memory.h (109102B)
1/* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14#ifndef MEMORY_H 15#define MEMORY_H 16 17#ifndef CONFIG_USER_ONLY 18 19#include "exec/cpu-common.h" 20#include "exec/hwaddr.h" 21#include "exec/memattrs.h" 22#include "exec/memop.h" 23#include "exec/ramlist.h" 24#include "qemu/bswap.h" 25#include "qemu/queue.h" 26#include "qemu/int128.h" 27#include "qemu/notify.h" 28#include "qom/object.h" 29#include "qemu/rcu.h" 30 31#define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33#define MAX_PHYS_ADDR_SPACE_BITS 62 34#define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36#define TYPE_MEMORY_REGION "memory-region" 37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47typedef struct RamDiscardManager RamDiscardManager; 48DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51#ifdef CONFIG_FUZZ 52void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55#else 56static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59{ 60 /* Do Nothing */ 61} 62#endif 63 64extern bool global_dirty_log; 65 66typedef struct MemoryRegionOps MemoryRegionOps; 67 68struct ReservedRegion { 69 hwaddr low; 70 hwaddr high; 71 unsigned type; 72}; 73 74/** 75 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 76 * 77 * @mr: the region, or %NULL if empty 78 * @fv: the flat view of the address space the region is mapped in 79 * @offset_within_region: the beginning of the section, relative to @mr's start 80 * @size: the size of the section; will not exceed @mr's boundaries 81 * @offset_within_address_space: the address of the first byte of the section 82 * relative to the region's address space 83 * @readonly: writes to this section are ignored 84 * @nonvolatile: this section is non-volatile 85 */ 86struct MemoryRegionSection { 87 Int128 size; 88 MemoryRegion *mr; 89 FlatView *fv; 90 hwaddr offset_within_region; 91 hwaddr offset_within_address_space; 92 bool readonly; 93 bool nonvolatile; 94}; 95 96typedef struct IOMMUTLBEntry IOMMUTLBEntry; 97 98/* See address_space_translate: bit 0 is read, bit 1 is write. */ 99typedef enum { 100 IOMMU_NONE = 0, 101 IOMMU_RO = 1, 102 IOMMU_WO = 2, 103 IOMMU_RW = 3, 104} IOMMUAccessFlags; 105 106#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 107 108struct IOMMUTLBEntry { 109 AddressSpace *target_as; 110 hwaddr iova; 111 hwaddr translated_addr; 112 hwaddr addr_mask; /* 0xfff = 4k translation */ 113 IOMMUAccessFlags perm; 114}; 115 116/* 117 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 118 * register with one or multiple IOMMU Notifier capability bit(s). 119 */ 120typedef enum { 121 IOMMU_NOTIFIER_NONE = 0, 122 /* Notify cache invalidations */ 123 IOMMU_NOTIFIER_UNMAP = 0x1, 124 /* Notify entry changes (newly created entries) */ 125 IOMMU_NOTIFIER_MAP = 0x2, 126 /* Notify changes on device IOTLB entries */ 127 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 128} IOMMUNotifierFlag; 129 130#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 131#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 132#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 133 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 134 135struct IOMMUNotifier; 136typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 137 IOMMUTLBEntry *data); 138 139struct IOMMUNotifier { 140 IOMMUNotify notify; 141 IOMMUNotifierFlag notifier_flags; 142 /* Notify for address space range start <= addr <= end */ 143 hwaddr start; 144 hwaddr end; 145 int iommu_idx; 146 QLIST_ENTRY(IOMMUNotifier) node; 147}; 148typedef struct IOMMUNotifier IOMMUNotifier; 149 150typedef struct IOMMUTLBEvent { 151 IOMMUNotifierFlag type; 152 IOMMUTLBEntry entry; 153} IOMMUTLBEvent; 154 155/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 156#define RAM_PREALLOC (1 << 0) 157 158/* RAM is mmap-ed with MAP_SHARED */ 159#define RAM_SHARED (1 << 1) 160 161/* Only a portion of RAM (used_length) is actually used, and migrated. 162 * Resizing RAM while migrating can result in the migration being canceled. 163 */ 164#define RAM_RESIZEABLE (1 << 2) 165 166/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 167 * zero the page and wake waiting processes. 168 * (Set during postcopy) 169 */ 170#define RAM_UF_ZEROPAGE (1 << 3) 171 172/* RAM can be migrated */ 173#define RAM_MIGRATABLE (1 << 4) 174 175/* RAM is a persistent kind memory */ 176#define RAM_PMEM (1 << 5) 177 178 179/* 180 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 181 * support 'write-tracking' migration type. 182 * Implies ram_state->ram_wt_enabled. 183 */ 184#define RAM_UF_WRITEPROTECT (1 << 6) 185 186/* 187 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 188 * pages if applicable) is skipped: will bail out if not supported. When not 189 * set, the OS will do the reservation, if supported for the memory type. 190 */ 191#define RAM_NORESERVE (1 << 7) 192 193/* RAM that isn't accessible through normal means. */ 194#define RAM_PROTECTED (1 << 8) 195 196static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 197 IOMMUNotifierFlag flags, 198 hwaddr start, hwaddr end, 199 int iommu_idx) 200{ 201 n->notify = fn; 202 n->notifier_flags = flags; 203 n->start = start; 204 n->end = end; 205 n->iommu_idx = iommu_idx; 206} 207 208/* 209 * Memory region callbacks 210 */ 211struct MemoryRegionOps { 212 /* Read from the memory region. @addr is relative to @mr; @size is 213 * in bytes. */ 214 uint64_t (*read)(void *opaque, 215 hwaddr addr, 216 unsigned size); 217 /* Write to the memory region. @addr is relative to @mr; @size is 218 * in bytes. */ 219 void (*write)(void *opaque, 220 hwaddr addr, 221 uint64_t data, 222 unsigned size); 223 224 MemTxResult (*read_with_attrs)(void *opaque, 225 hwaddr addr, 226 uint64_t *data, 227 unsigned size, 228 MemTxAttrs attrs); 229 MemTxResult (*write_with_attrs)(void *opaque, 230 hwaddr addr, 231 uint64_t data, 232 unsigned size, 233 MemTxAttrs attrs); 234 235 enum device_endian endianness; 236 /* Guest-visible constraints: */ 237 struct { 238 /* If nonzero, specify bounds on access sizes beyond which a machine 239 * check is thrown. 240 */ 241 unsigned min_access_size; 242 unsigned max_access_size; 243 /* If true, unaligned accesses are supported. Otherwise unaligned 244 * accesses throw machine checks. 245 */ 246 bool unaligned; 247 /* 248 * If present, and returns #false, the transaction is not accepted 249 * by the device (and results in machine dependent behaviour such 250 * as a machine check exception). 251 */ 252 bool (*accepts)(void *opaque, hwaddr addr, 253 unsigned size, bool is_write, 254 MemTxAttrs attrs); 255 } valid; 256 /* Internal implementation constraints: */ 257 struct { 258 /* If nonzero, specifies the minimum size implemented. Smaller sizes 259 * will be rounded upwards and a partial result will be returned. 260 */ 261 unsigned min_access_size; 262 /* If nonzero, specifies the maximum size implemented. Larger sizes 263 * will be done as a series of accesses with smaller sizes. 264 */ 265 unsigned max_access_size; 266 /* If true, unaligned accesses are supported. Otherwise all accesses 267 * are converted to (possibly multiple) naturally aligned accesses. 268 */ 269 bool unaligned; 270 } impl; 271}; 272 273typedef struct MemoryRegionClass { 274 /* private */ 275 ObjectClass parent_class; 276} MemoryRegionClass; 277 278 279enum IOMMUMemoryRegionAttr { 280 IOMMU_ATTR_SPAPR_TCE_FD 281}; 282 283/* 284 * IOMMUMemoryRegionClass: 285 * 286 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 287 * and provide an implementation of at least the @translate method here 288 * to handle requests to the memory region. Other methods are optional. 289 * 290 * The IOMMU implementation must use the IOMMU notifier infrastructure 291 * to report whenever mappings are changed, by calling 292 * memory_region_notify_iommu() (or, if necessary, by calling 293 * memory_region_notify_iommu_one() for each registered notifier). 294 * 295 * Conceptually an IOMMU provides a mapping from input address 296 * to an output TLB entry. If the IOMMU is aware of memory transaction 297 * attributes and the output TLB entry depends on the transaction 298 * attributes, we represent this using IOMMU indexes. Each index 299 * selects a particular translation table that the IOMMU has: 300 * 301 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 302 * 303 * @translate takes an input address and an IOMMU index 304 * 305 * and the mapping returned can only depend on the input address and the 306 * IOMMU index. 307 * 308 * Most IOMMUs don't care about the transaction attributes and support 309 * only a single IOMMU index. A more complex IOMMU might have one index 310 * for secure transactions and one for non-secure transactions. 311 */ 312struct IOMMUMemoryRegionClass { 313 /* private: */ 314 MemoryRegionClass parent_class; 315 316 /* public: */ 317 /** 318 * @translate: 319 * 320 * Return a TLB entry that contains a given address. 321 * 322 * The IOMMUAccessFlags indicated via @flag are optional and may 323 * be specified as IOMMU_NONE to indicate that the caller needs 324 * the full translation information for both reads and writes. If 325 * the access flags are specified then the IOMMU implementation 326 * may use this as an optimization, to stop doing a page table 327 * walk as soon as it knows that the requested permissions are not 328 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 329 * full page table walk and report the permissions in the returned 330 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 331 * return different mappings for reads and writes.) 332 * 333 * The returned information remains valid while the caller is 334 * holding the big QEMU lock or is inside an RCU critical section; 335 * if the caller wishes to cache the mapping beyond that it must 336 * register an IOMMU notifier so it can invalidate its cached 337 * information when the IOMMU mapping changes. 338 * 339 * @iommu: the IOMMUMemoryRegion 340 * 341 * @hwaddr: address to be translated within the memory region 342 * 343 * @flag: requested access permission 344 * 345 * @iommu_idx: IOMMU index for the translation 346 */ 347 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 348 IOMMUAccessFlags flag, int iommu_idx); 349 /** 350 * @get_min_page_size: 351 * 352 * Returns minimum supported page size in bytes. 353 * 354 * If this method is not provided then the minimum is assumed to 355 * be TARGET_PAGE_SIZE. 356 * 357 * @iommu: the IOMMUMemoryRegion 358 */ 359 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 360 /** 361 * @notify_flag_changed: 362 * 363 * Called when IOMMU Notifier flag changes (ie when the set of 364 * events which IOMMU users are requesting notification for changes). 365 * Optional method -- need not be provided if the IOMMU does not 366 * need to know exactly which events must be notified. 367 * 368 * @iommu: the IOMMUMemoryRegion 369 * 370 * @old_flags: events which previously needed to be notified 371 * 372 * @new_flags: events which now need to be notified 373 * 374 * Returns 0 on success, or a negative errno; in particular 375 * returns -EINVAL if the new flag bitmap is not supported by the 376 * IOMMU memory region. In case of failure, the error object 377 * must be created 378 */ 379 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 380 IOMMUNotifierFlag old_flags, 381 IOMMUNotifierFlag new_flags, 382 Error **errp); 383 /** 384 * @replay: 385 * 386 * Called to handle memory_region_iommu_replay(). 387 * 388 * The default implementation of memory_region_iommu_replay() is to 389 * call the IOMMU translate method for every page in the address space 390 * with flag == IOMMU_NONE and then call the notifier if translate 391 * returns a valid mapping. If this method is implemented then it 392 * overrides the default behaviour, and must provide the full semantics 393 * of memory_region_iommu_replay(), by calling @notifier for every 394 * translation present in the IOMMU. 395 * 396 * Optional method -- an IOMMU only needs to provide this method 397 * if the default is inefficient or produces undesirable side effects. 398 * 399 * Note: this is not related to record-and-replay functionality. 400 */ 401 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 402 403 /** 404 * @get_attr: 405 * 406 * Get IOMMU misc attributes. This is an optional method that 407 * can be used to allow users of the IOMMU to get implementation-specific 408 * information. The IOMMU implements this method to handle calls 409 * by IOMMU users to memory_region_iommu_get_attr() by filling in 410 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 411 * the IOMMU supports. If the method is unimplemented then 412 * memory_region_iommu_get_attr() will always return -EINVAL. 413 * 414 * @iommu: the IOMMUMemoryRegion 415 * 416 * @attr: attribute being queried 417 * 418 * @data: memory to fill in with the attribute data 419 * 420 * Returns 0 on success, or a negative errno; in particular 421 * returns -EINVAL for unrecognized or unimplemented attribute types. 