7c: 300 case 0x80: 301 return s->reg_event; 302 303 default: 304 return 0; 305 } 306} 307 308static uint64_t cadence_ttc_read(void *opaque, hwaddr offset, 309 unsigned size) 310{ 311 uint32_t ret = cadence_ttc_read_imp(opaque, offset); 312 313 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret); 314 return ret; 315} 316 317static void cadence_ttc_write(void *opaque, hwaddr offset, 318 uint64_t value, unsigned size) 319{ 320 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset); 321 322 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value); 323 324 cadence_timer_sync(s); 325 326 switch (offset) { 327 case 0x00: /* clock control */ 328 case 0x04: 329 case 0x08: 330 s->reg_clock = value & 0x3F; 331 break; 332 333 case 0x0c: /* counter control */ 334 case 0x10: 335 case 0x14: 336 if (value & COUNTER_CTRL_RST) { 337 s->reg_value = 0; 338 } 339 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST; 340 break; 341 342 case 0x24: /* interval register */ 343 case 0x28: 344 case 0x2c: 345 s->reg_interval = value & 0xffff; 346 break; 347 348 case 0x30: /* match register */ 349 case 0x34: 350 case 0x38: 351 s->reg_match[0] = value & 0xffff; 352 break; 353 354 case 0x3c: /* match register */ 355 case 0x40: 356 case 0x44: 357 s->reg_match[1] = value & 0xffff; 358 break; 359 360 case 0x48: /* match register */ 361 case 0x4c: 362 case 0x50: 363 s->reg_match[2] = value & 0xffff; 364 break; 365 366 case 0x54: /* interrupt register */ 367 case 0x58: 368 case 0x5c: 369 break; 370 371 case 0x60: /* interrupt enable */ 372 case 0x64: 373 case 0x68: 374 s->reg_intr_en = value & 0x3f; 375 break; 376 377 case 0x6c: /* event control */ 378 case 0x70: 379 case 0x74: 380 s->reg_event_ctrl = value & 0x07; 381 break; 382 383 default: 384 return; 385 } 386 387 cadence_timer_run(s); 388 cadence_timer_update(s); 389} 390 391static const MemoryRegionOps cadence_ttc_ops = { 392 .read = cadence_ttc_read, 393 .write = cadence_ttc_write, 394 .endianness = DEVICE_NATIVE_ENDIAN, 395}; 396 397static void cadence_timer_reset(CadenceTimerState *s) 398{ 399 s->reg_count = 0x21; 400} 401 402static void cadence_timer_init(uint32_t freq, CadenceTimerState *s) 403{ 404 memset(s, 0, sizeof(CadenceTimerState)); 405 s->freq = freq; 406 407 cadence_timer_reset(s); 408 409 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s); 410} 411 412static void cadence_ttc_init(Object *obj) 413{ 414 CadenceTTCState *s = CADENCE_TTC(obj); 415 416 memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s, 417 "timer", 0x1000); 418 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); 419} 420 421static void cadence_ttc_realize(DeviceState *dev, Error **errp) 422{ 423 CadenceTTCState *s = CADENCE_TTC(dev); 424 int i; 425 426 for (i = 0; i < 3; ++i) { 427 cadence_timer_init(133000000, &s->timer[i]); 428 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->timer[i].irq); 429 } 430} 431 432static int cadence_timer_pre_save(void *opaque) 433{ 434 cadence_timer_sync((CadenceTimerState *)opaque); 435 436 return 0; 437} 438 439static int cadence_timer_post_load(void *opaque, int version_id) 440{ 441 CadenceTimerState *s = opaque; 442 443 s->cpu_time_valid = 0; 444 cadence_timer_sync(s); 445 cadence_timer_run(s); 446 cadence_timer_update(s); 447 return 0; 448} 449 450static const VMStateDescription vmstate_cadence_timer = { 451 .name = "cadence_timer", 452 .version_id = 1, 453 .minimum_version_id = 1, 454 .pre_save = cadence_timer_pre_save, 455 .post_load = cadence_timer_post_load, 456 .fields = (VMStateField[]) { 457 VMSTATE_UINT32(reg_clock, CadenceTimerState), 458 VMSTATE_UINT32(reg_count, CadenceTimerState), 459 VMSTATE_UINT32(reg_value, CadenceTimerState), 460 VMSTATE_UINT16(reg_interval, CadenceTimerState), 461 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3), 462 VMSTATE_UINT32(reg_intr, CadenceTimerState), 463 VMSTATE_UINT32(reg_intr_en, CadenceTimerState), 464 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState), 465 VMSTATE_UINT32(reg_event, CadenceTimerState), 466 VMSTATE_END_OF_LIST() 467 } 468}; 469 470static const VMStateDescription vmstate_cadence_ttc = { 471 .name = "cadence_TTC", 472 .version_id = 1, 473 .minimum_version_id = 1, 474 .fields = (VMStateField[]) { 475 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0, 476 vmstate_cadence_timer, 477 CadenceTimerState), 478 VMSTATE_END_OF_LIST() 479 } 480}; 481 482static void cadence_ttc_class_init(ObjectClass *klass, void *data) 483{ 484 DeviceClass *dc = DEVICE_CLASS(klass); 485 486 dc->vmsd = &vmstate_cadence_ttc; 487 dc->realize = cadence_ttc_realize; 488} 489 490static const TypeInfo cadence_ttc_info = { 491 .name = TYPE_CADENCE_TTC, 492 .parent = TYPE_SYS_BUS_DEVICE, 493 .instance_size = sizeof(CadenceTTCState), 494 .instance_init = cadence_ttc_init, 495 .class_init = cadence_ttc_class_init, 496}; 497 498static void cadence_ttc_register_types(void) 499{ 500 type_register_static(&cadence_ttc_info); 501} 502 503type_init(cadence_ttc_register_types)