cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

memory.h (109102B)


      1/*
      2 * Physical memory management API
      3 *
      4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
      5 *
      6 * Authors:
      7 *  Avi Kivity <avi@redhat.com>
      8 *
      9 * This work is licensed under the terms of the GNU GPL, version 2.  See
     10 * the COPYING file in the top-level directory.
     11 *
     12 */
     13
     14#ifndef MEMORY_H
     15#define MEMORY_H
     16
     17#ifndef CONFIG_USER_ONLY
     18
     19#include "exec/cpu-common.h"
     20#include "exec/hwaddr.h"
     21#include "exec/memattrs.h"
     22#include "exec/memop.h"
     23#include "exec/ramlist.h"
     24#include "qemu/bswap.h"
     25#include "qemu/queue.h"
     26#include "qemu/int128.h"
     27#include "qemu/notify.h"
     28#include "qom/object.h"
     29#include "qemu/rcu.h"
     30
     31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
     32
     33#define MAX_PHYS_ADDR_SPACE_BITS 62
     34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
     35
     36#define TYPE_MEMORY_REGION "memory-region"
     37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
     38                         TYPE_MEMORY_REGION)
     39
     40#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
     41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
     42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
     43                     IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
     44
     45#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
     46typedef struct RamDiscardManagerClass RamDiscardManagerClass;
     47typedef struct RamDiscardManager RamDiscardManager;
     48DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
     49                     RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
     50
     51#ifdef CONFIG_FUZZ
     52void fuzz_dma_read_cb(size_t addr,
     53                      size_t len,
     54                      MemoryRegion *mr);
     55#else
     56static inline void fuzz_dma_read_cb(size_t addr,
     57                                    size_t len,
     58                                    MemoryRegion *mr)
     59{
     60    /* Do Nothing */
     61}
     62#endif
     63
     64extern bool global_dirty_log;
     65
     66typedef struct MemoryRegionOps MemoryRegionOps;
     67
     68struct ReservedRegion {
     69    hwaddr low;
     70    hwaddr high;
     71    unsigned type;
     72};
     73
     74/**
     75 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
     76 *
     77 * @mr: the region, or %NULL if empty
     78 * @fv: the flat view of the address space the region is mapped in
     79 * @offset_within_region: the beginning of the section, relative to @mr's start
     80 * @size: the size of the section; will not exceed @mr's boundaries
     81 * @offset_within_address_space: the address of the first byte of the section
     82 *     relative to the region's address space
     83 * @readonly: writes to this section are ignored
     84 * @nonvolatile: this section is non-volatile
     85 */
     86struct MemoryRegionSection {
     87    Int128 size;
     88    MemoryRegion *mr;
     89    FlatView *fv;
     90    hwaddr offset_within_region;
     91    hwaddr offset_within_address_space;
     92    bool readonly;
     93    bool nonvolatile;
     94};
     95
     96typedef struct IOMMUTLBEntry IOMMUTLBEntry;
     97
     98/* See address_space_translate: bit 0 is read, bit 1 is write.  */
     99typedef enum {
    100    IOMMU_NONE = 0,
    101    IOMMU_RO   = 1,
    102    IOMMU_WO   = 2,
    103    IOMMU_RW   = 3,
    104} IOMMUAccessFlags;
    105
    106#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
    107
    108struct IOMMUTLBEntry {
    109    AddressSpace    *target_as;
    110    hwaddr           iova;
    111    hwaddr           translated_addr;
    112    hwaddr           addr_mask;  /* 0xfff = 4k translation */
    113    IOMMUAccessFlags perm;
    114};
    115
    116/*
    117 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
    118 * register with one or multiple IOMMU Notifier capability bit(s).
    119 */
    120typedef enum {
    121    IOMMU_NOTIFIER_NONE = 0,
    122    /* Notify cache invalidations */
    123    IOMMU_NOTIFIER_UNMAP = 0x1,
    124    /* Notify entry changes (newly created entries) */
    125    IOMMU_NOTIFIER_MAP = 0x2,
    126    /* Notify changes on device IOTLB entries */
    127    IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
    128} IOMMUNotifierFlag;
    129
    130#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
    131#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
    132#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
    133                            IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
    134
    135struct IOMMUNotifier;
    136typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
    137                            IOMMUTLBEntry *data);
    138
    139struct IOMMUNotifier {
    140    IOMMUNotify notify;
    141    IOMMUNotifierFlag notifier_flags;
    142    /* Notify for address space range start <= addr <= end */
    143    hwaddr start;
    144    hwaddr end;
    145    int iommu_idx;
    146    QLIST_ENTRY(IOMMUNotifier) node;
    147};
    148typedef struct IOMMUNotifier IOMMUNotifier;
    149
    150typedef struct IOMMUTLBEvent {
    151    IOMMUNotifierFlag type;
    152    IOMMUTLBEntry entry;
    153} IOMMUTLBEvent;
    154
    155/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
    156#define RAM_PREALLOC   (1 << 0)
    157
    158/* RAM is mmap-ed with MAP_SHARED */
    159#define RAM_SHARED     (1 << 1)
    160
    161/* Only a portion of RAM (used_length) is actually used, and migrated.
