cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

sse-timer.c (13506B)


      1/*
      2 * Arm SSE Subsystem System Timer
      3 *
      4 * Copyright (c) 2020 Linaro Limited
      5 * Written by Peter Maydell
      6 *
      7 * This program is free software; you can redistribute it and/or modify
      8 * it under the terms of the GNU General Public License version 2 or
      9 * (at your option) any later version.
     10 */
     11
     12/*
     13 * This is a model of the "System timer" which is documented in
     14 * the Arm SSE-123 Example Subsystem Technical Reference Manual:
     15 * https://developer.arm.com/documentation/101370/latest/
     16 *
     17 * The timer is based around a simple 64-bit incrementing counter
     18 * (readable from CNTPCT_HI/LO). The timer fires when
     19 *  Counter - CompareValue >= 0.
     20 * The CompareValue is guest-writable, via CNTP_CVAL_HI/LO.
     21 * CNTP_TVAL is an alternative view of the CompareValue defined by
     22 *  TimerValue = CompareValue[31:0] - Counter[31:0]
     23 * which can be both read and written.
     24 * This part is similar to the generic timer in an Arm A-class CPU.
     25 *
     26 * The timer also has a separate auto-increment timer. When this
     27 * timer is enabled, then the AutoIncrValue is set to:
     28 *  AutoIncrValue = Reload + Counter
     29 * and this timer fires when
     30 *  Counter - AutoIncrValue >= 0
     31 * at which point, an interrupt is generated and the new AutoIncrValue
     32 * is calculated.
     33 * When the auto-increment timer is enabled, interrupt generation
     34 * via the compare/timervalue registers is disabled.
     35 */
     36#include "qemu/osdep.h"
     37#include "qemu/log.h"
     38#include "qemu/timer.h"
     39#include "qapi/error.h"
     40#include "trace.h"
     41#include "hw/timer/sse-timer.h"
     42#include "hw/timer/sse-counter.h"
     43#include "hw/sysbus.h"
     44#include "hw/irq.h"
     45#include "hw/registerfields.h"
     46#include "hw/clock.h"
     47#include "hw/qdev-clock.h"
     48#include "hw/qdev-properties.h"
     49#include "migration/vmstate.h"
     50
     51REG32(CNTPCT_LO, 0x0)
     52REG32(CNTPCT_HI, 0x4)
     53REG32(CNTFRQ, 0x10)
     54REG32(CNTP_CVAL_LO, 0x20)
     55REG32(CNTP_CVAL_HI, 0x24)
     56REG32(CNTP_TVAL, 0x28)
     57REG32(CNTP_CTL, 0x2c)
     58    FIELD(CNTP_CTL, ENABLE, 0, 1)
     59    FIELD(CNTP_CTL, IMASK, 1, 1)
     60    FIELD(CNTP_CTL, ISTATUS, 2, 1)
     61REG32(CNTP_AIVAL_LO, 0x40)
     62REG32(CNTP_AIVAL_HI, 0x44)
     63REG32(CNTP_AIVAL_RELOAD, 0x48)
     64REG32(CNTP_AIVAL_CTL, 0x4c)
     65    FIELD(CNTP_AIVAL_CTL, EN, 0, 1)
     66    FIELD(CNTP_AIVAL_CTL, CLR, 1, 1)
     67REG32(CNTP_CFG, 0x50)
     68    FIELD(CNTP_CFG, AIVAL, 0, 4)
     69#define R_CNTP_CFG_AIVAL_IMPLEMENTED 1
     70REG32(PID4, 0xFD0)
     71REG32(PID5, 0xFD4)
     72REG32(PID6, 0xFD8)
     73REG32(PID7, 0xFDC)
     74REG32(PID0, 0xFE0)
     75REG32(PID1, 0xFE4)
     76REG32(PID2, 0xFE8)
     77REG32(PID3, 0xFEC)
     78REG32(CID0, 0xFF0)
     79REG32(CID1, 0xFF4)
     80REG32(CID2, 0xFF8)
     81REG32(CID3, 0xFFC)
     82
     83/* PID/CID values */
     84static const int timer_id[] = {
     85    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
     86    0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
     87    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
     88};
     89
     90static bool sse_is_autoinc(SSETimer *s)
     91{
     92    return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0;
     93}
     94
     95static bool sse_enabled(SSETimer *s)
     96{
     97    return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0;
     98}
     99
    100static uint64_t sse_cntpct(SSETimer *s)
    101{
    102    /* Return the CNTPCT value for the current time */
    103    return sse_counter_for_timestamp(s->counter,
    104                                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
    105}
    106
    107static bool sse_timer_status(SSETimer *s)
    108{
    109    /*
    110     * Return true if timer condition is met. This is used for both
    111     * the CNTP_CTL.ISTATUS bit and for whether (unless masked) we
    112     * assert our IRQ.