422 */ 423 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 424 void *data); 425 426 /** 427 * @attrs_to_index: 428 * 429 * Return the IOMMU index to use for a given set of transaction attributes. 430 * 431 * Optional method: if an IOMMU only supports a single IOMMU index then 432 * the default implementation of memory_region_iommu_attrs_to_index() 433 * will return 0. 434 * 435 * The indexes supported by an IOMMU must be contiguous, starting at 0. 436 * 437 * @iommu: the IOMMUMemoryRegion 438 * @attrs: memory transaction attributes 439 */ 440 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 441 442 /** 443 * @num_indexes: 444 * 445 * Return the number of IOMMU indexes this IOMMU supports. 446 * 447 * Optional method: if this method is not provided, then 448 * memory_region_iommu_num_indexes() will return 1, indicating that 449 * only a single IOMMU index is supported. 450 * 451 * @iommu: the IOMMUMemoryRegion 452 */ 453 int (*num_indexes)(IOMMUMemoryRegion *iommu); 454 455 /** 456 * @iommu_set_page_size_mask: 457 * 458 * Restrict the page size mask that can be supported with a given IOMMU 459 * memory region. Used for example to propagate host physical IOMMU page 460 * size mask limitations to the virtual IOMMU. 461 * 462 * Optional method: if this method is not provided, then the default global 463 * page mask is used. 464 * 465 * @iommu: the IOMMUMemoryRegion 466 * 467 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 468 * representing the smallest page size, must be set. Additional set bits 469 * represent supported block sizes. For example a host physical IOMMU that 470 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 471 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 472 * block sizes is specified with mask 0xfffffffffffff000. 473 * 474 * Returns 0 on success, or a negative error. In case of failure, the error 475 * object must be created. 476 */ 477 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 478 uint64_t page_size_mask, 479 Error **errp); 480}; 481 482typedef struct RamDiscardListener RamDiscardListener; 483typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 484 MemoryRegionSection *section); 485typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 486 MemoryRegionSection *section); 487 488struct RamDiscardListener { 489 /* 490 * @notify_populate: 491 * 492 * Notification that previously discarded memory is about to get populated. 493 * Listeners are able to object. If any listener objects, already 494 * successfully notified listeners are notified about a discard again. 495 * 496 * @rdl: the #RamDiscardListener getting notified 497 * @section: the #MemoryRegionSection to get populated. The section 498 * is aligned within the memory region to the minimum granularity 499 * unless it would exceed the registered section. 500 * 501 * Returns 0 on success. If the notification is rejected by the listener, 502 * an error is returned. 503 */ 504 NotifyRamPopulate notify_populate; 505 506 /* 507 * @notify_discard: 508 * 509 * Notification that previously populated memory was discarded successfully 510 * and listeners should drop all references to such memory and prevent 511 * new population (e.g., unmap). 512 * 513 * @rdl: the #RamDiscardListener getting notified 514 * @section: the #MemoryRegionSection to get populated. The section 515 * is aligned within the memory region to the minimum granularity 516 * unless it would exceed the registered section. 517 */ 518 NotifyRamDiscard notify_discard; 519 520 /* 521 * @double_discard_supported: 522 * 523 * The listener suppors getting @notify_discard notifications that span 524 * already discarded parts. 525 */ 526 bool double_discard_supported; 527 528 MemoryRegionSection *section; 529 QLIST_ENTRY(RamDiscardListener) next; 530}; 531 532static inline void ram_discard_listener_init(RamDiscardListener *rdl, 533 NotifyRamPopulate populate_fn, 534 NotifyRamDiscard discard_fn, 535 bool double_discard_supported) 536{ 537 rdl->notify_populate = populate_fn; 538 rdl->notify_discard = discard_fn; 539 rdl->double_discard_supported = double_discard_supported; 540} 541 542typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 543 544/* 545 * RamDiscardManagerClass: 546 * 547 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 548 * regions are currently populated to be used/accessed by the VM, notifying 549 * after parts were discarded (freeing up memory) and before parts will be 550 * populated (consuming memory), to be used/acessed by the VM. 551 * 552 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 553 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is 554 * mapped. 555 * 556 * The #RamDiscardManager is intended to be used by technologies that are 557 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 558 * memory inside a #MemoryRegion), and require proper coordination to only 559 * map the currently populated parts, to hinder parts that are expected to 560 * remain discarded from silently getting populated and consuming memory. 561 * Technologies that support discarding of RAM don't have to bother and can 562 * simply map the whole #MemoryRegion. 563 * 564 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 565 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 566 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 567 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 568 * properly coordinate with listeners before memory is plugged (populated), 569 * and after memory is unplugged (discarded). 570 * 571 * Listeners are called in multiples of the minimum granularity (unless it 572 * would exceed the registered range) and changes are aligned to the minimum 573 * granularity within the #MemoryRegion. Listeners have to prepare for memory 574 * becomming discarded in a different granularity than it was populated and the 575 * other way around. 576 */ 577struct RamDiscardManagerClass { 578 /* private */ 579 InterfaceClass parent_class; 580 581 /* public */ 582 583 /** 584 * @get_min_granularity: 585 * 586 * Get the minimum granularity in which listeners will get notified 587 * about changes within the #MemoryRegion via the #RamDiscardManager. 588 * 589 * @rdm: the #RamDiscardManager 590 * @mr: the #MemoryRegion 591 * 592 * Returns the minimum granularity. 593 */ 594 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 595 const MemoryRegion *mr); 596 597 /** 598 * @is_populated: 599 * 600 * Check whether the given #MemoryRegionSection is completely populated 601 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 602 * There are no alignment requirements. 603 * 604 * @rdm: the #RamDiscardManager 605 * @section: the #MemoryRegionSection 606 * 607 * Returns whether the given range is completely populated. 608 */ 609 bool (*is_populated)(const RamDiscardManager *rdm, 610 const MemoryRegionSection *section); 611 612 /** 613 * @replay_populated: 614 * 615 * Call the #ReplayRamPopulate callback for all populated parts within the 616 * #MemoryRegionSection via the #RamDiscardManager. 617 * 618 * In case any call fails, no further calls are made. 619 * 620 * @rdm: the #RamDiscardManager 621 * @section: the #MemoryRegionSection 622 * @replay_fn: the #ReplayRamPopulate callback 623 * @opaque: pointer to forward to the callback 624 * 625 * Returns 0 on success, or a negative error if any notification failed. 626 */ 627 int (*replay_populated)(const RamDiscardManager *rdm, 628 MemoryRegionSection *section, 629 ReplayRamPopulate replay_fn, void *opaque); 630 631 /** 632 * @register_listener: 633 * 634 * Register a #RamDiscardListener for the given #MemoryRegionSection and 635 * immediately notify the #RamDiscardListener about all populated parts 636 * within the #MemoryRegionSection via the #RamDiscardManager. 637 * 638 * In case any notification fails, no further notifications are triggered 639 * and an error is logged. 640 * 641 * @rdm: the #RamDiscardManager 642 * @rdl: the #RamDiscardListener 643 * @section: the #MemoryRegionSection 644 */ 645 void (*register_listener)(RamDiscardManager *rdm, 646 RamDiscardListener *rdl, 647 MemoryRegionSection *section); 648 649 /** 650 * @unregister_listener: 651 * 652 * Unregister a previously registered #RamDiscardListener via the 653 * #RamDiscardManager after notifying the #RamDiscardListener about all 654 * populated parts becoming unpopulated within the registered 655 * #MemoryRegionSection. 656 * 657 * @rdm: the #RamDiscardManager 658 * @rdl: the #RamDiscardListener 659 */ 660 void (*unregister_listener)(RamDiscardManager *rdm, 661 RamDiscardListener *rdl); 662}; 663 664uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 665 const MemoryRegion *mr); 666 667bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 668 const MemoryRegionSection *section); 669 670int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 671 MemoryRegionSection *section, 672 ReplayRamPopulate replay_fn, 673 void *opaque); 674 675void ram_discard_manager_register_listener(RamDiscardManager *rdm, 676 RamDiscardListener *rdl, 677 MemoryRegionSection *section); 678 679void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 680 RamDiscardListener *rdl); 681 682typedef struct CoalescedMemoryRange CoalescedMemoryRange; 683typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 684 685/** MemoryRegion: 686 * 687 * A struct representing a memory region. 688 */ 689struct MemoryRegion { 690 Object parent_obj; 691 692 /* private: */ 693 694 /* The following fields should fit in a cache line */ 695 bool romd_mode; 696 bool ram; 697 bool subpage; 698 bool readonly; /* For RAM regions */ 699 bool nonvolatile; 700 bool rom_device; 701 bool flush_coalesced_mmio; 702 uint8_t dirty_log_mask; 703 bool is_iommu; 704 RAMBlock *ram_block; 705 Object *owner; 706 707 const MemoryRegionOps *ops; 708 void *opaque; 709 MemoryRegion *container; 710 Int128 size; 711 hwaddr addr; 712 void (*destructor)(MemoryRegion *mr); 713 uint64_t align; 714 bool terminates; 715 bool ram_device; 716 bool enabled; 717 bool warning_printed; /* For reservations */ 718 uint8_t vga_logging_count; 719 MemoryRegion *alias; 720 hwaddr alias_offset; 721 int32_t priority; 722 QTAILQ_HEAD(, MemoryRegion) subregions; 723 QTAILQ_ENTRY(MemoryRegion) subregions_link; 724 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 725 const char *name; 726 unsigned ioeventfd_nb; 727 MemoryRegionIoeventfd *ioeventfds; 728 RamDiscardManager *rdm; /* Only for RAM */ 729}; 730 731struct IOMMUMemoryRegion { 732 MemoryRegion parent_obj; 733 734 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 735 IOMMUNotifierFlag iommu_notify_flags; 736}; 737 738#define IOMMU_NOTIFIER_FOREACH(n, mr) \ 739 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 740 741/** 742 * struct MemoryListener: callbacks structure for updates to the physical memory map 743 * 744 * Allows a component to adjust to changes in the guest-visible memory map. 745 * Use with memory_listener_register() and memory_listener_unregister(). 746 */ 747struct MemoryListener { 748 /** 749 * @begin: 750 * 751 * Called at the beginning of an address space update transaction. 752 * Followed by calls to #MemoryListener.region_add(), 753 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 754 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 755 * increasing address order. 756 * 757 * @listener: The #MemoryListener. 758 */ 759 void (*begin)(MemoryListener *listener); 760 761 /** 762 * @commit: 763 * 764 * Called at the end of an address space update transaction, 765 * after the last call to #MemoryListener.region_add(), 766 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 767 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 768 * 769 * @listener: The #MemoryListener. 770 */ 771 void (*commit)(MemoryListener *listener); 772 773 /** 774 * @region_add: 775 * 776 * Called during an address space update transaction, 777 * for a section of the address space that is new in this address space 778 * space since the last transaction. 779 * 780 * @listener: The #MemoryListener. 781 * @section: The new #MemoryRegionSection. 782 */ 783 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 784 785 /** 786 * @region_del: 787 * 788 * Called during an address space update transaction, 789 * for a section of the address space that has disappeared in the address 790 * space since the last transaction. 791 * 792 * @listener: The #MemoryListener. 793 * @section: The old #MemoryRegionSection. 794 */ 795 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 796 797 /** 798 * @region_nop: 799 * 800 * Called during an address space update transaction, 801 * for a section of the address space that is in the same place in the address 802 * space as in the last transaction. 803 * 804 * @listener: The #MemoryListener. 805 * @section: The #MemoryRegionSection. 