cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

cpu-all.h (15355B)


      1/*
      2 * defines common to all virtual CPUs
      3 *
      4 *  Copyright (c) 2003 Fabrice Bellard
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19#ifndef CPU_ALL_H
     20#define CPU_ALL_H
     21
     22#include "exec/cpu-common.h"
     23#include "exec/memory.h"
     24#include "qemu/thread.h"
     25#include "hw/core/cpu.h"
     26#include "qemu/rcu.h"
     27
     28#define EXCP_INTERRUPT 	0x10000 /* async interruption */
     29#define EXCP_HLT        0x10001 /* hlt instruction reached */
     30#define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
     31#define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
     32#define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
     33#define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
     34
     35/* some important defines:
     36 *
     37 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
     38 * otherwise little endian.
     39 *
     40 * TARGET_WORDS_BIGENDIAN : same for target cpu
     41 */
     42
     43#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
     44#define BSWAP_NEEDED
     45#endif
     46
     47#ifdef BSWAP_NEEDED
     48
     49static inline uint16_t tswap16(uint16_t s)
     50{
     51    return bswap16(s);
     52}
     53
     54static inline uint32_t tswap32(uint32_t s)
     55{
     56    return bswap32(s);
     57}
     58
     59static inline uint64_t tswap64(uint64_t s)
     60{
     61    return bswap64(s);
     62}
     63
     64static inline void tswap16s(uint16_t *s)
     65{
     66    *s = bswap16(*s);
     67}
     68
     69static inline void tswap32s(uint32_t *s)
     70{
     71    *s = bswap32(*s);
     72}
     73
     74static inline void tswap64s(uint64_t *s)
     75{
     76    *s = bswap64(*s);
     77}
     78
     79#else
     80
     81static inline uint16_t tswap16(uint16_t s)
     82{
     83    return s;
     84}
     85
     86static inline uint32_t tswap32(uint32_t s)
     87{
     88    return s;
     89}
     90
     91static inline uint64_t tswap64(uint64_t s)
     92{
     93    return s;
     94}
     95
     96static inline void tswap16s(uint16_t *s)
     97{
     98}
     99
    100static inline void tswap32s(uint32_t *s)
    101{
    102}
    103
    104static inline void tswap64s(uint64_t *s)
    105{
    106}
    107
    108#endif
    109
    110#if TARGET_LONG_SIZE == 4
    111#define tswapl(s) tswap32(s)
    112#define tswapls(s) tswap32s((uint32_t *)(s))
    113#define bswaptls(s) bswap32s(s)
    114#else
    115#define tswapl(s) tswap64(s)
    116#define tswapls(s) tswap64s((uint64_t *)(s))
    117#define bswaptls(s) bswap64s(s)
    118#endif
    119
    120/* Target-endianness CPU memory access functions. These fit into the
    121 * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
    122 */
    123#if defined(TARGET_WORDS_BIGENDIAN)
    124#define lduw_p(p) lduw_be_p(p)
    125#define ldsw_p(p) ldsw_be_p(p)
    126#define ldl_p(p) ldl_be_p(p)
    127#define ldq_p(p) ldq_be_p(p)
    128#define stw_p(p, v) stw_be_p(p, v)
    129#define stl_p(p, v) stl_be_p(p, v)
    130#define stq_p(p, v) stq_be_p(p, v)
    131#define ldn_p(p, sz) ldn_be_p(p, sz)
    132#define stn_p(p, sz, v) stn_be_p(p, sz, v)
    133#else
    134#define lduw_p(p) lduw_le_p(p)
    135#define ldsw_p(p) ldsw_le_p(p)
    136#define ldl_p(p) ldl_le_p(p)
    137#define ldq_p(p) ldq_le_p(p)
    138#define stw_p(p, v) stw_le_p(p, v)
    139#define stl_p(p, v) stl_le_p(p, v)
    140#define stq_p(p, v) stq_le_p(p, v)
    141#define ldn_p(p, sz) ldn_le_p(p, sz)
    142#define stn_p(p, sz, v) stn_le_p(p, sz, v)
    143#endif
    144
    145/* MMU memory access macros */
    146
    147#if defined(CONFIG_USER_ONLY)
    148#include "exec/user/abitypes.h"
    149
    150/* On some host systems the guest address space is reserved on the host.
    151 * This allows the guest address space to be offset to a convenient location.
    152 */
    153extern uintptr_t guest_base;
    154extern bool have_guest_base;
    155extern unsigned long reserved_va;
    156
    157/*
    158 * Limit the guest addresses as best we can.
