cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

i8254_common.c (7988B)


      1/*
      2 * QEMU 8253/8254 - common bits of emulated and KVM kernel model
      3 *
      4 * Copyright (c) 2003-2004 Fabrice Bellard
      5 * Copyright (c) 2012      Jan Kiszka, Siemens AG
      6 *
      7 * Permission is hereby granted, free of charge, to any person obtaining a copy
      8 * of this software and associated documentation files (the "Software"), to deal
      9 * in the Software without restriction, including without limitation the rights
     10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     11 * copies of the Software, and to permit persons to whom the Software is
     12 * furnished to do so, subject to the following conditions:
     13 *
     14 * The above copyright notice and this permission notice shall be included in
     15 * all copies or substantial portions of the Software.
     16 *
     17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     23 * THE SOFTWARE.
     24 */
     25
     26#include "qemu/osdep.h"
     27#include "hw/isa/isa.h"
     28#include "qemu/module.h"
     29#include "qemu/timer.h"
     30#include "hw/timer/i8254.h"
     31#include "hw/timer/i8254_internal.h"
     32#include "migration/vmstate.h"
     33
     34/* val must be 0 or 1 */
     35void pit_set_gate(ISADevice *dev, int channel, int val)
     36{
     37    PITCommonState *pit = PIT_COMMON(dev);
     38    PITChannelState *s = &pit->channels[channel];
     39    PITCommonClass *c = PIT_COMMON_GET_CLASS(pit);
     40
     41    c->set_channel_gate(pit, s, val);
     42}
     43
     44/* get pit output bit */
     45int pit_get_out(PITChannelState *s, int64_t current_time)
     46{
     47    uint64_t d;
     48    int out;
     49
     50    d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
     51                 NANOSECONDS_PER_SECOND);
     52    switch (s->mode) {
     53    default:
     54    case 0:
     55        out = (d >= s->count);
     56        break;
     57    case 1:
     58        out = (d < s->count);
     59        break;
     60    case 2:
     61        if ((d % s->count) == 0 && d != 0) {
     62            out = 1;
     63        } else {
     64            out = 0;
     65        }
     66        break;
     67    case 3:
     68        out = (d % s->count) < ((s->count + 1) >> 1);
     69        break;
     70    case 4:
     71    case 5:
     72        out = (d == s->count);
     73        break;
     74    }
     75    return out;
     76}
     77
     78/* return -1 if no transition will occur.  */
     79int64_t pit_get_next_transition_time(PITChannelState *s, int64_t current_time)
     80{
     81    uint64_t d, next_time, base;
     82    int period2;
     83
     84    d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
     85                 NANOSECONDS_PER_SECOND);
     86    switch (s->mode) {
     87    default:
     88    case 0:
     89    case 1:
     90        if (d < s->count) {
     91            next_time = s->count;
     92        } else {
     93            return -1;
     94        }
     95        break;
     96    case 2:
     97        base = QEMU_ALIGN_DOWN(d, s->count);
     98        if ((d - base) == 0 && d != 0) {
     99            next_time = base + s->count;
    100        } else {
    101            next_time = base + s->count + 1;
    102        }
    103        break;
    104    case 3:
    105        base = QEMU_ALIGN_DOWN(d, s->count);
    106        period2 = ((s->count + 1) >> 1);
    107        if ((d - base) < period2) {
    108            next_time = base + period2;
    109        } else {
    110            next_time = base + s->count;
    111        }
    112        break;
    113    case 4:
    114    case 5:
    115        if (d < s->count) {
    116            next_time = s->count;
    117        } else if (d == s->count) {
    118            next_time = s->count + 1;
    119        } else {
    120            return -1;
    121        }
    122        break;
    123    }
    124    /* convert to timer units */
    125    next_time = s->count_load_time + muldiv64(next_time, NANOSECONDS_PER_SECOND,
    126                                              PIT_FREQ);
    127    /* fix potential rounding problems */
    128    /* XXX: better solution: use a clock at PIT_FREQ Hz */
    129    if (next_time <= current_time) {
    130        next_time = current_time + 1;
    131    }
    132    return next_time;
    133}
    134
    135void pit_get_channel_info_common(PITCommonState *s, PITChannelState *sc,
    136                                 PITChannelInfo *info)
    137{
    138    info->gate = sc->gate;
    139    info->mode = sc->mode;
    140    info->initial_count = sc->count;