806 */ 807 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 808 809 /** 810 * @log_start: 811 * 812 * Called during an address space update transaction, after 813 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 814 * #MemoryListener.region_nop(), if dirty memory logging clients have 815 * become active since the last transaction. 816 * 817 * @listener: The #MemoryListener. 818 * @section: The #MemoryRegionSection. 819 * @old: A bitmap of dirty memory logging clients that were active in 820 * the previous transaction. 821 * @new: A bitmap of dirty memory logging clients that are active in 822 * the current transaction. 823 */ 824 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 825 int old, int new); 826 827 /** 828 * @log_stop: 829 * 830 * Called during an address space update transaction, after 831 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 832 * #MemoryListener.region_nop() and possibly after 833 * #MemoryListener.log_start(), if dirty memory logging clients have 834 * become inactive since the last transaction. 835 * 836 * @listener: The #MemoryListener. 837 * @section: The #MemoryRegionSection. 838 * @old: A bitmap of dirty memory logging clients that were active in 839 * the previous transaction. 840 * @new: A bitmap of dirty memory logging clients that are active in 841 * the current transaction. 842 */ 843 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 844 int old, int new); 845 846 /** 847 * @log_sync: 848 * 849 * Called by memory_region_snapshot_and_clear_dirty() and 850 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 851 * copy of the dirty memory bitmap for a #MemoryRegionSection. 852 * 853 * @listener: The #MemoryListener. 854 * @section: The #MemoryRegionSection. 855 */ 856 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 857 858 /** 859 * @log_sync_global: 860 * 861 * This is the global version of @log_sync when the listener does 862 * not have a way to synchronize the log with finer granularity. 863 * When the listener registers with @log_sync_global defined, then 864 * its @log_sync must be NULL. Vice versa. 865 * 866 * @listener: The #MemoryListener. 867 */ 868 void (*log_sync_global)(MemoryListener *listener); 869 870 /** 871 * @log_clear: 872 * 873 * Called before reading the dirty memory bitmap for a 874 * #MemoryRegionSection. 875 * 876 * @listener: The #MemoryListener. 877 * @section: The #MemoryRegionSection. 878 */ 879 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 880 881 /** 882 * @log_global_start: 883 * 884 * Called by memory_global_dirty_log_start(), which 885 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 886 * the address space. #MemoryListener.log_global_start() is also 887 * called when a #MemoryListener is added, if global dirty logging is 888 * active at that time. 889 * 890 * @listener: The #MemoryListener. 891 */ 892 void (*log_global_start)(MemoryListener *listener); 893 894 /** 895 * @log_global_stop: 896 * 897 * Called by memory_global_dirty_log_stop(), which 898 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 899 * the address space. 900 * 901 * @listener: The #MemoryListener. 902 */ 903 void (*log_global_stop)(MemoryListener *listener); 904 905 /** 906 * @log_global_after_sync: 907 * 908 * Called after reading the dirty memory bitmap 909 * for any #MemoryRegionSection. 910 * 911 * @listener: The #MemoryListener. 912 */ 913 void (*log_global_after_sync)(MemoryListener *listener); 914 915 /** 916 * @eventfd_add: 917 * 918 * Called during an address space update transaction, 919 * for a section of the address space that has had a new ioeventfd 920 * registration since the last transaction. 921 * 922 * @listener: The #MemoryListener. 923 * @section: The new #MemoryRegionSection. 924 * @match_data: The @match_data parameter for the new ioeventfd. 925 * @data: The @data parameter for the new ioeventfd. 926 * @e: The #EventNotifier parameter for the new ioeventfd. 927 */ 928 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 929 bool match_data, uint64_t data, EventNotifier *e); 930 931 /** 932 * @eventfd_del: 933 * 934 * Called during an address space update transaction, 935 * for a section of the address space that has dropped an ioeventfd 936 * registration since the last transaction. 937 * 938 * @listener: The #MemoryListener. 939 * @section: The new #MemoryRegionSection. 940 * @match_data: The @match_data parameter for the dropped ioeventfd. 941 * @data: The @data parameter for the dropped ioeventfd. 942 * @e: The #EventNotifier parameter for the dropped ioeventfd. 943 */ 944 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 945 bool match_data, uint64_t data, EventNotifier *e); 946 947 /** 948 * @coalesced_io_add: 949 * 950 * Called during an address space update transaction, 951 * for a section of the address space that has had a new coalesced 952 * MMIO range registration since the last transaction. 953 * 954 * @listener: The #MemoryListener. 955 * @section: The new #MemoryRegionSection. 956 * @addr: The starting address for the coalesced MMIO range. 957 * @len: The length of the coalesced MMIO range. 958 */ 959 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 960 hwaddr addr, hwaddr len); 961 962 /** 963 * @coalesced_io_del: 964 * 965 * Called during an address space update transaction, 966 * for a section of the address space that has dropped a coalesced 967 * MMIO range since the last transaction. 968 * 969 * @listener: The #MemoryListener. 970 * @section: The new #MemoryRegionSection. 971 * @addr: The starting address for the coalesced MMIO range. 972 * @len: The length of the coalesced MMIO range. 973 */ 974 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 975 hwaddr addr, hwaddr len); 976 /** 977 * @priority: 978 * 979 * Govern the order in which memory listeners are invoked. Lower priorities 980 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 981 * or "stop" callbacks. 982 */ 983 unsigned priority; 984 985 /** 986 * @name: 987 * 988 * Name of the listener. It can be used in contexts where we'd like to 989 * identify one memory listener with the rest. 990 */ 991 const char *name; 992 993 /* private: */ 994 AddressSpace *address_space; 995 QTAILQ_ENTRY(MemoryListener) link; 996 QTAILQ_ENTRY(MemoryListener) link_as; 997}; 998 999/** 1000 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1001 */ 1002struct AddressSpace { 1003 /* private: */ 1004 struct rcu_head rcu; 1005 char *name; 1006 MemoryRegion *root; 1007 1008 /* Accessed via RCU. */ 1009 struct FlatView *current_map; 1010 1011 int ioeventfd_nb; 1012 struct MemoryRegionIoeventfd *ioeventfds; 1013 QTAILQ_HEAD(, MemoryListener) listeners; 1014 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1015}; 1016 1017typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1018typedef struct FlatRange FlatRange; 1019 1020/* Flattened global view of current active memory hierarchy. Kept in sorted 1021 * order. 1022 */ 1023struct FlatView { 1024 struct rcu_head rcu; 1025 unsigned ref; 1026 FlatRange *ranges; 1027 unsigned nr; 1028 unsigned nr_allocated; 1029 struct AddressSpaceDispatch *dispatch; 1030 MemoryRegion *root; 1031}; 1032 1033static inline FlatView *address_space_to_flatview(AddressSpace *as) 1034{ 1035 return qatomic_rcu_read(&as->current_map); 1036} 1037 1038/** 1039 * typedef flatview_cb: callback for flatview_for_each_range() 1040 * 1041 * @start: start address of the range within the FlatView 1042 * @len: length of the range in bytes 1043 * @mr: MemoryRegion covering this range 1044 * @offset_in_region: offset of the first byte of the range within @mr 1045 * @opaque: data pointer passed to flatview_for_each_range() 1046 * 1047 * Returns: true to stop the iteration, false to keep going. 1048 */ 1049typedef bool (*flatview_cb)(Int128 start, 1050 Int128 len, 1051 const MemoryRegion *mr, 1052 hwaddr offset_in_region, 1053 void *opaque); 1054 1055/** 1056 * flatview_for_each_range: Iterate through a FlatView 1057 * @fv: the FlatView to iterate through 1058 * @cb: function to call for each range 1059 * @opaque: opaque data pointer to pass to @cb 1060 * 1061 * A FlatView is made up of a list of non-overlapping ranges, each of 1062 * which is a slice of a MemoryRegion. This function iterates through 1063 * each range in @fv, calling @cb. The callback function can terminate 1064 * iteration early by returning 'true'. 1065 */ 1066void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1067 1068static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1069 MemoryRegionSection *b) 1070{ 1071 return a->mr == b->mr && 1072 a->fv == b->fv && 1073 a->offset_within_region == b->offset_within_region && 1074 a->offset_within_address_space == b->offset_within_address_space && 1075 int128_eq(a->size, b->size) && 1076 a->readonly == b->readonly && 1077 a->nonvolatile == b->nonvolatile; 1078} 1079 1080/** 1081 * memory_region_section_new_copy: Copy a memory region section 1082 * 1083 * Allocate memory for a new copy, copy the memory region section, and 1084 * properly take a reference on all relevant members. 1085 * 1086 * @s: the #MemoryRegionSection to copy 1087 */ 1088MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1089 1090/** 1091 * memory_region_section_new_copy: Free a copied memory region section 1092 * 1093 * Free a copy of a memory section created via memory_region_section_new_copy(). 1094 * properly dropping references on all relevant members. 1095 * 1096 * @s: the #MemoryRegionSection to copy 1097 */ 1098void memory_region_section_free_copy(MemoryRegionSection *s); 1099 1100/** 1101 * memory_region_init: Initialize a memory region 1102 * 1103 * The region typically acts as a container for other memory regions. Use 1104 * memory_region_add_subregion() to add subregions. 1105 * 1106 * @mr: the #MemoryRegion to be initialized 1107 * @owner: the object that tracks the region's reference count 1108 * @name: used for debugging; not visible to the user or ABI 1109 * @size: size of the region; any subregions beyond this size will be clipped 1110 */ 1111void memory_region_init(MemoryRegion *mr, 1112 Object *owner, 1113 const char *name, 1114 uint64_t size); 1115 1116/** 1117 * memory_region_ref: Add 1 to a memory region's reference count 1118 * 1119 * Whenever memory regions are accessed outside the BQL, they need to be 1120 * preserved against hot-unplug. MemoryRegions actually do not have their 1121 * own reference count; they piggyback on a QOM object, their "owner". 1122 * This function adds a reference to the owner. 1123 * 1124 * All MemoryRegions must have an owner if they can disappear, even if the 1125 * device they belong to operates exclusively under the BQL. This is because 1126 * the region could be returned at any time by memory_region_find, and this 1127 * is usually under guest control. 1128 * 1129 * @mr: the #MemoryRegion 1130 */ 1131void memory_region_ref(MemoryRegion *mr); 1132 1133/** 1134 * memory_region_unref: Remove 1 to a memory region's reference count 1135 * 1136 * Whenever memory regions are accessed outside the BQL, they need to be 1137 * preserved against hot-unplug. MemoryRegions actually do not have their 1138 * own reference count; they piggyback on a QOM object, their "owner". 1139 * This function removes a reference to the owner and possibly destroys it. 1140 * 1141 * @mr: the #MemoryRegion 1142 */ 1143void memory_region_unref(MemoryRegion *mr); 1144 1145/** 1146 * memory_region_init_io: Initialize an I/O memory region. 1147 * 1148 * Accesses into the region will cause the callbacks in @ops to be called. 1149 * if @size is nonzero, subregions will be clipped to @size. 1150 * 1151 * @mr: the #MemoryRegion to be initialized. 1152 * @owner: the object that tracks the region's reference count 1153 * @ops: a structure containing read and write callbacks to be used when 1154 * I/O is performed on the region. 1155 * @opaque: passed to the read and write callbacks of the @ops structure. 1156 * @name: used for debugging; not visible to the user or ABI 1157 * @size: size of the region. 1158 */ 1159void memory_region_init_io(MemoryRegion *mr, 1160 Object *owner, 1161 const MemoryRegionOps *ops, 1162 void *opaque, 1163 const char *name, 1164 uint64_t size); 1165 1166/** 1167 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1168 * into the region will modify memory 1169 * directly. 1170 * 1171 * @mr: the #MemoryRegion to be initialized. 1172 * @owner: the object that tracks the region's reference count 1173 * @name: Region name, becomes part of RAMBlock name used in migration stream 1174 * must be unique within any device 1175 * @size: size of the region. 1176 * @errp: pointer to Error*, to store an error if it happens. 1177 * 1178 * Note that this function does not do anything to cause the data in the 1179 * RAM memory region to be migrated; that is the responsibility of the caller. 