    162 * Resizing RAM while migrating can result in the migration being canceled.
    163 */
    164#define RAM_RESIZEABLE (1 << 2)
    165
    166/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
    167 * zero the page and wake waiting processes.
    168 * (Set during postcopy)
    169 */
    170#define RAM_UF_ZEROPAGE (1 << 3)
    171
    172/* RAM can be migrated */
    173#define RAM_MIGRATABLE (1 << 4)
    174
    175/* RAM is a persistent kind memory */
    176#define RAM_PMEM (1 << 5)
    177
    178
    179/*
    180 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
    181 * support 'write-tracking' migration type.
    182 * Implies ram_state->ram_wt_enabled.
    183 */
    184#define RAM_UF_WRITEPROTECT (1 << 6)
    185
    186/*
    187 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
    188 * pages if applicable) is skipped: will bail out if not supported. When not
    189 * set, the OS will do the reservation, if supported for the memory type.
    190 */
    191#define RAM_NORESERVE (1 << 7)
    192
    193/* RAM that isn't accessible through normal means. */
    194#define RAM_PROTECTED (1 << 8)
    195
    196static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
    197                                       IOMMUNotifierFlag flags,
    198                                       hwaddr start, hwaddr end,
    199                                       int iommu_idx)
    200{
    201    n->notify = fn;
    202    n->notifier_flags = flags;
    203    n->start = start;
    204    n->end = end;
    205    n->iommu_idx = iommu_idx;
    206}
    207
    208/*
    209 * Memory region callbacks
    210 */
    211struct MemoryRegionOps {
    212    /* Read from the memory region. @addr is relative to @mr; @size is
    213     * in bytes. */
    214    uint64_t (*read)(void *opaque,
    215                     hwaddr addr,
    216                     unsigned size);
    217    /* Write to the memory region. @addr is relative to @mr; @size is
    218     * in bytes. */
    219    void (*write)(void *opaque,
    220                  hwaddr addr,
    221                  uint64_t data,
    222                  unsigned size);
    223
    224    MemTxResult (*read_with_attrs)(void *opaque,
    225                                   hwaddr addr,
    226                                   uint64_t *data,
    227                                   unsigned size,
    228                                   MemTxAttrs attrs);
    229    MemTxResult (*write_with_attrs)(void *opaque,
    230                                    hwaddr addr,
    231                                    uint64_t data,
    232                                    unsigned size,
    233                                    MemTxAttrs attrs);
    234
    235    enum device_endian endianness;
    236    /* Guest-visible constraints: */
    237    struct {
    238        /* If nonzero, specify bounds on access sizes beyond which a machine
    239         * check is thrown.
    240         */
    241        unsigned min_access_size;
    242        unsigned max_access_size;
    243        /* If true, unaligned accesses are supported.  Otherwise unaligned
    244         * accesses throw machine checks.
    245         */
    246         bool unaligned;
    247        /*
    248         * If present, and returns #false, the transaction is not accepted
    249         * by the device (and results in machine dependent behaviour such
    250         * as a machine check exception).
    251         */
    252        bool (*accepts)(void *opaque, hwaddr addr,
    253                        unsigned size, bool is_write,
    254                        MemTxAttrs attrs);
    255    } valid;
    256    /* Internal implementation constraints: */
    257    struct {
    258        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
    259         * will be rounded upwards and a partial result will be returned.
    260         */
    261        unsigned min_access_size;
    262        /* If nonzero, specifies the maximum size implemented.  Larger sizes
    263         * will be done as a series of accesses with smaller sizes.
    264         */
    265        unsigned max_access_size;
    266        /* If true, unaligned accesses are supported.  Otherwise all accesses
    267         * are converted to (possibly multiple) naturally aligned accesses.
    268         */
    269        bool unaligned;
    270    } impl;
    271};
    272
    273typedef struct MemoryRegionClass {
    274    /* private */
    275    ObjectClass parent_class;
    276} MemoryRegionClass;
    277
    278
    279enum IOMMUMemoryRegionAttr {
    280    IOMMU_ATTR_SPAPR_TCE_FD
    281};
    282
    283/*
    284 * IOMMUMemoryRegionClass:
    285 *
    286 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
    287 * and provide an implementation of at least the @translate method here
    288 * to handle requests to the memory region. Other methods are optional.
    289 *
    290 * The IOMMU implementation must use the IOMMU notifier infrastructure
    291 * to report whenever mappings are changed, by calling
    292 * memory_region_notify_iommu() (or, if necessary, by calling
    293 * memory_region_notify_iommu_one() for each registered notifier).
    294 *
    295 * Conceptually an IOMMU provides a mapping from input address
    296 * to an output TLB entry. If the IOMMU is aware of memory transaction
    297 * attributes and the output TLB entry depends on the transaction
    298 * attributes, we represent this using IOMMU indexes. Each index
    299 * selects a particular translation table that the IOMMU has:
    300 *
    301 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
    302 *
    303 *   @translate takes an input address and an IOMMU index
    304 *
    305 * and the mapping returned can only depend on the input address and the
    306 * IOMMU index.
