cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

cadence_ttc.c (12880B)


      1/*
      2 * Xilinx Zynq cadence TTC model
      3 *
      4 * Copyright (c) 2011 Xilinx Inc.
      5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
      6 * Copyright (c) 2012 PetaLogix Pty Ltd.
      7 * Written By Haibing Ma
      8 *            M. Habib
      9 *
     10 * This program is free software; you can redistribute it and/or
     11 * modify it under the terms of the GNU General Public License
     12 * as published by the Free Software Foundation; either version
     13 * 2 of the License, or (at your option) any later version.
     14 *
     15 * You should have received a copy of the GNU General Public License along
     16 * with this program; if not, see <http://www.gnu.org/licenses/>.
     17 */
     18
     19#include "qemu/osdep.h"
     20#include "hw/irq.h"
     21#include "hw/sysbus.h"
     22#include "migration/vmstate.h"
     23#include "qemu/module.h"
     24#include "qemu/timer.h"
     25#include "qom/object.h"
     26
     27#ifdef CADENCE_TTC_ERR_DEBUG
     28#define DB_PRINT(...) do { \
     29    fprintf(stderr,  ": %s: ", __func__); \
     30    fprintf(stderr, ## __VA_ARGS__); \
     31    } while (0)
     32#else
     33    #define DB_PRINT(...)
     34#endif
     35
     36#define COUNTER_INTR_IV     0x00000001
     37#define COUNTER_INTR_M1     0x00000002
     38#define COUNTER_INTR_M2     0x00000004
     39#define COUNTER_INTR_M3     0x00000008
     40#define COUNTER_INTR_OV     0x00000010
     41#define COUNTER_INTR_EV     0x00000020
     42
     43#define COUNTER_CTRL_DIS    0x00000001
     44#define COUNTER_CTRL_INT    0x00000002
     45#define COUNTER_CTRL_DEC    0x00000004
     46#define COUNTER_CTRL_MATCH  0x00000008
     47#define COUNTER_CTRL_RST    0x00000010
     48
     49#define CLOCK_CTRL_PS_EN    0x00000001
     50#define CLOCK_CTRL_PS_V     0x0000001e
     51
     52typedef struct {
     53    QEMUTimer *timer;
     54    int freq;
     55
     56    uint32_t reg_clock;
     57    uint32_t reg_count;
     58    uint32_t reg_value;
     59    uint16_t reg_interval;
     60    uint16_t reg_match[3];
     61    uint32_t reg_intr;
     62    uint32_t reg_intr_en;
     63    uint32_t reg_event_ctrl;
     64    uint32_t reg_event;
     65
     66    uint64_t cpu_time;
     67    unsigned int cpu_time_valid;
     68
     69    qemu_irq irq;
     70} CadenceTimerState;
     71
     72#define TYPE_CADENCE_TTC "cadence_ttc"
     73OBJECT_DECLARE_SIMPLE_TYPE(CadenceTTCState, CADENCE_TTC)
     74
     75struct CadenceTTCState {
     76    SysBusDevice parent_obj;
     77
     78    MemoryRegion iomem;
     79    CadenceTimerState timer[3];
     80};
     81
     82static void cadence_timer_update(CadenceTimerState *s)
     83{
     84    qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
     85}
     86
     87static CadenceTimerState *cadence_timer_from_addr(void *opaque,
     88                                        hwaddr offset)
     89{
     90    unsigned int index;
     91    CadenceTTCState *s = (CadenceTTCState *)opaque;
     92
     93    index = (offset >> 2) % 3;
     94
     95    return &s->timer[index];
     96}
     97
     98static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
     99{
    100    /* timer_steps has max value of 0x100000000. double check it
    101     * (or overflow can happen below) */
    102    assert(timer_steps <= 1ULL << 32);
    103
    104    uint64_t r = timer_steps * 1000000000ULL;
    105    if (s->reg_clock & CLOCK_CTRL_PS_EN) {
    106        r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
    107    } else {
    108        r >>= 16;
    109    }
    110    r /= (uint64_t)s->freq;
    111    return r;
    112}
    113
    114static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
    115{
    116    uint64_t to_divide = 1000000000ULL;
    117
    118    uint64_t r = ns;
    119     /* for very large intervals (> 8s) do some division first to stop
    120      * overflow (costs some prescision) */