1180 */ 1181void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1182 Object *owner, 1183 const char *name, 1184 uint64_t size, 1185 Error **errp); 1186 1187/** 1188 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1189 * Accesses into the region will 1190 * modify memory directly. 1191 * 1192 * @mr: the #MemoryRegion to be initialized. 1193 * @owner: the object that tracks the region's reference count 1194 * @name: Region name, becomes part of RAMBlock name used in migration stream 1195 * must be unique within any device 1196 * @size: size of the region. 1197 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1198 * @errp: pointer to Error*, to store an error if it happens. 1199 * 1200 * Note that this function does not do anything to cause the data in the 1201 * RAM memory region to be migrated; that is the responsibility of the caller. 1202 */ 1203void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1204 Object *owner, 1205 const char *name, 1206 uint64_t size, 1207 uint32_t ram_flags, 1208 Error **errp); 1209 1210/** 1211 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 1212 * RAM. Accesses into the region will 1213 * modify memory directly. Only an initial 1214 * portion of this RAM is actually used. 1215 * Changing the size while migrating 1216 * can result in the migration being 1217 * canceled. 1218 * 1219 * @mr: the #MemoryRegion to be initialized. 1220 * @owner: the object that tracks the region's reference count 1221 * @name: Region name, becomes part of RAMBlock name used in migration stream 1222 * must be unique within any device 1223 * @size: used size of the region. 1224 * @max_size: max size of the region. 1225 * @resized: callback to notify owner about used size change. 1226 * @errp: pointer to Error*, to store an error if it happens. 1227 * 1228 * Note that this function does not do anything to cause the data in the 1229 * RAM memory region to be migrated; that is the responsibility of the caller. 1230 */ 1231void memory_region_init_resizeable_ram(MemoryRegion *mr, 1232 Object *owner, 1233 const char *name, 1234 uint64_t size, 1235 uint64_t max_size, 1236 void (*resized)(const char*, 1237 uint64_t length, 1238 void *host), 1239 Error **errp); 1240#ifdef CONFIG_POSIX 1241 1242/** 1243 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1244 * mmap-ed backend. 1245 * 1246 * @mr: the #MemoryRegion to be initialized. 1247 * @owner: the object that tracks the region's reference count 1248 * @name: Region name, becomes part of RAMBlock name used in migration stream 1249 * must be unique within any device 1250 * @size: size of the region. 1251 * @align: alignment of the region base address; if 0, the default alignment 1252 * (getpagesize()) will be used. 1253 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1254 * RAM_NORESERVE, 1255 * @path: the path in which to allocate the RAM. 1256 * @readonly: true to open @path for reading, false for read/write. 1257 * @errp: pointer to Error*, to store an error if it happens. 1258 * 1259 * Note that this function does not do anything to cause the data in the 1260 * RAM memory region to be migrated; that is the responsibility of the caller. 1261 */ 1262void memory_region_init_ram_from_file(MemoryRegion *mr, 1263 Object *owner, 1264 const char *name, 1265 uint64_t size, 1266 uint64_t align, 1267 uint32_t ram_flags, 1268 const char *path, 1269 bool readonly, 1270 Error **errp); 1271 1272/** 1273 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1274 * mmap-ed backend. 1275 * 1276 * @mr: the #MemoryRegion to be initialized. 1277 * @owner: the object that tracks the region's reference count 1278 * @name: the name of the region. 1279 * @size: size of the region. 1280 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1281 * RAM_NORESERVE, RAM_PROTECTED. 1282 * @fd: the fd to mmap. 1283 * @offset: offset within the file referenced by fd 1284 * @errp: pointer to Error*, to store an error if it happens. 1285 * 1286 * Note that this function does not do anything to cause the data in the 1287 * RAM memory region to be migrated; that is the responsibility of the caller. 1288 */ 1289void memory_region_init_ram_from_fd(MemoryRegion *mr, 1290 Object *owner, 1291 const char *name, 1292 uint64_t size, 1293 uint32_t ram_flags, 1294 int fd, 1295 ram_addr_t offset, 1296 Error **errp); 1297#endif 1298 1299/** 1300 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1301 * user-provided pointer. Accesses into the 1302 * region will modify memory directly. 1303 * 1304 * @mr: the #MemoryRegion to be initialized. 1305 * @owner: the object that tracks the region's reference count 1306 * @name: Region name, becomes part of RAMBlock name used in migration stream 1307 * must be unique within any device 1308 * @size: size of the region. 1309 * @ptr: memory to be mapped; must contain at least @size bytes. 1310 * 1311 * Note that this function does not do anything to cause the data in the 1312 * RAM memory region to be migrated; that is the responsibility of the caller. 1313 */ 1314void memory_region_init_ram_ptr(MemoryRegion *mr, 1315 Object *owner, 1316 const char *name, 1317 uint64_t size, 1318 void *ptr); 1319 1320/** 1321 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1322 * a user-provided pointer. 1323 * 1324 * A RAM device represents a mapping to a physical device, such as to a PCI 1325 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1326 * into the VM address space and access to the region will modify memory 1327 * directly. However, the memory region should not be included in a memory 1328 * dump (device may not be enabled/mapped at the time of the dump), and 1329 * operations incompatible with manipulating MMIO should be avoided. Replaces 1330 * skip_dump flag. 1331 * 1332 * @mr: the #MemoryRegion to be initialized. 1333 * @owner: the object that tracks the region's reference count 1334 * @name: the name of the region. 1335 * @size: size of the region. 1336 * @ptr: memory to be mapped; must contain at least @size bytes. 1337 * 1338 * Note that this function does not do anything to cause the data in the 1339 * RAM memory region to be migrated; that is the responsibility of the caller. 1340 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1341 */ 1342void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1343 Object *owner, 1344 const char *name, 1345 uint64_t size, 1346 void *ptr); 1347 1348/** 1349 * memory_region_init_alias: Initialize a memory region that aliases all or a 1350 * part of another memory region. 1351 * 1352 * @mr: the #MemoryRegion to be initialized. 1353 * @owner: the object that tracks the region's reference count 1354 * @name: used for debugging; not visible to the user or ABI 1355 * @orig: the region to be referenced; @mr will be equivalent to 1356 * @orig between @offset and @offset + @size - 1. 1357 * @offset: start of the section in @orig to be referenced. 1358 * @size: size of the region. 1359 */ 1360void memory_region_init_alias(MemoryRegion *mr, 1361 Object *owner, 1362 const char *name, 1363 MemoryRegion *orig, 1364 hwaddr offset, 1365 uint64_t size); 1366 1367/** 1368 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1369 * 1370 * This has the same effect as calling memory_region_init_ram_nomigrate() 1371 * and then marking the resulting region read-only with 1372 * memory_region_set_readonly(). 1373 * 1374 * Note that this function does not do anything to cause the data in the 1375 * RAM side of the memory region to be migrated; that is the responsibility 1376 * of the caller. 1377 * 1378 * @mr: the #MemoryRegion to be initialized. 1379 * @owner: the object that tracks the region's reference count 1380 * @name: Region name, becomes part of RAMBlock name used in migration stream 1381 * must be unique within any device 1382 * @size: size of the region. 1383 * @errp: pointer to Error*, to store an error if it happens. 1384 */ 1385void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1386 Object *owner, 1387 const char *name, 1388 uint64_t size, 1389 Error **errp); 1390 1391/** 1392 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1393 * Writes are handled via callbacks. 1394 * 1395 * Note that this function does not do anything to cause the data in the 1396 * RAM side of the memory region to be migrated; that is the responsibility 1397 * of the caller. 1398 * 1399 * @mr: the #MemoryRegion to be initialized. 1400 * @owner: the object that tracks the region's reference count 1401 * @ops: callbacks for write access handling (must not be NULL). 1402 * @opaque: passed to the read and write callbacks of the @ops structure. 1403 * @name: Region name, becomes part of RAMBlock name used in migration stream 1404 * must be unique within any device 1405 * @size: size of the region. 1406 * @errp: pointer to Error*, to store an error if it happens. 1407 */ 1408void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1409 Object *owner, 1410 const MemoryRegionOps *ops, 1411 void *opaque, 1412 const char *name, 1413 uint64_t size, 1414 Error **errp); 1415 1416/** 1417 * memory_region_init_iommu: Initialize a memory region of a custom type 1418 * that translates addresses 1419 * 1420 * An IOMMU region translates addresses and forwards accesses to a target 1421 * memory region. 1422 * 1423 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1424 * @_iommu_mr should be a pointer to enough memory for an instance of 1425 * that subclass, @instance_size is the size of that subclass, and 1426 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1427 * instance of the subclass, and its methods will then be called to handle 1428 * accesses to the memory region. See the documentation of 1429 * #IOMMUMemoryRegionClass for further details. 1430 * 1431 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1432 * @instance_size: the IOMMUMemoryRegion subclass instance size 1433 * @mrtypename: the type name of the #IOMMUMemoryRegion 1434 * @owner: the object that tracks the region's reference count 1435 * @name: used for debugging; not visible to the user or ABI 1436 * @size: size of the region. 1437 */ 1438void memory_region_init_iommu(void *_iommu_mr, 1439 size_t instance_size, 1440 const char *mrtypename, 1441 Object *owner, 1442 const char *name, 1443 uint64_t size); 1444 1445/** 1446 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1447 * region will modify memory directly. 1448 * 1449 * @mr: the #MemoryRegion to be initialized 1450 * @owner: the object that tracks the region's reference count (must be 1451 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1452 * @name: name of the memory region 1453 * @size: size of the region in bytes 1454 * @errp: pointer to Error*, to store an error if it happens. 1455 * 1456 * This function allocates RAM for a board model or device, and 1457 * arranges for it to be migrated (by calling vmstate_register_ram() 1458 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1459 * @owner is NULL). 1460 * 1461 * TODO: Currently we restrict @owner to being either NULL (for 1462 * global RAM regions with no owner) or devices, so that we can 1463 * give the RAM block a unique name for migration purposes. 1464 * We should lift this restriction and allow arbitrary Objects. 1465 * If you pass a non-NULL non-device @owner then we will assert. 1466 */ 1467void memory_region_init_ram(MemoryRegion *mr, 1468 Object *owner, 1469 const char *name, 1470 uint64_t size, 1471 Error **errp); 1472 1473/** 1474 * memory_region_init_rom: Initialize a ROM memory region. 1475 * 1476 * This has the same effect as calling memory_region_init_ram() 1477 * and then marking the resulting region read-only with 1478 * memory_region_set_readonly(). This includes arranging for the 1479 * contents to be migrated. 1480 * 1481 * TODO: Currently we restrict @owner to being either NULL (for 1482 * global RAM regions with no owner) or devices, so that we can 1483 * give the RAM block a unique name for migration purposes. 1484 * We should lift this restriction and allow arbitrary Objects. 1485 * If you pass a non-NULL non-device @owner then we will assert. 1486 * 1487 * @mr: the #MemoryRegion to be initialized. 1488 * @owner: the object that tracks the region's reference count 1489 * @name: Region name, becomes part of RAMBlock name used in migration stream 1490 * must be unique within any device 1491 * @size: size of the region. 1492 * @errp: pointer to Error*, to store an error if it happens. 1493 */ 1494void memory_region_init_rom(MemoryRegion *mr, 1495 Object *owner, 1496 const char *name, 1497 uint64_t size, 1498 Error **errp); 1499 1500/** 1501 * memory_region_init_rom_device: Initialize a ROM memory region. 1502 * Writes are handled via callbacks. 1503 * 1504 * This function initializes a memory region backed by RAM for reads 1505 * and callbacks for writes, and arranges for the RAM backing to 1506 * be migrated (by calling vmstate_register_ram() 1507 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1508 * @owner is NULL). 