    113     * The documentation is unclear about the behaviour of ISTATUS when
    114     * in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR
    115     * (ie whether the autoincrement timer is asserting the interrupt).
    116     */
    117    if (!sse_enabled(s)) {
    118        return false;
    119    }
    120
    121    if (sse_is_autoinc(s)) {
    122        return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK;
    123    } else {
    124        return sse_cntpct(s) >= s->cntp_cval;
    125    }
    126}
    127
    128static void sse_update_irq(SSETimer *s)
    129{
    130    bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) &&
    131                     sse_timer_status(s));
    132
    133    qemu_set_irq(s->irq, irqstate);
    134}
    135
    136static void sse_set_timer(SSETimer *s, uint64_t nexttick)
    137{
    138    /* Set the timer to expire at nexttick */
    139    uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick);
    140
    141    if (expiry <= INT64_MAX) {
    142        timer_mod_ns(&s->timer, expiry);
    143    } else {
    144        /*
    145         * nexttick is so far in the future that it would overflow the
    146         * signed 64-bit range of a QEMUTimer. Since timer_mod_ns()
    147         * expiry times are absolute, not relative, we are never going
    148         * to be able to set the timer to this value, so we must just
    149         * assume that guest execution can never run so long that it
    150         * reaches the theoretical point when the timer fires.
    151         * This is also the code path for "counter is not running",
    152         * which is signalled by expiry == UINT64_MAX.
    153         */
    154        timer_del(&s->timer);
    155    }
    156}
    157
    158static void sse_recalc_timer(SSETimer *s)
    159{
    160    /* Recalculate the normal timer */
    161    uint64_t count, nexttick;
    162
    163    if (sse_is_autoinc(s)) {
    164        return;
    165    }
    166
    167    if (!sse_enabled(s)) {
    168        timer_del(&s->timer);
    169        return;
    170    }
    171
    172    count = sse_cntpct(s);
    173
    174    if (count >= s->cntp_cval) {
    175        /*
    176         * Timer condition already met. In theory we have a transition when
    177         * the count rolls back over to 0, but that is so far in the future
    178         * that it is not representable as a timer_mod() expiry, so in
    179         * fact sse_set_timer() will always just delete the timer.
    180         */
    181        nexttick = UINT64_MAX;
    182    } else {
    183        /* Next transition is when count hits cval */
    184        nexttick = s->cntp_cval;
    185    }
    186    sse_set_timer(s, nexttick);
    187    sse_update_irq(s);
    188}
    189
    190static void sse_autoinc(SSETimer *s)
    191{
    192    /* Auto-increment the AIVAL, and set the timer accordingly */
    193    s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload;
    194    sse_set_timer(s, s->cntp_aival);
    195}
    196
    197static void sse_timer_cb(void *opaque)
    198{
    199    SSETimer *s = SSE_TIMER(opaque);
    200
    201    if (sse_is_autoinc(s)) {
    202        uint64_t count = sse_cntpct(s);
    203
    204        if (count >= s->cntp_aival) {
    205            /* Timer condition met, set CLR and do another autoinc */
    206            s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK;
    207            s->cntp_aival = count + s->cntp_aival_reload;
    208        }
    209        sse_set_timer(s, s->cntp_aival);
    210        sse_update_irq(s);
    211    } else {
    212        sse_recalc_timer(s);
    213    }
    214}
    215
    216static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size)
    217{
    218    SSETimer *s = SSE_TIMER(opaque);
    219    uint64_t r;
    220
    221    switch (offset) {
    222    case A_CNTPCT_LO:
    223        r = extract64(sse_cntpct(s), 0, 32);
    224        break;
    225    case A_CNTPCT_HI:
    226        r = extract64(sse_cntpct(s), 32, 32);
    227        break;
    228    case A_CNTFRQ:
    229        r = s->cntfrq;
    230        break;
    231    case A_CNTP_CVAL_LO:
    232        r = extract64(s->cntp_cval, 0, 32);
    233        break;
    234    case A_CNTP_CVAL_HI:
    235        r = extract64(s->cntp_cval, 32, 32);
    236        break;
    237    case A_CNTP_TVAL:
    238        r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32);
    239        break;
    240    case A_CNTP_CTL:
    241        r = s->cntp_ctl;
    242        if (sse_timer_status(s)) {
    243            r |= R_CNTP_CTL_ISTATUS_MASK;
    244        }
    245        break;
    246    case A_CNTP_AIVAL_LO:
    247        r = extract64(s->cntp_aival, 0, 32);
    248        break;
    249    case A_CNTP_AIVAL_HI:
    250        r = extract64(s->cntp_aival, 32, 32);
    251        break;
    252    case A_CNTP_AIVAL_RELOAD:
    253        r = s->cntp_aival_reload;
    254        break;
    255    case A_CNTP_AIVAL_CTL:
    256        /*
    257         * All the bits of AIVAL_CTL are documented as WO, but this is probably
    258         * a documentation error. We implement them as readable.