    121    while (r >= 8ULL << 30 && to_divide > 1) {
    122        r /= 1000;
    123        to_divide /= 1000;
    124    }
    125    r <<= 16;
    126    /* keep early-dividing as needed */
    127    while (r >= 8ULL << 30 && to_divide > 1) {
    128        r /= 1000;
    129        to_divide /= 1000;
    130    }
    131    r *= (uint64_t)s->freq;
    132    if (s->reg_clock & CLOCK_CTRL_PS_EN) {
    133        r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
    134    }
    135
    136    r /= to_divide;
    137    return r;
    138}
    139
    140/* determine if x is in between a and b, exclusive of a, inclusive of b */
    141
    142static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
    143{
    144    if (a < b) {
    145        return x > a && x <= b;
    146    }
    147    return x < a && x >= b;
    148}
    149
    150static void cadence_timer_run(CadenceTimerState *s)
    151{
    152    int i;
    153    int64_t event_interval, next_value;
    154
    155    assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
    156
    157    if (s->reg_count & COUNTER_CTRL_DIS) {
    158        s->cpu_time_valid = 0;
    159        return;
    160    }
    161
    162    { /* figure out what's going to happen next (rollover or match) */
    163        int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
    164                (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
    165        next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
    166        for (i = 0; i < 3; ++i) {
    167            int64_t cand = (uint64_t)s->reg_match[i] << 16;
    168            if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
    169                next_value = cand;
    170            }
    171        }
    172    }
    173    DB_PRINT("next timer event value: %09llx\n",
    174            (unsigned long long)next_value);
    175
    176    event_interval = next_value - (int64_t)s->reg_value;
    177    event_interval = (event_interval < 0) ? -event_interval : event_interval;
    178
    179    timer_mod(s->timer, s->cpu_time +
    180                cadence_timer_get_ns(s, event_interval));
    181}
    182
    183static void cadence_timer_sync(CadenceTimerState *s)
    184{
    185    int i;
    186    int64_t r, x;
    187    int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
    188            (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
    189    uint64_t old_time = s->cpu_time;
    190
    191    s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    192    DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
    193
    194    if (!s->cpu_time_valid || old_time == s->cpu_time) {
    195        s->cpu_time_valid = 1;
    196        return;
    197    }
    198
    199    r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
    200    x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
    201
    202    for (i = 0; i < 3; ++i) {
    203        int64_t m = (int64_t)s->reg_match[i] << 16;
    204        if (m > interval) {
    205            continue;
    206        }
    207        /* check to see if match event has occurred. check m +/- interval
    208         * to account for match events in wrap around cases */
    209        if (is_between(m, s->reg_value, x) ||
    210            is_between(m + interval, s->reg_value, x) ||
    211            is_between(m - interval, s->reg_value, x)) {
    212            s->reg_intr |= (2 << i);
    213        }
    214    }
    215    if ((x < 0) || (x >= interval)) {
    216        s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
    217            COUNTER_INTR_IV : COUNTER_INTR_OV;
    218    }
    219    while (x < 0) {
    220        x += interval;
    221    }
    222    s->reg_value = (uint32_t)(x % interval);
    223    cadence_timer_update(s);
    224}
    225
    226static void cadence_timer_tick(void *opaque)
    227{
    228    CadenceTimerState *s = opaque;
    229
    230    DB_PRINT("\n");
    231    cadence_timer_sync(s);
    232    cadence_timer_run(s);
    233}
    234