1509 * 1510 * TODO: Currently we restrict @owner to being either NULL (for 1511 * global RAM regions with no owner) or devices, so that we can 1512 * give the RAM block a unique name for migration purposes. 1513 * We should lift this restriction and allow arbitrary Objects. 1514 * If you pass a non-NULL non-device @owner then we will assert. 1515 * 1516 * @mr: the #MemoryRegion to be initialized. 1517 * @owner: the object that tracks the region's reference count 1518 * @ops: callbacks for write access handling (must not be NULL). 1519 * @opaque: passed to the read and write callbacks of the @ops structure. 1520 * @name: Region name, becomes part of RAMBlock name used in migration stream 1521 * must be unique within any device 1522 * @size: size of the region. 1523 * @errp: pointer to Error*, to store an error if it happens. 1524 */ 1525void memory_region_init_rom_device(MemoryRegion *mr, 1526 Object *owner, 1527 const MemoryRegionOps *ops, 1528 void *opaque, 1529 const char *name, 1530 uint64_t size, 1531 Error **errp); 1532 1533 1534/** 1535 * memory_region_owner: get a memory region's owner. 1536 * 1537 * @mr: the memory region being queried. 1538 */ 1539Object *memory_region_owner(MemoryRegion *mr); 1540 1541/** 1542 * memory_region_size: get a memory region's size. 1543 * 1544 * @mr: the memory region being queried. 1545 */ 1546uint64_t memory_region_size(MemoryRegion *mr); 1547 1548/** 1549 * memory_region_is_ram: check whether a memory region is random access 1550 * 1551 * Returns %true if a memory region is random access. 1552 * 1553 * @mr: the memory region being queried 1554 */ 1555static inline bool memory_region_is_ram(MemoryRegion *mr) 1556{ 1557 return mr->ram; 1558} 1559 1560/** 1561 * memory_region_is_ram_device: check whether a memory region is a ram device 1562 * 1563 * Returns %true if a memory region is a device backed ram region 1564 * 1565 * @mr: the memory region being queried 1566 */ 1567bool memory_region_is_ram_device(MemoryRegion *mr); 1568 1569/** 1570 * memory_region_is_romd: check whether a memory region is in ROMD mode 1571 * 1572 * Returns %true if a memory region is a ROM device and currently set to allow 1573 * direct reads. 1574 * 1575 * @mr: the memory region being queried 1576 */ 1577static inline bool memory_region_is_romd(MemoryRegion *mr) 1578{ 1579 return mr->rom_device && mr->romd_mode; 1580} 1581 1582/** 1583 * memory_region_is_protected: check whether a memory region is protected 1584 * 1585 * Returns %true if a memory region is protected RAM and cannot be accessed 1586 * via standard mechanisms, e.g. DMA. 1587 * 1588 * @mr: the memory region being queried 1589 */ 1590bool memory_region_is_protected(MemoryRegion *mr); 1591 1592/** 1593 * memory_region_get_iommu: check whether a memory region is an iommu 1594 * 1595 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1596 * otherwise NULL. 1597 * 1598 * @mr: the memory region being queried 1599 */ 1600static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1601{ 1602 if (mr->alias) { 1603 return memory_region_get_iommu(mr->alias); 1604 } 1605 if (mr->is_iommu) { 1606 return (IOMMUMemoryRegion *) mr; 1607 } 1608 return NULL; 1609} 1610 1611/** 1612 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1613 * if an iommu or NULL if not 1614 * 1615 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1616 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1617 * 1618 * @iommu_mr: the memory region being queried 1619 */ 1620static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1621 IOMMUMemoryRegion *iommu_mr) 1622{ 1623 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1624} 1625 1626#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1627 1628/** 1629 * memory_region_iommu_get_min_page_size: get minimum supported page size 1630 * for an iommu 1631 * 1632 * Returns minimum supported page size for an iommu. 1633 * 1634 * @iommu_mr: the memory region being queried 1635 */ 1636uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1637 1638/** 1639 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1640 * 1641 * Note: for any IOMMU implementation, an in-place mapping change 1642 * should be notified with an UNMAP followed by a MAP. 1643 * 1644 * @iommu_mr: the memory region that was changed 1645 * @iommu_idx: the IOMMU index for the translation table which has changed 1646 * @event: TLB event with the new entry in the IOMMU translation table. 1647 * The entry replaces all old entries for the same virtual I/O address 1648 * range. 1649 */ 1650void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1651 int iommu_idx, 1652 IOMMUTLBEvent event); 1653 1654/** 1655 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1656 * entry to a single notifier 1657 * 1658 * This works just like memory_region_notify_iommu(), but it only 1659 * notifies a specific notifier, not all of them. 1660 * 1661 * @notifier: the notifier to be notified 1662 * @event: TLB event with the new entry in the IOMMU translation table. 1663 * The entry replaces all old entries for the same virtual I/O address 1664 * range. 1665 */ 1666void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1667 IOMMUTLBEvent *event); 1668 1669/** 1670 * memory_region_register_iommu_notifier: register a notifier for changes to 1671 * IOMMU translation entries. 1672 * 1673 * Returns 0 on success, or a negative errno otherwise. In particular, 1674 * -EINVAL indicates that at least one of the attributes of the notifier 1675 * is not supported (flag/range) by the IOMMU memory region. In case of error 1676 * the error object must be created. 1677 * 1678 * @mr: the memory region to observe 1679 * @n: the IOMMUNotifier to be added; the notify callback receives a 1680 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1681 * ceases to be valid on exit from the notifier. 1682 * @errp: pointer to Error*, to store an error if it happens. 1683 */ 1684int memory_region_register_iommu_notifier(MemoryRegion *mr, 1685 IOMMUNotifier *n, Error **errp); 1686 1687/** 1688 * memory_region_iommu_replay: replay existing IOMMU translations to 1689 * a notifier with the minimum page granularity returned by 1690 * mr->iommu_ops->get_page_size(). 1691 * 1692 * Note: this is not related to record-and-replay functionality. 1693 * 1694 * @iommu_mr: the memory region to observe 1695 * @n: the notifier to which to replay iommu mappings 1696 */ 1697void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1698 1699/** 1700 * memory_region_unregister_iommu_notifier: unregister a notifier for 1701 * changes to IOMMU translation entries. 1702 * 1703 * @mr: the memory region which was observed and for which notity_stopped() 1704 * needs to be called 1705 * @n: the notifier to be removed. 1706 */ 1707void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1708 IOMMUNotifier *n); 1709 1710/** 1711 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1712 * defined on the IOMMU. 1713 * 1714 * Returns 0 on success, or a negative errno otherwise. In particular, 1715 * -EINVAL indicates that the IOMMU does not support the requested 1716 * attribute. 1717 * 1718 * @iommu_mr: the memory region 1719 * @attr: the requested attribute 1720 * @data: a pointer to the requested attribute data 1721 */ 1722int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1723 enum IOMMUMemoryRegionAttr attr, 1724 void *data); 1725 1726/** 1727 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1728 * use for translations with the given memory transaction attributes. 1729 * 1730 * @iommu_mr: the memory region 1731 * @attrs: the memory transaction attributes 1732 */ 1733int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1734 MemTxAttrs attrs); 1735 1736/** 1737 * memory_region_iommu_num_indexes: return the total number of IOMMU 1738 * indexes that this IOMMU supports. 1739 * 1740 * @iommu_mr: the memory region 1741 */ 1742int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1743 1744/** 1745 * memory_region_iommu_set_page_size_mask: set the supported page 1746 * sizes for a given IOMMU memory region 1747 * 1748 * @iommu_mr: IOMMU memory region 1749 * @page_size_mask: supported page size mask 1750 * @errp: pointer to Error*, to store an error if it happens. 1751 */ 1752int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1753 uint64_t page_size_mask, 1754 Error **errp); 1755 1756/** 1757 * memory_region_name: get a memory region's name 1758 * 1759 * Returns the string that was used to initialize the memory region. 1760 * 1761 * @mr: the memory region being queried 1762 */ 1763const char *memory_region_name(const MemoryRegion *mr); 1764 1765/** 1766 * memory_region_is_logging: return whether a memory region is logging writes 1767 * 1768 * Returns %true if the memory region is logging writes for the given client 1769 * 1770 * @mr: the memory region being queried 1771 * @client: the client being queried 1772 */ 1773bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1774 1775/** 1776 * memory_region_get_dirty_log_mask: return the clients for which a 1777 * memory region is logging writes. 1778 * 1779 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1780 * are the bit indices. 1781 * 1782 * @mr: the memory region being queried 1783 */ 1784uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1785 1786/** 1787 * memory_region_is_rom: check whether a memory region is ROM 1788 * 1789 * Returns %true if a memory region is read-only memory. 1790 * 1791 * @mr: the memory region being queried 1792 */ 1793static inline bool memory_region_is_rom(MemoryRegion *mr) 1794{ 1795 return mr->ram && mr->readonly; 1796} 1797 1798/** 1799 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1800 * 1801 * Returns %true is a memory region is non-volatile memory. 1802 * 1803 * @mr: the memory region being queried 1804 */ 1805static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1806{ 1807 return mr->nonvolatile; 1808} 1809 1810/** 1811 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1812 * 1813 * Returns a file descriptor backing a file-based RAM memory region, 1814 * or -1 if the region is not a file-based RAM memory region. 1815 * 1816 * @mr: the RAM or alias memory region being queried. 1817 */ 1818int memory_region_get_fd(MemoryRegion *mr); 1819 1820/** 1821 * memory_region_from_host: Convert a pointer into a RAM memory region 1822 * and an offset within it. 1823 * 1824 * Given a host pointer inside a RAM memory region (created with 1825 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1826 * the MemoryRegion and the offset within it. 1827 * 1828 * Use with care; by the time this function returns, the returned pointer is 1829 * not protected by RCU anymore. If the caller is not within an RCU critical 1830 * section and does not hold the iothread lock, it must have other means of 1831 * protecting the pointer, such as a reference to the region that includes 1832 * the incoming ram_addr_t. 1833 * 1834 * @ptr: the host pointer to be converted 1835 * @offset: the offset within memory region 1836 */ 1837MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1838 1839/** 1840 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1841 * 1842 * Returns a host pointer to a RAM memory region (created with 1843 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1844 * 1845 * Use with care; by the time this function returns, the returned pointer is 1846 * not protected by RCU anymore. If the caller is not within an RCU critical 1847 * section and does not hold the iothread lock, it must have other means of 1848 * protecting the pointer, such as a reference to the region that includes 1849 * the incoming ram_addr_t. 1850 * 1851 * @mr: the memory region being queried. 1852 */ 1853void *memory_region_get_ram_ptr(MemoryRegion *mr); 1854 1855/* memory_region_ram_resize: Resize a RAM region. 1856 * 1857 * Resizing RAM while migrating can result in the migration being canceled. 1858 * Care has to be taken if the guest might have already detected the memory. 1859 * 1860 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1861 * @newsize: the new size the region 1862 * @errp: pointer to Error*, to store an error if it happens. 1863 */ 1864void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1865 Error **errp); 1866 1867/** 1868 * memory_region_msync: Synchronize selected address range of 1869 * a memory mapped region 1870 * 1871 * @mr: the memory region to be msync 1872 * @addr: the initial address of the range to be sync 1873 * @size: the size of the range to be sync 1874 */ 1875void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1876 1877/** 1878 * memory_region_writeback: Trigger cache writeback for 1879 * selected address range 1880 * 1881 * @mr: the memory region to be updated 1882 * @addr: the initial address of the range to be written back 1883 * @size: the size of the range to be written back 1884 */ 1885void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1886 1887/** 1888 * memory_region_set_log: Turn dirty logging on or off for a region. 