    141    info->out = pit_get_out(sc, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
    142}
    143
    144void pit_get_channel_info(ISADevice *dev, int channel, PITChannelInfo *info)
    145{
    146    PITCommonState *pit = PIT_COMMON(dev);
    147    PITChannelState *s = &pit->channels[channel];
    148    PITCommonClass *c = PIT_COMMON_GET_CLASS(pit);
    149
    150    c->get_channel_info(pit, s, info);
    151}
    152
    153void pit_reset_common(PITCommonState *pit)
    154{
    155    PITChannelState *s;
    156    int i;
    157
    158    for (i = 0; i < 3; i++) {
    159        s = &pit->channels[i];
    160        s->mode = 3;
    161        s->gate = (i != 2);
    162        s->count_load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    163        s->count = 0x10000;
    164        if (i == 0 && !s->irq_disabled) {
    165            s->next_transition_time =
    166                pit_get_next_transition_time(s, s->count_load_time);
    167        }
    168    }
    169}
    170
    171static void pit_common_realize(DeviceState *dev, Error **errp)
    172{
    173    ISADevice *isadev = ISA_DEVICE(dev);
    174    PITCommonState *pit = PIT_COMMON(dev);
    175
    176    isa_register_ioport(isadev, &pit->ioports, pit->iobase);
    177
    178    qdev_set_legacy_instance_id(dev, pit->iobase, 2);
    179}
    180
    181static const VMStateDescription vmstate_pit_channel = {
    182    .name = "pit channel",
    183    .version_id = 2,
    184    .minimum_version_id = 2,
    185    .fields = (VMStateField[]) {
    186        VMSTATE_INT32(count, PITChannelState),
    187        VMSTATE_UINT16(latched_count, PITChannelState),
    188        VMSTATE_UINT8(count_latched, PITChannelState),
    189        VMSTATE_UINT8(status_latched, PITChannelState),
    190        VMSTATE_UINT8(status, PITChannelState),
    191        VMSTATE_UINT8(read_state, PITChannelState),
    192        VMSTATE_UINT8(write_state, PITChannelState),
    193        VMSTATE_UINT8(write_latch, PITChannelState),
    194        VMSTATE_UINT8(rw_mode, PITChannelState),
    195        VMSTATE_UINT8(mode, PITChannelState),
    196        VMSTATE_UINT8(bcd, PITChannelState),
    197        VMSTATE_UINT8(gate, PITChannelState),
    198        VMSTATE_INT64(count_load_time, PITChannelState),
    199        VMSTATE_INT64(next_transition_time, PITChannelState),
    200        VMSTATE_END_OF_LIST()
    201    }
    202};
    203
    204static int pit_dispatch_pre_save(void *opaque)
    205{
    206    PITCommonState *s = opaque;
    207    PITCommonClass *c = PIT_COMMON_GET_CLASS(s);
    208
    209    if (c->pre_save) {
    210        c->pre_save(s);
    211    }
    212
    213    return 0;
    214}
    215
    216static int pit_dispatch_post_load(void *opaque, int version_id)
    217{
    218    PITCommonState *s = opaque;
    219    PITCommonClass *c = PIT_COMMON_GET_CLASS(s);
    220
    221    if (c->post_load) {
    222        c->post_load(s);
    223    }
    224    return 0;
    225}
    226
    227static const VMStateDescription vmstate_pit_common = {
    228    .name = "i8254",
    229    .version_id = 3,
    230    .minimum_version_id = 2,
    231    .pre_save = pit_dispatch_pre_save,
    232    .post_load = pit_dispatch_post_load,
    233    .fields = (VMStateField[]) {
    234        VMSTATE_UINT32_V(channels[0].irq_disabled, PITCommonState, 3),
    235        VMSTATE_STRUCT_ARRAY(channels, PITCommonState, 3, 2,
    236                             vmstate_pit_channel, PITChannelState),
    237        VMSTATE_INT64(channels[0].next_transition_time,
    238                      PITCommonState), /* formerly irq_timer */
    239        VMSTATE_END_OF_LIST()
    240    }
    241};
    242
    243static void pit_common_class_init(ObjectClass *klass, void *data)
    244{
    245    DeviceClass *dc = DEVICE_CLASS(klass);
    246
    247    dc->realize = pit_common_realize;
    248    dc->vmsd = &vmstate_pit_common;
    249    /*
    250     * Reason: unlike ordinary ISA devices, the PIT may need to be
    251     * wired to the HPET, and because of that, some wiring is always
    252     * done by board code.
    253     */
    254    dc->user_creatable = false;
    255}
    256
    257static const TypeInfo pit_common_type = {
    258    .name          = TYPE_PIT_COMMON,
    259    .parent        = TYPE_ISA_DEVICE,
    260    .instance_size = sizeof(PITCommonState),
    261    .class_size    = sizeof(PITCommonClass),
    262    .class_init    = pit_common_class_init,
    263    .abstract      = true,
    264};
    265
    266static void register_devices(void)
    267{
    268    type_register_static(&pit_common_type);
    269}
    270
    271type_init(register_devices);