    159 *
    160 * When not using -R reserved_va, we cannot really limit the guest
    161 * to less address space than the host.  For 32-bit guests, this
    162 * acts as a sanity check that we're not giving the guest an address
    163 * that it cannot even represent.  For 64-bit guests... the address
    164 * might not be what the real kernel would give, but it is at least
    165 * representable in the guest.
    166 *
    167 * TODO: Improve address allocation to avoid this problem, and to
    168 * avoid setting bits at the top of guest addresses that might need
    169 * to be used for tags.
    170 */
    171#define GUEST_ADDR_MAX_                                                 \
    172    ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ?  \
    173     UINT32_MAX : ~0ul)
    174#define GUEST_ADDR_MAX    (reserved_va ? reserved_va - 1 : GUEST_ADDR_MAX_)
    175
    176#else
    177
    178#include "exec/hwaddr.h"
    179
    180#define SUFFIX
    181#define ARG1         as
    182#define ARG1_DECL    AddressSpace *as
    183#define TARGET_ENDIANNESS
    184#include "exec/memory_ldst.h.inc"
    185
    186#define SUFFIX       _cached_slow
    187#define ARG1         cache
    188#define ARG1_DECL    MemoryRegionCache *cache
    189#define TARGET_ENDIANNESS
    190#include "exec/memory_ldst.h.inc"
    191
    192static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
    193{
    194    address_space_stl_notdirty(as, addr, val,
    195                               MEMTXATTRS_UNSPECIFIED, NULL);
    196}
    197
    198#define SUFFIX
    199#define ARG1         as
    200#define ARG1_DECL    AddressSpace *as
    201#define TARGET_ENDIANNESS
    202#include "exec/memory_ldst_phys.h.inc"
    203
    204/* Inline fast path for direct RAM access.  */
    205#define ENDIANNESS
    206#include "exec/memory_ldst_cached.h.inc"
    207
    208#define SUFFIX       _cached
    209#define ARG1         cache
    210#define ARG1_DECL    MemoryRegionCache *cache
    211#define TARGET_ENDIANNESS
    212#include "exec/memory_ldst_phys.h.inc"
    213#endif
    214
    215/* page related stuff */
    216
    217#ifdef TARGET_PAGE_BITS_VARY
    218# include "exec/page-vary.h"
    219extern const TargetPageBits target_page;
    220#ifdef CONFIG_DEBUG_TCG
    221#define TARGET_PAGE_BITS   ({ assert(target_page.decided); target_page.bits; })
    222#define TARGET_PAGE_MASK   ({ assert(target_page.decided); \
    223                              (target_long)target_page.mask; })
    224#else
    225#define TARGET_PAGE_BITS   target_page.bits
    226#define TARGET_PAGE_MASK   ((target_long)target_page.mask)
    227#endif
    228#define TARGET_PAGE_SIZE   (-(int)TARGET_PAGE_MASK)
    229#else
    230#define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
    231#define TARGET_PAGE_SIZE   (1 << TARGET_PAGE_BITS)
    232#define TARGET_PAGE_MASK   ((target_long)-1 << TARGET_PAGE_BITS)
    233#endif
    234
    235#define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE)
    236
    237/* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
    238 * when intptr_t is 32-bit and we are aligning a long long.
    239 */
    240extern uintptr_t qemu_host_page_size;
    241extern intptr_t qemu_host_page_mask;
    242
    243#define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
    244#define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size)
    245
    246/* same as PROT_xxx */
    247#define PAGE_READ      0x0001
    248#define PAGE_WRITE     0x0002
    249#define PAGE_EXEC      0x0004
    250#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
    251#define PAGE_VALID     0x0008
    252/*
    253 * Original state of the write flag (used when tracking self-modifying code)
    254 */
    255#define PAGE_WRITE_ORG 0x0010
    256/*
    257 * Invalidate the TLB entry immediately, helpful for s390x
    258 * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs()
    259 */
    260#define PAGE_WRITE_INV 0x0020
    261/* For use with page_set_flags: page is being replaced; target_data cleared. */
    262#define PAGE_RESET     0x0040
    263/* For linux-user, indicates that the page is MAP_ANON. */
    264#define PAGE_ANON      0x0080
    265
    266#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    267/* FIXME: Code that sets/uses this is broken and needs to go away.  */
    268#define PAGE_RESERVED  0x0100
    269#endif
    270/* Target-specific bits that will be used via page_get_flags().  */
    271#define PAGE_TARGET_1  0x0200
    272#define PAGE_TARGET_2  0x0400
    273
    274#if defined(CONFIG_USER_ONLY)
    275void page_dump(FILE *f);
    276
    277typedef int (*walk_memory_regions_fn)(void *, target_ulong,
    278                                      target_ulong, unsigned long);
    279int walk_memory_regions(void *, walk_memory_regions_fn);
    280
    281int page_get_flags(target_ulong address);
    282void page_set_flags(target_ulong start, target_ulong end, int flags);
    283int page_check_range(target_ulong start, target_ulong len, int flags);
    284
    285/**
    286 * page_alloc_target_data(address, size)
    287 * @address: guest virtual address
    288 * @size: size of data to allocate
    289 *
    290 * Allocate @size bytes of out-of-band data to associate with the
    291 * guest page at @address.  If the page is not mapped, NULL will
    292 * be returned.  If there is existing data associated with @address,
    293 * no new memory will be allocated.