1889 * 1890 * Turns dirty logging on or off for a specified client (display, migration). 1891 * Only meaningful for RAM regions. 1892 * 1893 * @mr: the memory region being updated. 1894 * @log: whether dirty logging is to be enabled or disabled. 1895 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1896 */ 1897void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1898 1899/** 1900 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1901 * 1902 * Marks a range of bytes as dirty, after it has been dirtied outside 1903 * guest code. 1904 * 1905 * @mr: the memory region being dirtied. 1906 * @addr: the address (relative to the start of the region) being dirtied. 1907 * @size: size of the range being dirtied. 1908 */ 1909void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1910 hwaddr size); 1911 1912/** 1913 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1914 * 1915 * This function is called when the caller wants to clear the remote 1916 * dirty bitmap of a memory range within the memory region. This can 1917 * be used by e.g. KVM to manually clear dirty log when 1918 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1919 * kernel. 1920 * 1921 * @mr: the memory region to clear the dirty log upon 1922 * @start: start address offset within the memory region 1923 * @len: length of the memory region to clear dirty bitmap 1924 */ 1925void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1926 hwaddr len); 1927 1928/** 1929 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1930 * bitmap and clear it. 1931 * 1932 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1933 * returns the snapshot. The snapshot can then be used to query dirty 1934 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1935 * querying the same page multiple times, which is especially useful for 1936 * display updates where the scanlines often are not page aligned. 1937 * 1938 * The dirty bitmap region which gets copyed into the snapshot (and 1939 * cleared afterwards) can be larger than requested. The boundaries 1940 * are rounded up/down so complete bitmap longs (covering 64 pages on 1941 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1942 * isn't a problem for display updates as the extra pages are outside 1943 * the visible area, and in case the visible area changes a full 1944 * display redraw is due anyway. Should other use cases for this 1945 * function emerge we might have to revisit this implementation 1946 * detail. 1947 * 1948 * Use g_free to release DirtyBitmapSnapshot. 1949 * 1950 * @mr: the memory region being queried. 1951 * @addr: the address (relative to the start of the region) being queried. 1952 * @size: the size of the range being queried. 1953 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1954 */ 1955DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1956 hwaddr addr, 1957 hwaddr size, 1958 unsigned client); 1959 1960/** 1961 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1962 * in the specified dirty bitmap snapshot. 1963 * 1964 * @mr: the memory region being queried. 1965 * @snap: the dirty bitmap snapshot 1966 * @addr: the address (relative to the start of the region) being queried. 1967 * @size: the size of the range being queried. 1968 */ 1969bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1970 DirtyBitmapSnapshot *snap, 1971 hwaddr addr, hwaddr size); 1972 1973/** 1974 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1975 * client. 1976 * 1977 * Marks a range of pages as no longer dirty. 1978 * 1979 * @mr: the region being updated. 1980 * @addr: the start of the subrange being cleaned. 1981 * @size: the size of the subrange being cleaned. 1982 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1983 * %DIRTY_MEMORY_VGA. 1984 */ 1985void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1986 hwaddr size, unsigned client); 1987 1988/** 1989 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1990 * TBs (for self-modifying code). 1991 * 1992 * The MemoryRegionOps->write() callback of a ROM device must use this function 1993 * to mark byte ranges that have been modified internally, such as by directly 1994 * accessing the memory returned by memory_region_get_ram_ptr(). 1995 * 1996 * This function marks the range dirty and invalidates TBs so that TCG can 1997 * detect self-modifying code. 1998 * 1999 * @mr: the region being flushed. 2000 * @addr: the start, relative to the start of the region, of the range being 2001 * flushed. 2002 * @size: the size, in bytes, of the range being flushed. 2003 */ 2004void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2005 2006/** 2007 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2008 * 2009 * Allows a memory region to be marked as read-only (turning it into a ROM). 2010 * only useful on RAM regions. 2011 * 2012 * @mr: the region being updated. 2013 * @readonly: whether rhe region is to be ROM or RAM. 2014 */ 2015void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2016 2017/** 2018 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2019 * 2020 * Allows a memory region to be marked as non-volatile. 2021 * only useful on RAM regions. 2022 * 2023 * @mr: the region being updated. 2024 * @nonvolatile: whether rhe region is to be non-volatile. 2025 */ 2026void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2027 2028/** 2029 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2030 * 2031 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2032 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2033 * device is mapped to guest memory and satisfies read access directly. 2034 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2035 * Writes are always handled by the #MemoryRegion.write function. 2036 * 2037 * @mr: the memory region to be updated 2038 * @romd_mode: %true to put the region into ROMD mode 2039 */ 2040void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2041 2042/** 2043 * memory_region_set_coalescing: Enable memory coalescing for the region. 2044 * 2045 * Enabled writes to a region to be queued for later processing. MMIO ->write 2046 * callbacks may be delayed until a non-coalesced MMIO is issued. 2047 * Only useful for IO regions. Roughly similar to write-combining hardware. 2048 * 2049 * @mr: the memory region to be write coalesced 2050 */ 2051void memory_region_set_coalescing(MemoryRegion *mr); 2052 2053/** 2054 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2055 * a region. 2056 * 2057 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2058 * Multiple calls can be issued coalesced disjoint ranges. 2059 * 2060 * @mr: the memory region to be updated. 2061 * @offset: the start of the range within the region to be coalesced. 2062 * @size: the size of the subrange to be coalesced. 2063 */ 2064void memory_region_add_coalescing(MemoryRegion *mr, 2065 hwaddr offset, 2066 uint64_t size); 2067 2068/** 2069 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2070 * 2071 * Disables any coalescing caused by memory_region_set_coalescing() or 2072 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2073 * hardware. 2074 * 2075 * @mr: the memory region to be updated. 2076 */ 2077void memory_region_clear_coalescing(MemoryRegion *mr); 2078 2079/** 2080 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2081 * accesses. 2082 * 2083 * Ensure that pending coalesced MMIO request are flushed before the memory 2084 * region is accessed. This property is automatically enabled for all regions 2085 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2086 * 2087 * @mr: the memory region to be updated. 2088 */ 2089void memory_region_set_flush_coalesced(MemoryRegion *mr); 2090 2091/** 2092 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2093 * accesses. 2094 * 2095 * Clear the automatic coalesced MMIO flushing enabled via 2096 * memory_region_set_flush_coalesced. Note that this service has no effect on 2097 * memory regions that have MMIO coalescing enabled for themselves. For them, 2098 * automatic flushing will stop once coalescing is disabled. 2099 * 2100 * @mr: the memory region to be updated. 2101 */ 2102void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2103 2104/** 2105 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2106 * is written to a location. 2107 * 2108 * Marks a word in an IO region (initialized with memory_region_init_io()) 2109 * as a trigger for an eventfd event. The I/O callback will not be called. 2110 * The caller must be prepared to handle failure (that is, take the required 2111 * action if the callback _is_ called). 2112 * 2113 * @mr: the memory region being updated. 2114 * @addr: the address within @mr that is to be monitored 2115 * @size: the size of the access to trigger the eventfd 2116 * @match_data: whether to match against @data, instead of just @addr 2117 * @data: the data to match against the guest write 2118 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2119 **/ 2120void memory_region_add_eventfd(MemoryRegion *mr, 2121 hwaddr addr, 2122 unsigned size, 2123 bool match_data, 2124 uint64_t data, 2125 EventNotifier *e); 2126 2127/** 2128 * memory_region_del_eventfd: Cancel an eventfd. 2129 * 2130 * Cancels an eventfd trigger requested by a previous 2131 * memory_region_add_eventfd() call. 2132 * 2133 * @mr: the memory region being updated. 2134 * @addr: the address within @mr that is to be monitored 2135 * @size: the size of the access to trigger the eventfd 2136 * @match_data: whether to match against @data, instead of just @addr 2137 * @data: the data to match against the guest write 2138 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2139 */ 2140void memory_region_del_eventfd(MemoryRegion *mr, 2141 hwaddr addr, 2142 unsigned size, 2143 bool match_data, 2144 uint64_t data, 2145 EventNotifier *e); 2146 2147/** 2148 * memory_region_add_subregion: Add a subregion to a container. 2149 * 2150 * Adds a subregion at @offset. The subregion may not overlap with other 2151 * subregions (except for those explicitly marked as overlapping). A region 2152 * may only be added once as a subregion (unless removed with 2153 * memory_region_del_subregion()); use memory_region_init_alias() if you 2154 * want a region to be a subregion in multiple locations. 2155 * 2156 * @mr: the region to contain the new subregion; must be a container 2157 * initialized with memory_region_init(). 2158 * @offset: the offset relative to @mr where @subregion is added. 2159 * @subregion: the subregion to be added. 2160 */ 2161void memory_region_add_subregion(MemoryRegion *mr, 2162 hwaddr offset, 2163 MemoryRegion *subregion); 2164/** 2165 * memory_region_add_subregion_overlap: Add a subregion to a container 2166 * with overlap. 2167 * 2168 * Adds a subregion at @offset. The subregion may overlap with other 2169 * subregions. Conflicts are resolved by having a higher @priority hide a 2170 * lower @priority. Subregions without priority are taken as @priority 0. 2171 * A region may only be added once as a subregion (unless removed with 2172 * memory_region_del_subregion()); use memory_region_init_alias() if you 2173 * want a region to be a subregion in multiple locations. 2174 * 2175 * @mr: the region to contain the new subregion; must be a container 2176 * initialized with memory_region_init(). 2177 * @offset: the offset relative to @mr where @subregion is added. 2178 * @subregion: the subregion to be added. 2179 * @priority: used for resolving overlaps; highest priority wins. 2180 */ 2181void memory_region_add_subregion_overlap(MemoryRegion *mr, 2182 hwaddr offset, 2183 MemoryRegion *subregion, 2184 int priority); 2185 2186/** 2187 * memory_region_get_ram_addr: Get the ram address associated with a memory 2188 * region 2189 * 2190 * @mr: the region to be queried 2191 */ 2192ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2193 2194uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2195/** 2196 * memory_region_del_subregion: Remove a subregion. 2197 * 2198 * Removes a subregion from its container. 2199 * 2200 * @mr: the container to be updated. 2201 * @subregion: the region being removed; must be a current subregion of @mr. 2202 */ 2203void memory_region_del_subregion(MemoryRegion *mr, 2204 MemoryRegion *subregion); 2205 2206/* 2207 * memory_region_set_enabled: dynamically enable or disable a region 2208 * 2209 * Enables or disables a memory region. A disabled memory region 2210 * ignores all accesses to itself and its subregions. It does not 2211 * obscure sibling subregions with lower priority - it simply behaves as 2212 * if it was removed from the hierarchy. 2213 * 2214 * Regions default to being enabled. 2215 * 2216 * @mr: the region to be updated 2217 * @enabled: whether to enable or disable the region 2218 */ 2219void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2220 2221/* 2222 * memory_region_set_address: dynamically update the address of a region 2223 * 2224 * Dynamically updates the address of a region, relative to its container. 