    307 *
    308 * Most IOMMUs don't care about the transaction attributes and support
    309 * only a single IOMMU index. A more complex IOMMU might have one index
    310 * for secure transactions and one for non-secure transactions.
    311 */
    312struct IOMMUMemoryRegionClass {
    313    /* private: */
    314    MemoryRegionClass parent_class;
    315
    316    /* public: */
    317    /**
    318     * @translate:
    319     *
    320     * Return a TLB entry that contains a given address.
    321     *
    322     * The IOMMUAccessFlags indicated via @flag are optional and may
    323     * be specified as IOMMU_NONE to indicate that the caller needs
    324     * the full translation information for both reads and writes. If
    325     * the access flags are specified then the IOMMU implementation
    326     * may use this as an optimization, to stop doing a page table
    327     * walk as soon as it knows that the requested permissions are not
    328     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
    329     * full page table walk and report the permissions in the returned
    330     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
    331     * return different mappings for reads and writes.)
    332     *
    333     * The returned information remains valid while the caller is
    334     * holding the big QEMU lock or is inside an RCU critical section;
    335     * if the caller wishes to cache the mapping beyond that it must
    336     * register an IOMMU notifier so it can invalidate its cached
    337     * information when the IOMMU mapping changes.
    338     *
    339     * @iommu: the IOMMUMemoryRegion
    340     *
    341     * @hwaddr: address to be translated within the memory region
    342     *
    343     * @flag: requested access permission
    344     *
    345     * @iommu_idx: IOMMU index for the translation
    346     */
    347    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
    348                               IOMMUAccessFlags flag, int iommu_idx);
    349    /**
    350     * @get_min_page_size:
    351     *
    352     * Returns minimum supported page size in bytes.
    353     *
    354     * If this method is not provided then the minimum is assumed to
    355     * be TARGET_PAGE_SIZE.
    356     *
    357     * @iommu: the IOMMUMemoryRegion
    358     */
    359    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
    360    /**
    361     * @notify_flag_changed:
    362     *
    363     * Called when IOMMU Notifier flag changes (ie when the set of
    364     * events which IOMMU users are requesting notification for changes).
    365     * Optional method -- need not be provided if the IOMMU does not
    366     * need to know exactly which events must be notified.
    367     *
    368     * @iommu: the IOMMUMemoryRegion
    369     *
    370     * @old_flags: events which previously needed to be notified
    371     *
    372     * @new_flags: events which now need to be notified
    373     *
    374     * Returns 0 on success, or a negative errno; in particular
    375     * returns -EINVAL if the new flag bitmap is not supported by the
    376     * IOMMU memory region. In case of failure, the error object
    377     * must be created
    378     */
    379    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
    380                               IOMMUNotifierFlag old_flags,
    381                               IOMMUNotifierFlag new_flags,
    382                               Error **errp);
    383    /**
    384     * @replay:
    385     *
    386     * Called to handle memory_region_iommu_replay().
    387     *
    388     * The default implementation of memory_region_iommu_replay() is to
    389     * call the IOMMU translate method for every page in the address space
    390     * with flag == IOMMU_NONE and then call the notifier if translate
    391     * returns a valid mapping. If this method is implemented then it
    392     * overrides the default behaviour, and must provide the full semantics
    393     * of memory_region_iommu_replay(), by calling @notifier for every
    394     * translation present in the IOMMU.
    395     *
    396     * Optional method -- an IOMMU only needs to provide this method
    397     * if the default is inefficient or produces undesirable side effects.
    398     *
    399     * Note: this is not related to record-and-replay functionality.
    400     */
    401    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
    402
    403    /**
    404     * @get_attr:
    405     *
    406     * Get IOMMU misc attributes. This is an optional method that
    407     * can be used to allow users of the IOMMU to get implementation-specific
    408     * information. The IOMMU implements this method to handle calls
    409     * by IOMMU users to memory_region_iommu_get_attr() by filling in
    410     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
    411     * the IOMMU supports. If the method is unimplemented then
    412     * memory_region_iommu_get_attr() will always return -EINVAL.
    413     *
    414     * @iommu: the IOMMUMemoryRegion
    415     *
    416     * @attr: attribute being queried
    417     *
    418     * @data: memory to fill in with the attribute data
    419     *
    420     * Returns 0 on success, or a negative errno; in particular
    421     * returns -EINVAL for unrecognized or unimplemented attribute types.
    422     */
    423    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
    424                    void *data);
    425
    426    /**
    427     * @attrs_to_index:
    428     *
    429     * Return the IOMMU index to use for a given set of transaction attributes.
    430     *
    431     * Optional method: if an IOMMU only supports a single IOMMU index then
    432     * the default implementation of memory_region_iommu_attrs_to_index()
    433     * will return 0.
    434     *
    435     * The indexes supported by an IOMMU must be contiguous, starting at 0.
    436     *
    437     * @iommu: the IOMMUMemoryRegion
    438     * @attrs: memory transaction attributes
    439     */
    440    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
    441
    442    /**
    443     * @num_indexes:
    444     *
    445     * Return the number of IOMMU indexes this IOMMU supports.