    259         */
    260        r = s->cntp_aival_ctl;
    261        break;
    262    case A_CNTP_CFG:
    263        r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT;
    264        break;
    265    case A_PID4 ... A_CID3:
    266        r = timer_id[(offset - A_PID4) / 4];
    267        break;
    268    default:
    269        qemu_log_mask(LOG_GUEST_ERROR,
    270                      "SSE System Timer read: bad offset 0x%x",
    271                      (unsigned) offset);
    272        r = 0;
    273        break;
    274    }
    275
    276    trace_sse_timer_read(offset, r, size);
    277    return r;
    278}
    279
    280static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value,
    281                            unsigned size)
    282{
    283    SSETimer *s = SSE_TIMER(opaque);
    284
    285    trace_sse_timer_write(offset, value, size);
    286
    287    switch (offset) {
    288    case A_CNTFRQ:
    289        s->cntfrq = value;
    290        break;
    291    case A_CNTP_CVAL_LO:
    292        s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value);
    293        sse_recalc_timer(s);
    294        break;
    295    case A_CNTP_CVAL_HI:
    296        s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value);
    297        sse_recalc_timer(s);
    298        break;
    299    case A_CNTP_TVAL:
    300        s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32);
    301        sse_recalc_timer(s);
    302        break;
    303    case A_CNTP_CTL:
    304    {
    305        uint32_t old_ctl = s->cntp_ctl;
    306        value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK;
    307        s->cntp_ctl = value;
    308        if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) {
    309            if (sse_enabled(s)) {
    310                if (sse_is_autoinc(s)) {
    311                    sse_autoinc(s);
    312                } else {
    313                    sse_recalc_timer(s);
    314                }
    315            }
    316        }
    317        sse_update_irq(s);
    318        break;
    319    }
    320    case A_CNTP_AIVAL_RELOAD:
    321        s->cntp_aival_reload = value;
    322        break;
    323    case A_CNTP_AIVAL_CTL:
    324    {
    325        uint32_t old_ctl = s->cntp_aival_ctl;
    326
    327        /* EN bit is writeable; CLR bit is write-0-to-clear, write-1-ignored */
    328        s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK;
    329        s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK;
    330        if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) {
    331            s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK;
    332        }
    333        if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) {
    334            /* Auto-increment toggled on/off */
    335            if (sse_enabled(s)) {
    336                if (sse_is_autoinc(s)) {
    337                    sse_autoinc(s);
    338                } else {
    339                    sse_recalc_timer(s);
    340                }
    341            }
    342        }
    343        sse_update_irq(s);
    344        break;
    345    }
    346    case A_CNTPCT_LO:
    347    case A_CNTPCT_HI:
    348    case A_CNTP_CFG:
    349    case A_CNTP_AIVAL_LO:
    350    case A_CNTP_AIVAL_HI:
    351    case A_PID4 ... A_CID3:
    352        qemu_log_mask(LOG_GUEST_ERROR,
    353                      "SSE System Timer write: write to RO offset 0x%x\n",
    354                      (unsigned)offset);
    355        break;
    356    default:
    357        qemu_log_mask(LOG_GUEST_ERROR,
    358                      "SSE System Timer write: bad offset 0x%x\n",