2225 * May be used on regions are currently part of a memory hierarchy. 2226 * 2227 * @mr: the region to be updated 2228 * @addr: new address, relative to container region 2229 */ 2230void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2231 2232/* 2233 * memory_region_set_size: dynamically update the size of a region. 2234 * 2235 * Dynamically updates the size of a region. 2236 * 2237 * @mr: the region to be updated 2238 * @size: used size of the region. 2239 */ 2240void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2241 2242/* 2243 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2244 * 2245 * Dynamically updates the offset into the target region that an alias points 2246 * to, as if the fourth argument to memory_region_init_alias() has changed. 2247 * 2248 * @mr: the #MemoryRegion to be updated; should be an alias. 2249 * @offset: the new offset into the target memory region 2250 */ 2251void memory_region_set_alias_offset(MemoryRegion *mr, 2252 hwaddr offset); 2253 2254/** 2255 * memory_region_present: checks if an address relative to a @container 2256 * translates into #MemoryRegion within @container 2257 * 2258 * Answer whether a #MemoryRegion within @container covers the address 2259 * @addr. 2260 * 2261 * @container: a #MemoryRegion within which @addr is a relative address 2262 * @addr: the area within @container to be searched 2263 */ 2264bool memory_region_present(MemoryRegion *container, hwaddr addr); 2265 2266/** 2267 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2268 * into any address space. 2269 * 2270 * @mr: a #MemoryRegion which should be checked if it's mapped 2271 */ 2272bool memory_region_is_mapped(MemoryRegion *mr); 2273 2274/** 2275 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2276 * #MemoryRegion 2277 * 2278 * The #RamDiscardManager cannot change while a memory region is mapped. 2279 * 2280 * @mr: the #MemoryRegion 2281 */ 2282RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2283 2284/** 2285 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2286 * #RamDiscardManager assigned 2287 * 2288 * @mr: the #MemoryRegion 2289 */ 2290static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2291{ 2292 return !!memory_region_get_ram_discard_manager(mr); 2293} 2294 2295/** 2296 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2297 * #MemoryRegion 2298 * 2299 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2300 * that does not cover RAM, or a #MemoryRegion that already has a 2301 * #RamDiscardManager assigned. 2302 * 2303 * @mr: the #MemoryRegion 2304 * @rdm: #RamDiscardManager to set 2305 */ 2306void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2307 RamDiscardManager *rdm); 2308 2309/** 2310 * memory_region_find: translate an address/size relative to a 2311 * MemoryRegion into a #MemoryRegionSection. 2312 * 2313 * Locates the first #MemoryRegion within @mr that overlaps the range 2314 * given by @addr and @size. 2315 * 2316 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2317 * It will have the following characteristics: 2318 * - @size = 0 iff no overlap was found 2319 * - @mr is non-%NULL iff an overlap was found 2320 * 2321 * Remember that in the return value the @offset_within_region is 2322 * relative to the returned region (in the .@mr field), not to the 2323 * @mr argument. 2324 * 2325 * Similarly, the .@offset_within_address_space is relative to the 2326 * address space that contains both regions, the passed and the 2327 * returned one. However, in the special case where the @mr argument 2328 * has no container (and thus is the root of the address space), the 2329 * following will hold: 2330 * - @offset_within_address_space >= @addr 2331 * - @offset_within_address_space + .@size <= @addr + @size 2332 * 2333 * @mr: a MemoryRegion within which @addr is a relative address 2334 * @addr: start of the area within @as to be searched 2335 * @size: size of the area to be searched 2336 */ 2337MemoryRegionSection memory_region_find(MemoryRegion *mr, 2338 hwaddr addr, uint64_t size); 2339 2340/** 2341 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2342 * 2343 * Synchronizes the dirty page log for all address spaces. 2344 */ 2345void memory_global_dirty_log_sync(void); 2346 2347/** 2348 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2349 * 2350 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2351 * This function must be called after the dirty log bitmap is cleared, and 2352 * before dirty guest memory pages are read. If you are using 2353 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2354 * care of doing this. 2355 */ 2356void memory_global_after_dirty_log_sync(void); 2357 2358/** 2359 * memory_region_transaction_begin: Start a transaction. 2360 * 2361 * During a transaction, changes will be accumulated and made visible 2362 * only when the transaction ends (is committed). 2363 */ 2364void memory_region_transaction_begin(void); 2365 2366/** 2367 * memory_region_transaction_commit: Commit a transaction and make changes 2368 * visible to the guest. 2369 */ 2370void memory_region_transaction_commit(void); 2371 2372/** 2373 * memory_listener_register: register callbacks to be called when memory 2374 * sections are mapped or unmapped into an address 2375 * space 2376 * 2377 * @listener: an object containing the callbacks to be called 2378 * @filter: if non-%NULL, only regions in this address space will be observed 2379 */ 2380void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2381 2382/** 2383 * memory_listener_unregister: undo the effect of memory_listener_register() 2384 * 2385 * @listener: an object containing the callbacks to be removed 2386 */ 2387void memory_listener_unregister(MemoryListener *listener); 2388 2389/** 2390 * memory_global_dirty_log_start: begin dirty logging for all regions 2391 */ 2392void memory_global_dirty_log_start(void); 2393 2394/** 2395 * memory_global_dirty_log_stop: end dirty logging for all regions 2396 */ 2397void memory_global_dirty_log_stop(void); 2398 2399void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2400 2401/** 2402 * memory_region_dispatch_read: perform a read directly to the specified 2403 * MemoryRegion. 2404 * 2405 * @mr: #MemoryRegion to access 2406 * @addr: address within that region 2407 * @pval: pointer to uint64_t which the data is written to 2408 * @op: size, sign, and endianness of the memory operation 2409 * @attrs: memory transaction attributes to use for the access 2410 */ 2411MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2412 hwaddr addr, 2413 uint64_t *pval, 2414 MemOp op, 2415 MemTxAttrs attrs); 2416/** 2417 * memory_region_dispatch_write: perform a write directly to the specified 2418 * MemoryRegion. 2419 * 2420 * @mr: #MemoryRegion to access 2421 * @addr: address within that region 2422 * @data: data to write 2423 * @op: size, sign, and endianness of the memory operation 2424 * @attrs: memory transaction attributes to use for the access 2425 */ 2426MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2427 hwaddr addr, 2428 uint64_t data, 2429 MemOp op, 2430 MemTxAttrs attrs); 2431 2432/** 2433 * address_space_init: initializes an address space 2434 * 2435 * @as: an uninitialized #AddressSpace 2436 * @root: a #MemoryRegion that routes addresses for the address space 2437 * @name: an address space name. The name is only used for debugging 2438 * output. 2439 */ 2440void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2441 2442/** 2443 * address_space_destroy: destroy an address space 2444 * 2445 * Releases all resources associated with an address space. After an address space 2446 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2447 * as well. 2448 * 2449 * @as: address space to be destroyed 2450 */ 2451void address_space_destroy(AddressSpace *as); 2452 2453/** 2454 * address_space_remove_listeners: unregister all listeners of an address space 2455 * 2456 * Removes all callbacks previously registered with memory_listener_register() 2457 * for @as. 2458 * 2459 * @as: an initialized #AddressSpace 2460 */ 2461void address_space_remove_listeners(AddressSpace *as); 2462 2463/** 2464 * address_space_rw: read from or write to an address space. 2465 * 2466 * Return a MemTxResult indicating whether the operation succeeded 2467 * or failed (eg unassigned memory, device rejected the transaction, 2468 * IOMMU fault). 2469 * 2470 * @as: #AddressSpace to be accessed 2471 * @addr: address within that address space 2472 * @attrs: memory transaction attributes 2473 * @buf: buffer with the data transferred 2474 * @len: the number of bytes to read or write 2475 * @is_write: indicates the transfer direction 2476 */ 2477MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2478 MemTxAttrs attrs, void *buf, 2479 hwaddr len, bool is_write); 2480 2481/** 2482 * address_space_write: write to address space. 2483 * 2484 * Return a MemTxResult indicating whether the operation succeeded 2485 * or failed (eg unassigned memory, device rejected the transaction, 2486 * IOMMU fault). 2487 * 2488 * @as: #AddressSpace to be accessed 2489 * @addr: address within that address space 2490 * @attrs: memory transaction attributes 2491 * @buf: buffer with the data transferred 2492 * @len: the number of bytes to write 2493 */ 2494MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2495 MemTxAttrs attrs, 2496 const void *buf, hwaddr len); 2497 2498/** 2499 * address_space_write_rom: write to address space, including ROM. 2500 * 2501 * This function writes to the specified address space, but will 2502 * write data to both ROM and RAM. This is used for non-guest 2503 * writes like writes from the gdb debug stub or initial loading 2504 * of ROM contents. 2505 * 2506 * Note that portions of the write which attempt to write data to 2507 * a device will be silently ignored -- only real RAM and ROM will 2508 * be written to. 2509 * 2510 * Return a MemTxResult indicating whether the operation succeeded 2511 * or failed (eg unassigned memory, device rejected the transaction, 2512 * IOMMU fault). 2513 * 2514 * @as: #AddressSpace to be accessed 2515 * @addr: address within that address space 2516 * @attrs: memory transaction attributes 2517 * @buf: buffer with the data transferred 2518 * @len: the number of bytes to write 2519 */ 2520MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2521 MemTxAttrs attrs, 2522 const void *buf, hwaddr len); 2523 2524/* address_space_ld*: load from an address space 2525 * address_space_st*: store to an address space 2526 * 2527 * These functions perform a load or store of the byte, word, 2528 * longword or quad to the specified address within the AddressSpace. 2529 * The _le suffixed functions treat the data as little endian; 2530 * _be indicates big endian; no suffix indicates "same endianness 2531 * as guest CPU". 2532 * 2533 * The "guest CPU endianness" accessors are deprecated for use outside 2534 * target-* code; devices should be CPU-agnostic and use either the LE 2535 * or the BE accessors. 2536 * 2537 * @as #AddressSpace to be accessed 2538 * @addr: address within that address space 2539 * @val: data value, for stores 2540 * @attrs: memory transaction attributes 2541 * @result: location to write the success/failure of the transaction; 2542 * if NULL, this information is discarded 2543 */ 2544 2545#define SUFFIX 2546#define ARG1 as 2547#define ARG1_DECL AddressSpace *as 2548#include "exec/memory_ldst.h.inc" 2549 2550#define SUFFIX 2551#define ARG1 as 2552#define ARG1_DECL AddressSpace *as 2553#include "exec/memory_ldst_phys.h.inc" 2554 2555struct MemoryRegionCache { 2556 void *ptr; 2557 hwaddr xlat; 2558 hwaddr len; 2559 FlatView *fv; 2560 MemoryRegionSection mrs; 2561 bool is_write; 2562}; 2563 2564#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2565 2566 2567/* address_space_ld*_cached: load from a cached #MemoryRegion 2568 * address_space_st*_cached: store into a cached #MemoryRegion 2569 * 2570 * These functions perform a load or store of the byte, word, 2571 * longword or quad to the specified address. The address is 2572 * a physical address in the AddressSpace, but it must lie within 2573 * a #MemoryRegion that was mapped with address_space_cache_init. 2574 * 2575 * The _le suffixed functions treat the data as little endian; 2576 * _be indicates big endian; no suffix indicates "same endianness 2577 * as guest CPU". 2578 * 2579 * The "guest CPU endianness" accessors are deprecated for use outside 2580 * target-* code; devices should be CPU-agnostic and use either the LE 2581 * or the BE accessors. 