    446     *
    447     * Optional method: if this method is not provided, then
    448     * memory_region_iommu_num_indexes() will return 1, indicating that
    449     * only a single IOMMU index is supported.
    450     *
    451     * @iommu: the IOMMUMemoryRegion
    452     */
    453    int (*num_indexes)(IOMMUMemoryRegion *iommu);
    454
    455    /**
    456     * @iommu_set_page_size_mask:
    457     *
    458     * Restrict the page size mask that can be supported with a given IOMMU
    459     * memory region. Used for example to propagate host physical IOMMU page
    460     * size mask limitations to the virtual IOMMU.
    461     *
    462     * Optional method: if this method is not provided, then the default global
    463     * page mask is used.
    464     *
    465     * @iommu: the IOMMUMemoryRegion
    466     *
    467     * @page_size_mask: a bitmask of supported page sizes. At least one bit,
    468     * representing the smallest page size, must be set. Additional set bits
    469     * represent supported block sizes. For example a host physical IOMMU that
    470     * uses page tables with a page size of 4kB, and supports 2MB and 4GB
    471     * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
    472     * block sizes is specified with mask 0xfffffffffffff000.
    473     *
    474     * Returns 0 on success, or a negative error. In case of failure, the error
    475     * object must be created.
    476     */
    477     int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
    478                                     uint64_t page_size_mask,
    479                                     Error **errp);
    480};
    481
    482typedef struct RamDiscardListener RamDiscardListener;
    483typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
    484                                 MemoryRegionSection *section);
    485typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
    486                                 MemoryRegionSection *section);
    487
    488struct RamDiscardListener {
    489    /*
    490     * @notify_populate:
    491     *
    492     * Notification that previously discarded memory is about to get populated.
    493     * Listeners are able to object. If any listener objects, already
    494     * successfully notified listeners are notified about a discard again.
    495     *
    496     * @rdl: the #RamDiscardListener getting notified
    497     * @section: the #MemoryRegionSection to get populated. The section
    498     *           is aligned within the memory region to the minimum granularity
    499     *           unless it would exceed the registered section.
    500     *
    501     * Returns 0 on success. If the notification is rejected by the listener,
    502     * an error is returned.
    503     */
    504    NotifyRamPopulate notify_populate;
    505
    506    /*
    507     * @notify_discard:
    508     *
    509     * Notification that previously populated memory was discarded successfully
    510     * and listeners should drop all references to such memory and prevent
    511     * new population (e.g., unmap).
    512     *
    513     * @rdl: the #RamDiscardListener getting notified
    514     * @section: the #MemoryRegionSection to get populated. The section
    515     *           is aligned within the memory region to the minimum granularity
    516     *           unless it would exceed the registered section.
    517     */
    518    NotifyRamDiscard notify_discard;
    519
    520    /*
    521     * @double_discard_supported:
    522     *
    523     * The listener suppors getting @notify_discard notifications that span
    524     * already discarded parts.
    525     */
    526    bool double_discard_supported;
    527
    528    MemoryRegionSection *section;
    529    QLIST_ENTRY(RamDiscardListener) next;
    530};
    531
    532static inline void ram_discard_listener_init(RamDiscardListener *rdl,
    533                                             NotifyRamPopulate populate_fn,
    534                                             NotifyRamDiscard discard_fn,
    535                                             bool double_discard_supported)
    536{
    537    rdl->notify_populate = populate_fn;
    538    rdl->notify_discard = discard_fn;
    539    rdl->double_discard_supported = double_discard_supported;
    540}
    541
    542typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
    543
    544/*
    545 * RamDiscardManagerClass:
    546 *
    547 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
    548 * regions are currently populated to be used/accessed by the VM, notifying
    549 * after parts were discarded (freeing up memory) and before parts will be
    550 * populated (consuming memory), to be used/acessed by the VM.
    551 *
    552 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
    553 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
    554 * mapped.
    555 *
    556 * The #RamDiscardManager is intended to be used by technologies that are
    557 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
    558 * memory inside a #MemoryRegion), and require proper coordination to only
    559 * map the currently populated parts, to hinder parts that are expected to
    560 * remain discarded from silently getting populated and consuming memory.
    561 * Technologies that support discarding of RAM don't have to bother and can
    562 * simply map the whole #MemoryRegion.
    563 *
    564 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
    565 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
    566 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
    567 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
    568 * properly coordinate with listeners before memory is plugged (populated),
    569 * and after memory is unplugged (discarded).
    570 *
    571 * Listeners are called in multiples of the minimum granularity (unless it
    572 * would exceed the registered range) and changes are aligned to the minimum
    573 * granularity within the #MemoryRegion. Listeners have to prepare for memory
    574 * becomming discarded in a different granularity than it was populated and the
    575 * other way around.
    576 */
    577struct RamDiscardManagerClass {
    578    /* private */
    579    InterfaceClass parent_class;
    580
    581    /* public */
    582
    583    /**
    584     * @get_min_granularity:
    585     *
    586     * Get the minimum granularity in which listeners will get notified
    587     * about changes within the #MemoryRegion via the #RamDiscardManager.