    294 *
    295 * The memory will be freed when the guest page is deallocated,
    296 * e.g. with the munmap system call.
    297 */
    298void *page_alloc_target_data(target_ulong address, size_t size);
    299
    300/**
    301 * page_get_target_data(address)
    302 * @address: guest virtual address
    303 *
    304 * Return any out-of-bound memory assocated with the guest page
    305 * at @address, as per page_alloc_target_data.
    306 */
    307void *page_get_target_data(target_ulong address);
    308#endif
    309
    310CPUArchState *cpu_copy(CPUArchState *env);
    311
    312/* Flags for use in ENV->INTERRUPT_PENDING.
    313
    314   The numbers assigned here are non-sequential in order to preserve
    315   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
    316   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
    317   the vmstate dump.  */
    318
    319/* External hardware interrupt pending.  This is typically used for
    320   interrupts from devices.  */
    321#define CPU_INTERRUPT_HARD        0x0002
    322
    323/* Exit the current TB.  This is typically used when some system-level device
    324   makes some change to the memory mapping.  E.g. the a20 line change.  */
    325#define CPU_INTERRUPT_EXITTB      0x0004
    326
    327/* Halt the CPU.  */
    328#define CPU_INTERRUPT_HALT        0x0020
    329
    330/* Debug event pending.  */
    331#define CPU_INTERRUPT_DEBUG       0x0080
    332
    333/* Reset signal.  */
    334#define CPU_INTERRUPT_RESET       0x0400
    335
    336/* Several target-specific external hardware interrupts.  Each target/cpu.h
    337   should define proper names based on these defines.  */
    338#define CPU_INTERRUPT_TGT_EXT_0   0x0008
    339#define CPU_INTERRUPT_TGT_EXT_1   0x0010
    340#define CPU_INTERRUPT_TGT_EXT_2   0x0040
    341#define CPU_INTERRUPT_TGT_EXT_3   0x0200
    342#define CPU_INTERRUPT_TGT_EXT_4   0x1000
    343
    344/* Several target-specific internal interrupts.  These differ from the
    345   preceding target-specific interrupts in that they are intended to
    346   originate from within the cpu itself, typically in response to some
    347   instruction being executed.  These, therefore, are not masked while
    348   single-stepping within the debugger.  */
    349#define CPU_INTERRUPT_TGT_INT_0   0x0100
    350#define CPU_INTERRUPT_TGT_INT_1   0x0800
    351#define CPU_INTERRUPT_TGT_INT_2   0x2000
    352
    353/* First unused bit: 0x4000.  */
    354
    355/* The set of all bits that should be masked when single-stepping.  */
    356#define CPU_INTERRUPT_SSTEP_MASK \
    357    (CPU_INTERRUPT_HARD          \
    358     | CPU_INTERRUPT_TGT_EXT_0   \
    359     | CPU_INTERRUPT_TGT_EXT_1   \
    360     | CPU_INTERRUPT_TGT_EXT_2   \
    361     | CPU_INTERRUPT_TGT_EXT_3   \
    362     | CPU_INTERRUPT_TGT_EXT_4)
    363
    364#ifdef CONFIG_USER_ONLY
    365
    366/*
    367 * Allow some level of source compatibility with softmmu.  We do not
    368 * support any of the more exotic features, so only invalid pages may
    369 * be signaled by probe_access_flags().
    370 */
    371#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
    372#define TLB_MMIO            0
    373#define TLB_WATCHPOINT      0
    374
    375#else
    376
    377/*
    378 * Flags stored in the low bits of the TLB virtual address.
    379 * These are defined so that fast path ram access is all zeros.
    380 * The flags all must be between TARGET_PAGE_BITS and
    381 * maximum address alignment bit.
    382 *
    383 * Use TARGET_PAGE_BITS_MIN so that these bits are constant
    384 * when TARGET_PAGE_BITS_VARY is in effect.