2582 * 2583 * @cache: previously initialized #MemoryRegionCache to be accessed 2584 * @addr: address within the address space 2585 * @val: data value, for stores 2586 * @attrs: memory transaction attributes 2587 * @result: location to write the success/failure of the transaction; 2588 * if NULL, this information is discarded 2589 */ 2590 2591#define SUFFIX _cached_slow 2592#define ARG1 cache 2593#define ARG1_DECL MemoryRegionCache *cache 2594#include "exec/memory_ldst.h.inc" 2595 2596/* Inline fast path for direct RAM access. */ 2597static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2598 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2599{ 2600 assert(addr < cache->len); 2601 if (likely(cache->ptr)) { 2602 return ldub_p(cache->ptr + addr); 2603 } else { 2604 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2605 } 2606} 2607 2608static inline void address_space_stb_cached(MemoryRegionCache *cache, 2609 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2610{ 2611 assert(addr < cache->len); 2612 if (likely(cache->ptr)) { 2613 stb_p(cache->ptr + addr, val); 2614 } else { 2615 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2616 } 2617} 2618 2619#define ENDIANNESS _le 2620#include "exec/memory_ldst_cached.h.inc" 2621 2622#define ENDIANNESS _be 2623#include "exec/memory_ldst_cached.h.inc" 2624 2625#define SUFFIX _cached 2626#define ARG1 cache 2627#define ARG1_DECL MemoryRegionCache *cache 2628#include "exec/memory_ldst_phys.h.inc" 2629 2630/* address_space_cache_init: prepare for repeated access to a physical 2631 * memory region 2632 * 2633 * @cache: #MemoryRegionCache to be filled 2634 * @as: #AddressSpace to be accessed 2635 * @addr: address within that address space 2636 * @len: length of buffer 2637 * @is_write: indicates the transfer direction 2638 * 2639 * Will only work with RAM, and may map a subset of the requested range by 2640 * returning a value that is less than @len. On failure, return a negative 2641 * errno value. 2642 * 2643 * Because it only works with RAM, this function can be used for 2644 * read-modify-write operations. In this case, is_write should be %true. 2645 * 2646 * Note that addresses passed to the address_space_*_cached functions 2647 * are relative to @addr. 2648 */ 2649int64_t address_space_cache_init(MemoryRegionCache *cache, 2650 AddressSpace *as, 2651 hwaddr addr, 2652 hwaddr len, 2653 bool is_write); 2654 2655/** 2656 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2657 * 2658 * @cache: The #MemoryRegionCache to operate on. 2659 * @addr: The first physical address that was written, relative to the 2660 * address that was passed to @address_space_cache_init. 2661 * @access_len: The number of bytes that were written starting at @addr. 2662 */ 2663void address_space_cache_invalidate(MemoryRegionCache *cache, 2664 hwaddr addr, 2665 hwaddr access_len); 2666 2667/** 2668 * address_space_cache_destroy: free a #MemoryRegionCache 2669 * 2670 * @cache: The #MemoryRegionCache whose memory should be released. 2671 */ 2672void address_space_cache_destroy(MemoryRegionCache *cache); 2673 2674/* address_space_get_iotlb_entry: translate an address into an IOTLB 2675 * entry. Should be called from an RCU critical section. 2676 */ 2677IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2678 bool is_write, MemTxAttrs attrs); 2679 2680/* address_space_translate: translate an address range into an address space 2681 * into a MemoryRegion and an address range into that section. Should be 2682 * called from an RCU critical section, to avoid that the last reference 2683 * to the returned region disappears after address_space_translate returns. 2684 * 2685 * @fv: #FlatView to be accessed 2686 * @addr: address within that address space 2687 * @xlat: pointer to address within the returned memory region section's 2688 * #MemoryRegion. 2689 * @len: pointer to length 2690 * @is_write: indicates the transfer direction 2691 * @attrs: memory attributes 2692 */ 2693MemoryRegion *flatview_translate(FlatView *fv, 2694 hwaddr addr, hwaddr *xlat, 2695 hwaddr *len, bool is_write, 2696 MemTxAttrs attrs); 2697 2698static inline MemoryRegion *address_space_translate(AddressSpace *as, 2699 hwaddr addr, hwaddr *xlat, 2700 hwaddr *len, bool is_write, 2701 MemTxAttrs attrs) 2702{ 2703 return flatview_translate(address_space_to_flatview(as), 2704 addr, xlat, len, is_write, attrs); 2705} 2706 2707/* address_space_access_valid: check for validity of accessing an address 2708 * space range 2709 * 2710 * Check whether memory is assigned to the given address space range, and 2711 * access is permitted by any IOMMU regions that are active for the address 2712 * space. 2713 * 2714 * For now, addr and len should be aligned to a page size. This limitation 2715 * will be lifted in the future. 2716 * 2717 * @as: #AddressSpace to be accessed 2718 * @addr: address within that address space 2719 * @len: length of the area to be checked 2720 * @is_write: indicates the transfer direction 2721 * @attrs: memory attributes 2722 */ 2723bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2724 bool is_write, MemTxAttrs attrs); 2725 2726/* address_space_map: map a physical memory region into a host virtual address 2727 * 2728 * May map a subset of the requested range, given by and returned in @plen. 2729 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2730 * the mapping are exhausted. 2731 * Use only for reads OR writes - not for read-modify-write operations. 2732 * Use cpu_register_map_client() to know when retrying the map operation is 2733 * likely to succeed. 2734 * 2735 * @as: #AddressSpace to be accessed 2736 * @addr: address within that address space 2737 * @plen: pointer to length of buffer; updated on return 2738 * @is_write: indicates the transfer direction 2739 * @attrs: memory attributes 2740 */ 2741void *address_space_map(AddressSpace *as, hwaddr addr, 2742 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2743 2744/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2745 * 2746 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2747 * the amount of memory that was actually read or written by the caller. 2748 * 2749 * @as: #AddressSpace used 2750 * @buffer: host pointer as returned by address_space_map() 2751 * @len: buffer length as returned by address_space_map() 2752 * @access_len: amount of data actually transferred 2753 * @is_write: indicates the transfer direction 2754 */ 2755void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2756 bool is_write, hwaddr access_len); 2757 2758 2759/* Internal functions, part of the implementation of address_space_read. */ 2760MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2761 MemTxAttrs attrs, void *buf, hwaddr len); 2762MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2763 MemTxAttrs attrs, void *buf, 2764 hwaddr len, hwaddr addr1, hwaddr l, 2765 MemoryRegion *mr); 2766void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2767 2768/* Internal functions, part of the implementation of address_space_read_cached 2769 * and address_space_write_cached. */ 2770MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2771 hwaddr addr, void *buf, hwaddr len); 2772MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2773 hwaddr addr, const void *buf, 2774 hwaddr len); 2775 2776static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2777{ 2778 if (is_write) { 2779 return memory_region_is_ram(mr) && !mr->readonly && 2780 !mr->rom_device && !memory_region_is_ram_device(mr); 2781 } else { 2782 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2783 memory_region_is_romd(mr); 2784 } 2785} 2786 2787/** 2788 * address_space_read: read from an address space. 2789 * 2790 * Return a MemTxResult indicating whether the operation succeeded 2791 * or failed (eg unassigned memory, device rejected the transaction, 2792 * IOMMU fault). Called within RCU critical section. 2793 * 2794 * @as: #AddressSpace to be accessed 2795 * @addr: address within that address space 2796 * @attrs: memory transaction attributes 2797 * @buf: buffer with the data transferred 2798 * @len: length of the data transferred 2799 */ 2800static inline __attribute__((__always_inline__)) 2801MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2802 MemTxAttrs attrs, void *buf, 2803 hwaddr len) 2804{ 2805 MemTxResult result = MEMTX_OK; 2806 hwaddr l, addr1; 2807 void *ptr; 2808 MemoryRegion *mr; 2809 FlatView *fv; 2810 2811 if (__builtin_constant_p(len)) { 2812 if (len) { 2813 RCU_READ_LOCK_GUARD(); 2814 fv = address_space_to_flatview(as); 2815 l = len; 2816 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2817 if (len == l && memory_access_is_direct(mr, false)) { 2818 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2819 memcpy(buf, ptr, len); 2820 } else { 2821 result = flatview_read_continue(fv, addr, attrs, buf, len, 2822 addr1, l, mr); 2823 } 2824 } 2825 } else { 2826 result = address_space_read_full(as, addr, attrs, buf, len); 2827 } 2828 return result; 2829} 2830 2831/** 2832 * address_space_read_cached: read from a cached RAM region 2833 * 2834 * @cache: Cached region to be addressed 2835 * @addr: address relative to the base of the RAM region 2836 * @buf: buffer with the data transferred 2837 * @len: length of the data transferred 2838 */ 2839static inline MemTxResult 2840address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2841 void *buf, hwaddr len) 2842{ 2843 assert(addr < cache->len && len <= cache->len - addr); 2844 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2845 if (likely(cache->ptr)) { 2846 memcpy(buf, cache->ptr + addr, len); 2847 return MEMTX_OK; 2848 } else { 2849 return address_space_read_cached_slow(cache, addr, buf, len); 2850 } 2851} 2852 2853/** 2854 * address_space_write_cached: write to a cached RAM region 2855 * 2856 * @cache: Cached region to be addressed 2857 * @addr: address relative to the base of the RAM region 2858 * @buf: buffer with the data transferred 2859 * @len: length of the data transferred 2860 */ 2861static inline MemTxResult 2862address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2863 const void *buf, hwaddr len) 2864{ 2865 assert(addr < cache->len && len <= cache->len - addr); 2866 if (likely(cache->ptr)) { 2867 memcpy(cache->ptr + addr, buf, len); 2868 return MEMTX_OK; 2869 } else { 2870 return address_space_write_cached_slow(cache, addr, buf, len); 2871 } 2872} 2873 2874#ifdef NEED_CPU_H 2875/* enum device_endian to MemOp. */ 2876static inline MemOp devend_memop(enum device_endian end) 2877{ 2878 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2879 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2880 2881#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2882 /* Swap if non-host endianness or native (target) endianness */ 2883 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2884#else 2885 const int non_host_endianness = 2886 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2887 2888 /* In this case, native (target) endianness needs no swap. */ 2889 return (end == non_host_endianness) ? MO_BSWAP : 0; 2890#endif 2891} 2892#endif 2893 2894/* 2895 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2896 * to manage the actual amount of memory consumed by the VM (then, the memory 2897 * provided by RAM blocks might be bigger than the desired memory consumption). 2898 * This *must* be set if: 2899 * - Discarding parts of a RAM blocks does not result in the change being 2900 * reflected in the VM and the pages getting freed. 2901 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2902 * discards blindly. 2903 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2904 * encrypted VMs). 2905 * Technologies that only temporarily pin the current working set of a 2906 * driver are fine, because we don't expect such pages to be discarded 2907 * (esp. based on guest action like balloon inflation). 2908 * 2909 * This is *not* to be used to protect from concurrent discards (esp., 2910 * postcopy). 2911 * 2912 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2913 * discards to work reliably is active. 2914 */ 2915int ram_block_discard_disable(bool state); 2916 2917/* 2918 * See ram_block_discard_disable(): only disable uncoordinated discards, 2919 * keeping coordinated discards (via the RamDiscardManager) enabled. 2920 */ 2921int ram_block_uncoordinated_discard_disable(bool state); 2922 2923/* 2924 * Inhibit technologies that disable discarding of pages in RAM blocks. 2925 * 2926 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2927 * broken. 2928 */ 2929int ram_block_discard_require(bool state); 2930 2931/* 2932 * See ram_block_discard_require(): only inhibit technologies that disable 2933 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 2934 * technologies that only inhibit uncoordinated discards (via the 2935 * RamDiscardManager). 2936 */ 2937int ram_block_coordinated_discard_require(bool state); 2938 2939/* 2940 * Test if any discarding of memory in ram blocks is disabled. 2941 */ 2942bool ram_block_discard_is_disabled(void); 2943 2944/* 2945 * Test if any discarding of memory in ram blocks is required to work reliably. 2946 */ 2947bool ram_block_discard_is_required(void); 2948 2949#endif 2950 2951#endif