    588     *
    589     * @rdm: the #RamDiscardManager
    590     * @mr: the #MemoryRegion
    591     *
    592     * Returns the minimum granularity.
    593     */
    594    uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
    595                                    const MemoryRegion *mr);
    596
    597    /**
    598     * @is_populated:
    599     *
    600     * Check whether the given #MemoryRegionSection is completely populated
    601     * (i.e., no parts are currently discarded) via the #RamDiscardManager.
    602     * There are no alignment requirements.
    603     *
    604     * @rdm: the #RamDiscardManager
    605     * @section: the #MemoryRegionSection
    606     *
    607     * Returns whether the given range is completely populated.
    608     */
    609    bool (*is_populated)(const RamDiscardManager *rdm,
    610                         const MemoryRegionSection *section);
    611
    612    /**
    613     * @replay_populated:
    614     *
    615     * Call the #ReplayRamPopulate callback for all populated parts within the
    616     * #MemoryRegionSection via the #RamDiscardManager.
    617     *
    618     * In case any call fails, no further calls are made.
    619     *
    620     * @rdm: the #RamDiscardManager
    621     * @section: the #MemoryRegionSection
    622     * @replay_fn: the #ReplayRamPopulate callback
    623     * @opaque: pointer to forward to the callback
    624     *
    625     * Returns 0 on success, or a negative error if any notification failed.
    626     */
    627    int (*replay_populated)(const RamDiscardManager *rdm,
    628                            MemoryRegionSection *section,
    629                            ReplayRamPopulate replay_fn, void *opaque);
    630
    631    /**
    632     * @register_listener:
    633     *
    634     * Register a #RamDiscardListener for the given #MemoryRegionSection and
    635     * immediately notify the #RamDiscardListener about all populated parts
    636     * within the #MemoryRegionSection via the #RamDiscardManager.
    637     *
    638     * In case any notification fails, no further notifications are triggered
    639     * and an error is logged.
    640     *
    641     * @rdm: the #RamDiscardManager
    642     * @rdl: the #RamDiscardListener
    643     * @section: the #MemoryRegionSection
    644     */
    645    void (*register_listener)(RamDiscardManager *rdm,
    646                              RamDiscardListener *rdl,
    647                              MemoryRegionSection *section);
    648
    649    /**
    650     * @unregister_listener:
    651     *
    652     * Unregister a previously registered #RamDiscardListener via the
    653     * #RamDiscardManager after notifying the #RamDiscardListener about all
    654     * populated parts becoming unpopulated within the registered
    655     * #MemoryRegionSection.
    656     *
    657     * @rdm: the #RamDiscardManager
    658     * @rdl: the #RamDiscardListener
    659     */
    660    void (*unregister_listener)(RamDiscardManager *rdm,
    661                                RamDiscardListener *rdl);
    662};
    663
    664uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
    665                                                 const MemoryRegion *mr);
    666
    667bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
    668                                      const MemoryRegionSection *section);
    669
    670int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
    671                                         MemoryRegionSection *section,
    672                                         ReplayRamPopulate replay_fn,
    673                                         void *opaque);
    674
    675void ram_discard_manager_register_listener(RamDiscardManager *rdm,
    676                                           RamDiscardListener *rdl,
    677                                           MemoryRegionSection *section);
    678
    679void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
    680                                             RamDiscardListener *rdl);
    681
    682typedef struct CoalescedMemoryRange CoalescedMemoryRange;
    683typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
    684
    685/** MemoryRegion:
    686 *
    687 * A struct representing a memory region.
    688 */
    689struct MemoryRegion {
    690    Object parent_obj;
    691
    692    /* private: */
    693
    694    /* The following fields should fit in a cache line */
    695    bool romd_mode;
    696    bool ram;
    697    bool subpage;
    698    bool readonly; /* For RAM regions */
    699    bool nonvolatile;
    700    bool rom_device;
    701    bool flush_coalesced_mmio;
    702    uint8_t dirty_log_mask;
    703    bool is_iommu;
    704    RAMBlock *ram_block;
    705    Object *owner;
    706
    707    const MemoryRegionOps *ops;
    708    void *opaque;
    709    MemoryRegion *container;
    710    Int128 size;
    711    hwaddr addr;
    712    void (*destructor)(MemoryRegion *mr);
    713    uint64_t align;
    714    bool terminates;
    715    bool ram_device;
    716    bool enabled;
    717    bool warning_printed; /* For reservations */
    718    uint8_t vga_logging_count;
    719    MemoryRegion *alias;
    720    hwaddr alias_offset;
    721    int32_t priority;
    722    QTAILQ_HEAD(, MemoryRegion) subregions;
    723    QTAILQ_ENTRY(MemoryRegion) subregions_link;
    724    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
    725    const char *name;
    726    unsigned ioeventfd_nb;
    727    MemoryRegionIoeventfd *ioeventfds;
    728    RamDiscardManager *rdm; /* Only for RAM */
    729};
    730
    731struct IOMMUMemoryRegion {
    732    MemoryRegion parent_obj;
    733
    734    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
    735    IOMMUNotifierFlag iommu_notify_flags;
    736};
    737
    738#define IOMMU_NOTIFIER_FOREACH(n, mr) \
    739    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
    740
    741/**
    742 * struct MemoryListener: callbacks structure for updates to the physical memory map
    743 *
    744 * Allows a component to adjust to changes in the guest-visible memory map.