    235static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
    236{
    237    CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
    238    uint32_t value;
    239
    240    cadence_timer_sync(s);
    241    cadence_timer_run(s);
    242
    243    switch (offset) {
    244    case 0x00: /* clock control */
    245    case 0x04:
    246    case 0x08:
    247        return s->reg_clock;
    248
    249    case 0x0c: /* counter control */
    250    case 0x10:
    251    case 0x14:
    252        return s->reg_count;
    253
    254    case 0x18: /* counter value */
    255    case 0x1c:
    256    case 0x20:
    257        return (uint16_t)(s->reg_value >> 16);
    258
    259    case 0x24: /* reg_interval counter */
    260    case 0x28:
    261    case 0x2c:
    262        return s->reg_interval;
    263
    264    case 0x30: /* match 1 counter */
    265    case 0x34:
    266    case 0x38:
    267        return s->reg_match[0];
    268
    269    case 0x3c: /* match 2 counter */
    270    case 0x40:
    271    case 0x44:
    272        return s->reg_match[1];
    273
    274    case 0x48: /* match 3 counter */
    275    case 0x4c:
    276    case 0x50:
    277        return s->reg_match[2];
    278
    279    case 0x54: /* interrupt register */
    280    case 0x58:
    281    case 0x5c:
    282        /* cleared after read */
    283        value = s->reg_intr;
    284        s->reg_intr = 0;
    285        cadence_timer_update(s);
    286        return value;
    287
    288    case 0x60: /* interrupt enable */
    289    case 0x64:
    290    case 0x68:
    291        return s->reg_intr_en;
    292
    293    case 0x6c:
    294    case 0x70:
    295    case 0x74:
    296        return s->reg_event_ctrl;
    297
    298    case 0x78:
    299    case 0x7c:
    300    case 0x80:
    301        return s->reg_event;
    302
    303    default:
    304        return 0;
    305    }
    306}
    307
    308static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
    309    unsigned size)
    310{
    311    uint32_t ret = cadence_ttc_read_imp(opaque, offset);
    312
    313    DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
    314    return ret;
    315}
    316
    317static void cadence_ttc_write(void *opaque, hwaddr offset,
    318        uint64_t value, unsigned size)
    319{
    320    CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
    321
    322    DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
    323
    324    cadence_timer_sync(s);
    325
    326    switch (offset) {
    327    case 0x00: /* clock control */
    328    case 0x04:
    329    case 0x08:
    330        s->reg_clock = value & 0x3F;
    331        break;
    332
    333    case 0x0c: /* counter control */
    334    case 0x10:
    335    case 0x14:
    336        if (value & COUNTER_CTRL_RST) {
    337            s->reg_value = 0;
    338        }
    339        s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
    340        break;
    341
    342    case 0x24: /* interval register */
    343    case 0x28:
    344    case 0x2c:
    345        s->reg_interval = value & 0xffff;
    346        break;
    347
    348    case 0x30: /* match register */
    349    case 0x34:
    350    case 0x38:
    351        s->reg_match[0] = value & 0xffff;
    352        break;
    353
    354    case 0x3c: /* match register */
    355    case 0x40:
    356    case 0x44:
    357        s->reg_match[1] = value & 0xffff;
    358        break;
    359
    360    case 0x48: /* match register */
    361    case 0x4c:
    362    case 0x50:
    363        s->reg_match[2] = value & 0xffff;
    364        break;
    365
    366    case 0x54: /* interrupt register */
    367    case 0x58:
    368    case 0x5c:
    369        break;
    370
    371    case 0x60: /* interrupt enable */
    372    case 0x64:
    373    case 0x68:
    374        s->reg_intr_en = value & 0x3f;
    375        break;
    376
    377    case 0x6c: /* event control */
    378    case 0x70:
    379    case 0x74:
    380        s->reg_event_ctrl = value & 0x07;