    385 */
    386/* Zero if TLB entry is valid.  */
    387#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
    388/* Set if TLB entry references a clean RAM page.  The iotlb entry will
    389   contain the page physical address.  */
    390#define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS_MIN - 2))
    391/* Set if TLB entry is an IO callback.  */
    392#define TLB_MMIO            (1 << (TARGET_PAGE_BITS_MIN - 3))
    393/* Set if TLB entry contains a watchpoint.  */
    394#define TLB_WATCHPOINT      (1 << (TARGET_PAGE_BITS_MIN - 4))
    395/* Set if TLB entry requires byte swap.  */
    396#define TLB_BSWAP           (1 << (TARGET_PAGE_BITS_MIN - 5))
    397/* Set if TLB entry writes ignored.  */
    398#define TLB_DISCARD_WRITE   (1 << (TARGET_PAGE_BITS_MIN - 6))
    399
    400/* Use this mask to check interception with an alignment mask
    401 * in a TCG backend.
    402 */
    403#define TLB_FLAGS_MASK \
    404    (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
    405    | TLB_WATCHPOINT | TLB_BSWAP | TLB_DISCARD_WRITE)
    406
    407/**
    408 * tlb_hit_page: return true if page aligned @addr is a hit against the
    409 * TLB entry @tlb_addr
    410 *
    411 * @addr: virtual address to test (must be page aligned)
    412 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
    413 */
    414static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr)
    415{
    416    return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
    417}
    418
    419/**
    420 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
    421 *
    422 * @addr: virtual address to test (need not be page aligned)
    423 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
    424 */
    425static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr)
    426{
    427    return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
    428}
    429
    430#ifdef CONFIG_TCG
    431/* accel/tcg/cpu-exec.c */
    432void dump_drift_info(void);
    433/* accel/tcg/translate-all.c */
    434void dump_exec_info(void);
    435void dump_opcount_info(void);
    436#endif /* CONFIG_TCG */
    437
    438#endif /* !CONFIG_USER_ONLY */
    439
    440#ifdef CONFIG_TCG
    441/* accel/tcg/cpu-exec.c */
    442int cpu_exec(CPUState *cpu);
    443void tcg_exec_realizefn(CPUState *cpu, Error **errp);
    444void tcg_exec_unrealizefn(CPUState *cpu);
    445#endif /* CONFIG_TCG */
    446
    447/* Returns: 0 on success, -1 on error */
    448int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
    449                        void *ptr, target_ulong len, bool is_write);
    450
    451/**
    452 * cpu_set_cpustate_pointers(cpu)
    453 * @cpu: The cpu object
    454 *
    455 * Set the generic pointers in CPUState into the outer object.
    456 */
    457static inline void cpu_set_cpustate_pointers(ArchCPU *cpu)
    458{
    459    cpu->parent_obj.env_ptr = &cpu->env;
    460    cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr;
    461}
    462
    463/**
    464 * env_archcpu(env)
    465 * @env: The architecture environment
    466 *
    467 * Return the ArchCPU associated with the environment.
    468 */
    469static inline ArchCPU *env_archcpu(CPUArchState *env)
    470{
    471    return container_of(env, ArchCPU, env);
    472}
    473
    474/**
    475 * env_cpu(env)
    476 * @env: The architecture environment
    477 *
    478 * Return the CPUState associated with the environment.
    479 */
    480static inline CPUState *env_cpu(CPUArchState *env)
    481{
    482    return &env_archcpu(env)->parent_obj;
    483}
    484
    485/**
    486 * env_neg(env)
    487 * @env: The architecture environment
    488 *
    489 * Return the CPUNegativeOffsetState associated with the environment.
    490 */
    491static inline CPUNegativeOffsetState *env_neg(CPUArchState *env)
    492{
    493    ArchCPU *arch_cpu = container_of(env, ArchCPU, env);
    494    return &arch_cpu->neg;
    495}
    496
    497/**
    498 * cpu_neg(cpu)
    499 * @cpu: The generic CPUState
    500 *
    501 * Return the CPUNegativeOffsetState associated with the cpu.
    502 */
    503static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu)
    504{
    505    ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj);
    506    return &arch_cpu->neg;
    507}
    508
    509/**
    510 * env_tlb(env)
    511 * @env: The architecture environment
    512 *
    513 * Return the CPUTLB state associated with the environment.
    514 */
    515static inline CPUTLB *env_tlb(CPUArchState *env)
    516{
    517    return &env_neg(env)->tlb;
    518}
    519
    520#endif /* CPU_ALL_H */