    745 * Use with memory_listener_register() and memory_listener_unregister().
    746 */
    747struct MemoryListener {
    748    /**
    749     * @begin:
    750     *
    751     * Called at the beginning of an address space update transaction.
    752     * Followed by calls to #MemoryListener.region_add(),
    753     * #MemoryListener.region_del(), #MemoryListener.region_nop(),
    754     * #MemoryListener.log_start() and #MemoryListener.log_stop() in
    755     * increasing address order.
    756     *
    757     * @listener: The #MemoryListener.
    758     */
    759    void (*begin)(MemoryListener *listener);
    760
    761    /**
    762     * @commit:
    763     *
    764     * Called at the end of an address space update transaction,
    765     * after the last call to #MemoryListener.region_add(),
    766     * #MemoryListener.region_del() or #MemoryListener.region_nop(),
    767     * #MemoryListener.log_start() and #MemoryListener.log_stop().
    768     *
    769     * @listener: The #MemoryListener.
    770     */
    771    void (*commit)(MemoryListener *listener);
    772
    773    /**
    774     * @region_add:
    775     *
    776     * Called during an address space update transaction,
    777     * for a section of the address space that is new in this address space
    778     * space since the last transaction.
    779     *
    780     * @listener: The #MemoryListener.
    781     * @section: The new #MemoryRegionSection.
    782     */
    783    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
    784
    785    /**
    786     * @region_del:
    787     *
    788     * Called during an address space update transaction,
    789     * for a section of the address space that has disappeared in the address
    790     * space since the last transaction.
    791     *
    792     * @listener: The #MemoryListener.
    793     * @section: The old #MemoryRegionSection.
    794     */
    795    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
    796
    797    /**
    798     * @region_nop:
    799     *
    800     * Called during an address space update transaction,
    801     * for a section of the address space that is in the same place in the address
    802     * space as in the last transaction.
    803     *
    804     * @listener: The #MemoryListener.
    805     * @section: The #MemoryRegionSection.
    806     */
    807    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
    808
    809    /**
    810     * @log_start:
    811     *
    812     * Called during an address space update transaction, after
    813     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
    814     * #MemoryListener.region_nop(), if dirty memory logging clients have
    815     * become active since the last transaction.
    816     *
    817     * @listener: The #MemoryListener.
    818     * @section: The #MemoryRegionSection.
    819     * @old: A bitmap of dirty memory logging clients that were active in
    820     * the previous transaction.
    821     * @new: A bitmap of dirty memory logging clients that are active in
    822     * the current transaction.
    823     */
    824    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
    825                      int old, int new);
    826
    827    /**
    828     * @log_stop:
    829     *
    830     * Called during an address space update transaction, after
    831     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
    832     * #MemoryListener.region_nop() and possibly after
    833     * #MemoryListener.log_start(), if dirty memory logging clients have
    834     * become inactive since the last transaction.
    835     *
    836     * @listener: The #MemoryListener.
    837     * @section: The #MemoryRegionSection.
    838     * @old: A bitmap of dirty memory logging clients that were active in
    839     * the previous transaction.
    840     * @new: A bitmap of dirty memory logging clients that are active in
    841     * the current transaction.
    842     */
    843    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
    844                     int old, int new);
    845
    846    /**
    847     * @log_sync:
    848     *
    849     * Called by memory_region_snapshot_and_clear_dirty() and
    850     * memory_global_dirty_log_sync(), before accessing QEMU's "official"
    851     * copy of the dirty memory bitmap for a #MemoryRegionSection.
    852     *
    853     * @listener: The #MemoryListener.
    854     * @section: The #MemoryRegionSection.
    855     */
    856    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
    857
    858    /**
    859     * @log_sync_global:
    860     *
    861     * This is the global version of @log_sync when the listener does
    862     * not have a way to synchronize the log with finer granularity.
    863     * When the listener registers with @log_sync_global defined, then
    864     * its @log_sync must be NULL.  Vice versa.
    865     *
    866     * @listener: The #MemoryListener.
    867     */
    868    void (*log_sync_global)(MemoryListener *listener);
    869
    870    /**
    871     * @log_clear:
    872     *
    873     * Called before reading the dirty memory bitmap for a
    874     * #MemoryRegionSection.
    875     *
    876     * @listener: The #MemoryListener.
    877     * @section: The #MemoryRegionSection.
    878     */
    879    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
    880
    881    /**
    882     * @log_global_start:
    883     *
    884     * Called by memory_global_dirty_log_start(), which
    885     * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
    886     * the address space.  #MemoryListener.log_global_start() is also
    887     * called when a #MemoryListener is added, if global dirty logging is
    888     * active at that time.
    889     *
    890     * @listener: The #MemoryListener.
    891     */
    892    void (*log_global_start)(MemoryListener *listener);
    893
    894    /**
    895     * @log_global_stop:
    896     *
    897     * Called by memory_global_dirty_log_stop(), which
    898     * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
    899     * the address space.