    381        break;
    382
    383    default:
    384        return;
    385    }
    386
    387    cadence_timer_run(s);
    388    cadence_timer_update(s);
    389}
    390
    391static const MemoryRegionOps cadence_ttc_ops = {
    392    .read = cadence_ttc_read,
    393    .write = cadence_ttc_write,
    394    .endianness = DEVICE_NATIVE_ENDIAN,
    395};
    396
    397static void cadence_timer_reset(CadenceTimerState *s)
    398{
    399   s->reg_count = 0x21;
    400}
    401
    402static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
    403{
    404    memset(s, 0, sizeof(CadenceTimerState));
    405    s->freq = freq;
    406
    407    cadence_timer_reset(s);
    408
    409    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
    410}
    411
    412static void cadence_ttc_init(Object *obj)
    413{
    414    CadenceTTCState *s = CADENCE_TTC(obj);
    415
    416    memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
    417                          "timer", 0x1000);
    418    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
    419}
    420
    421static void cadence_ttc_realize(DeviceState *dev, Error **errp)
    422{
    423    CadenceTTCState *s = CADENCE_TTC(dev);
    424    int i;
    425
    426    for (i = 0; i < 3; ++i) {
    427        cadence_timer_init(133000000, &s->timer[i]);
    428        sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->timer[i].irq);
    429    }
    430}
    431
    432static int cadence_timer_pre_save(void *opaque)
    433{
    434    cadence_timer_sync((CadenceTimerState *)opaque);
    435
    436    return 0;
    437}
    438
    439static int cadence_timer_post_load(void *opaque, int version_id)
    440{
    441    CadenceTimerState *s = opaque;
    442
    443    s->cpu_time_valid = 0;
    444    cadence_timer_sync(s);
    445    cadence_timer_run(s);
    446    cadence_timer_update(s);
    447    return 0;
    448}
    449
    450static const VMStateDescription vmstate_cadence_timer = {
    451    .name = "cadence_timer",
    452    .version_id = 1,
    453    .minimum_version_id = 1,
    454    .pre_save = cadence_timer_pre_save,
    455    .post_load = cadence_timer_post_load,
    456    .fields = (VMStateField[]) {
    457        VMSTATE_UINT32(reg_clock, CadenceTimerState),
    458        VMSTATE_UINT32(reg_count, CadenceTimerState),
    459        VMSTATE_UINT32(reg_value, CadenceTimerState),
    460        VMSTATE_UINT16(reg_interval, CadenceTimerState),
    461        VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
    462        VMSTATE_UINT32(reg_intr, CadenceTimerState),
    463        VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
    464        VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
    465        VMSTATE_UINT32(reg_event, CadenceTimerState),
    466        VMSTATE_END_OF_LIST()
    467    }
    468};
    469
    470static const VMStateDescription vmstate_cadence_ttc = {
    471    .name = "cadence_TTC",
    472    .version_id = 1,
    473    .minimum_version_id = 1,
    474    .fields = (VMStateField[]) {
    475        VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
    476                            vmstate_cadence_timer,
    477                            CadenceTimerState),
    478        VMSTATE_END_OF_LIST()
    479    }
    480};
    481
    482static void cadence_ttc_class_init(ObjectClass *klass, void *data)
    483{
    484    DeviceClass *dc = DEVICE_CLASS(klass);
    485
    486    dc->vmsd = &vmstate_cadence_ttc;
    487    dc->realize = cadence_ttc_realize;
    488}
    489
    490static const TypeInfo cadence_ttc_info = {
    491    .name  = TYPE_CADENCE_TTC,
    492    .parent = TYPE_SYS_BUS_DEVICE,
    493    .instance_size  = sizeof(CadenceTTCState),
    494    .instance_init = cadence_ttc_init,
    495    .class_init = cadence_ttc_class_init,
    496};
    497
    498static void cadence_ttc_register_types(void)
    499{
    500    type_register_static(&cadence_ttc_info);
    501}
    502
    503type_init(cadence_ttc_register_types)