    359                      (unsigned)offset);
    360        break;
    361    }
    362}
    363
    364static const MemoryRegionOps sse_timer_ops = {
    365    .read = sse_timer_read,
    366    .write = sse_timer_write,
    367    .endianness = DEVICE_LITTLE_ENDIAN,
    368    .valid.min_access_size = 4,
    369    .valid.max_access_size = 4,
    370};
    371
    372static void sse_timer_reset(DeviceState *dev)
    373{
    374    SSETimer *s = SSE_TIMER(dev);
    375
    376    trace_sse_timer_reset();
    377
    378    timer_del(&s->timer);
    379    s->cntfrq = 0;
    380    s->cntp_ctl = 0;
    381    s->cntp_cval = 0;
    382    s->cntp_aival = 0;
    383    s->cntp_aival_ctl = 0;
    384    s->cntp_aival_reload = 0;
    385}
    386
    387static void sse_timer_counter_callback(Notifier *notifier, void *data)
    388{
    389    SSETimer *s = container_of(notifier, SSETimer, counter_notifier);
    390
    391    /* System counter told us we need to recalculate */
    392    if (sse_enabled(s)) {
    393        if (sse_is_autoinc(s)) {
    394            sse_set_timer(s, s->cntp_aival);
    395        } else {
    396            sse_recalc_timer(s);
    397        }
    398    }
    399}
    400
    401static void sse_timer_init(Object *obj)
    402{
    403    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    404    SSETimer *s = SSE_TIMER(obj);
    405
    406    memory_region_init_io(&s->iomem, obj, &sse_timer_ops,
    407                          s, "sse-timer", 0x1000);
    408    sysbus_init_mmio(sbd, &s->iomem);
    409    sysbus_init_irq(sbd, &s->irq);
    410}
    411
    412static void sse_timer_realize(DeviceState *dev, Error **errp)
    413{
    414    SSETimer *s = SSE_TIMER(dev);
    415
    416    if (!s->counter) {
    417        error_setg(errp, "counter property was not set");
    418        return;
    419    }
    420
    421    s->counter_notifier.notify = sse_timer_counter_callback;
    422    sse_counter_register_consumer(s->counter, &s->counter_notifier);
    423
    424    timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s);
    425}
    426
    427static const VMStateDescription sse_timer_vmstate = {
    428    .name = "sse-timer",
    429    .version_id = 1,
    430    .minimum_version_id = 1,
    431    .fields = (VMStateField[]) {
    432        VMSTATE_TIMER(timer, SSETimer),
    433        VMSTATE_UINT32(cntfrq, SSETimer),
    434        VMSTATE_UINT32(cntp_ctl, SSETimer),
    435        VMSTATE_UINT64(cntp_cval, SSETimer),
    436        VMSTATE_UINT64(cntp_aival, SSETimer),
    437        VMSTATE_UINT32(cntp_aival_ctl, SSETimer),
    438        VMSTATE_UINT32(cntp_aival_reload, SSETimer),
    439        VMSTATE_END_OF_LIST()
    440    }
    441};
    442
    443static Property sse_timer_properties[] = {
    444    DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *),
    445    DEFINE_PROP_END_OF_LIST(),
    446};
    447
    448static void sse_timer_class_init(ObjectClass *klass, void *data)
    449{
    450    DeviceClass *dc = DEVICE_CLASS(klass);
    451
    452    dc->realize = sse_timer_realize;
    453    dc->vmsd = &sse_timer_vmstate;
    454    dc->reset = sse_timer_reset;
    455    device_class_set_props(dc, sse_timer_properties);
    456}
    457
    458static const TypeInfo sse_timer_info = {
    459    .name = TYPE_SSE_TIMER,
    460    .parent = TYPE_SYS_BUS_DEVICE,
    461    .instance_size = sizeof(SSETimer),
    462    .instance_init = sse_timer_init,
    463    .class_init = sse_timer_class_init,
    464};
    465
    466static void sse_timer_register_types(void)
    467{
    468    type_register_static(&sse_timer_info);
    469}
    470
    471type_init(sse_timer_register_types);