    900     *
    901     * @listener: The #MemoryListener.
    902     */
    903    void (*log_global_stop)(MemoryListener *listener);
    904
    905    /**
    906     * @log_global_after_sync:
    907     *
    908     * Called after reading the dirty memory bitmap
    909     * for any #MemoryRegionSection.
    910     *
    911     * @listener: The #MemoryListener.
    912     */
    913    void (*log_global_after_sync)(MemoryListener *listener);
    914
    915    /**
    916     * @eventfd_add:
    917     *
    918     * Called during an address space update transaction,
    919     * for a section of the address space that has had a new ioeventfd
    920     * registration since the last transaction.
    921     *
    922     * @listener: The #MemoryListener.
    923     * @section: The new #MemoryRegionSection.
    924     * @match_data: The @match_data parameter for the new ioeventfd.
    925     * @data: The @data parameter for the new ioeventfd.
    926     * @e: The #EventNotifier parameter for the new ioeventfd.
    927     */
    928    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
    929                        bool match_data, uint64_t data, EventNotifier *e);
    930
    931    /**
    932     * @eventfd_del:
    933     *
    934     * Called during an address space update transaction,
    935     * for a section of the address space that has dropped an ioeventfd
    936     * registration since the last transaction.
    937     *
    938     * @listener: The #MemoryListener.
    939     * @section: The new #MemoryRegionSection.
    940     * @match_data: The @match_data parameter for the dropped ioeventfd.
    941     * @data: The @data parameter for the dropped ioeventfd.
    942     * @e: The #EventNotifier parameter for the dropped ioeventfd.
    943     */
    944    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
    945                        bool match_data, uint64_t data, EventNotifier *e);
    946
    947    /**
    948     * @coalesced_io_add:
    949     *
    950     * Called during an address space update transaction,
    951     * for a section of the address space that has had a new coalesced
    952     * MMIO range registration since the last transaction.
    953     *
    954     * @listener: The #MemoryListener.
    955     * @section: The new #MemoryRegionSection.
    956     * @addr: The starting address for the coalesced MMIO range.
    957     * @len: The length of the coalesced MMIO range.
    958     */
    959    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
    960                               hwaddr addr, hwaddr len);
    961
    962    /**
    963     * @coalesced_io_del:
    964     *
    965     * Called during an address space update transaction,
    966     * for a section of the address space that has dropped a coalesced
    967     * MMIO range since the last transaction.
    968     *
    969     * @listener: The #MemoryListener.
    970     * @section: The new #MemoryRegionSection.
    971     * @addr: The starting address for the coalesced MMIO range.
    972     * @len: The length of the coalesced MMIO range.
    973     */
    974    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
    975                               hwaddr addr, hwaddr len);
    976    /**
    977     * @priority:
    978     *
    979     * Govern the order in which memory listeners are invoked. Lower priorities
    980     * are invoked earlier for "add" or "start" callbacks, and later for "delete"
    981     * or "stop" callbacks.
    982     */
    983    unsigned priority;
    984
    985    /**
    986     * @name:
    987     *
    988     * Name of the listener.  It can be used in contexts where we'd like to
    989     * identify one memory listener with the rest.
    990     */
    991    const char *name;
    992
    993    /* private: */
    994    AddressSpace *address_space;
    995    QTAILQ_ENTRY(MemoryListener) link;
    996    QTAILQ_ENTRY(MemoryListener) link_as;
    997};
    998
    999/**
   1000 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
   1001 */
   1002struct AddressSpace {
   1003    /* private: */
   1004    struct rcu_head rcu;
   1005    char *name;
   1006    MemoryRegion *root;
   1007
   1008    /* Accessed via RCU.  */
   1009    struct FlatView *current_map;
   1010
   1011    int ioeventfd_nb;
   1012    struct MemoryRegionIoeventfd *ioeventfds;
   1013    QTAILQ_HEAD(, MemoryListener) listeners;
   1014    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
   1015};
   1016
   1017typedef struct AddressSpaceDispatch AddressSpaceDispatch;
   1018typedef struct FlatRange FlatRange;
   1019
   1020/* Flattened global view of current active memory hierarchy.  Kept in sorted
   1021 * order.
   1022 */
   1023struct FlatView {
   1024    struct rcu_head rcu;
   1025    unsigned ref;
   1026    FlatRange *ranges;
   1027    unsigned nr;
   1028    unsigned nr_allocated;
   1029    struct AddressSpaceDispatch *dispatch;
   1030    MemoryRegion *root;
   1031};
   1032
   1033static inline FlatView *address_space_to_flatview(AddressSpace *as)
   1034{
   1035    return qatomic_rcu_read(&as->current_map);
   1036}
   1037
   1038/**
   1039 * typedef flatview_cb: callback for flatview_for_each_range()
   1040 *
   1041 * @start: start address of the range within the FlatView
   1042 * @len: length of the range in bytes
   1043 * @mr: MemoryRegion covering this range
   1044 * @offset_in_region: offset of the first byte of the range within @mr
   1045 * @opaque: data pointer passed to flatview_for_each_range()
   1046 *
   1047 * Returns: true to stop the iteration, false to keep going.
   1048 */
   1049typedef bool (*flatview_cb)(Int128 start,
   1050                            Int128 len,
   1051                            const MemoryRegion *mr,
   1052                            hwaddr offset_in_region,
   1053                            void *opaque);
   1054
   1055/**
   1056 * flatview_for_each_range: Iterate through a FlatView
   1057 * @fv: the FlatView to iterate through
   1058 * @cb: function to call for each range
   1059 * @opaque: opaque data pointer to pass to @cb
   1060 *
   1061 * A FlatView is made up of a list of non-overlapping ranges, each of
   1062 * which is a slice of a MemoryRegion. This function iterates through
   1063 * each range in @fv, calling @cb. The callback function can terminate
   1064 * iteration early by returning 'true'.
   1065 */
   1066void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
   1067
   1068static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
   1069                                          MemoryRegionSection *b)
   1070{
   1071    return a->mr == b->mr &&
   1072           a->fv == b->fv &&
   1073           a->offset_within_region == b->offset_within_region &&
   1074           a->offset_within_address_space == b->offset_within_address_space &&
   1075           int128_eq(a->size, b->size) &&
   1076           a->readonly == b->readonly &&
   1077           a->nonvolatile == b->nonvolatile;
   1078}
   1079
   1080/**
   1081 * memory_region_section_new_copy: Copy a memory region section
   1082 *
   1083 * Allocate memory for a new copy, copy the memory region section, and
   1084 * properly take a reference on all relevant members.
   1085 *
   1086 * @s: the #MemoryRegionSection to copy
   1087 */
   1088MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
   1089
   1090/**
   1091 * memory_region_section_new_copy: Free a copied memory region section
   1092 *
   1093 * Free a copy of a memory section created via memory_region_section_new_copy().
   1094 * properly dropping references on all relevant members.
   1095 *
   1096 * @s: the #MemoryRegionSection to copy
   1097 */
   1098void memory_region_section_free_copy(MemoryRegionSection *s);
   1099
   1100/**
   1101 * memory_region_init: Initialize a memory region
   1102 *
   1103 * The region typically acts as a container for other memory regions.  Use
   1104 * memory_region_add_subregion() to add subregions.
   1105 *
   1106 * @mr: the #MemoryRegion to be initialized
   1107 * @owner: the object that tracks the region's reference count
   1108 * @name: used for debugging; not visible to the user or ABI
   1109 * @size: size of the region; any subregions beyond this size will be clipped
   1110 */
   1111void memory_region_init(MemoryRegion *mr,
   1112                        Object *owner,
   1113                        const char *name,
   1114                        uint64_t size);
   1115
   1116/**
   1117 * memory_region_ref: Add 1 to a memory region's reference count
   1118 *
   1119 * Whenever memory regions are accessed outside the BQL, they need to be
   1120 * preserved against hot-unplug.  MemoryRegions actually do not have their
   1121 * own reference count; they piggyback on a QOM object, their "owner".
   1122 * This function adds a reference to the owner.
   1123 *
   1124 * All MemoryRegions must have an owner if they can disappear, even if the
   1125 * device they belong to operates exclusively under the BQL.  This is because
   1126 * the region could be returned at any time by memory_region_find, and this
   1127 * is usually under guest control.
   1128 *
   1129 * @mr: the #MemoryRegion
   1130 */
   1131void memory_region_ref(MemoryRegion *mr);
   1132
   1133/**
   1134 * memory_region_unref: Remove 1 to a memory region's reference count
   1135 *
   1136 * Whenever memory regions are accessed outside the BQL, they need to be
   1137 * preserved against hot-unplug.  MemoryRegions actually do not have their
   1138 * own reference count; they piggyback on a QOM object, their "owner".
   1139 * This function removes a reference to the owner and possibly destroys it.
   1140 *
   1141 * @mr: the #MemoryRegion
   1142 */
   1143void memory_region_unref(MemoryRegion *mr);
   1144
   1145/**
   1146 * memory_region_init_io: Initialize an I/O memory region.
   1147 *
   1148 * Accesses into the region will cause the callbacks in @ops to be called.
   1149 * if @size is nonzero, subregions will be clipped to @size.
   1150 *
   1151 * @mr: the #MemoryRegion to be initialized.
   1152 * @owner: the object that tracks the region's reference count
   1153 * @ops: a structure containing read and write callbacks to be used when
   1154 *       I/O is performed on the region.
   1155 * @opaque: passed to the read and write callbacks of the @ops structure.
   1156 * @name: used for debugging; not visible to the user or ABI
   1157 * @size: size of the region.
   1158 */
   1159void memory_region_init_io(MemoryRegion *mr,
   1160                           Object *owner,
   1161                           const MemoryRegionOps *ops,
   1162                           void *opaque,
   1163                           const char *name,
   1164                           uint64_t size);
   1165
   1166/**
   1167 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
   1168 *                                    into the region will modify memory
   1169 *                                    directly.
   1170 *
   1171 * @mr: the #MemoryRegion to be initialized.
   1172 * @owner: the object that tracks the region's reference count
   1173 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1174 *        must be unique within any device
   1175 * @size: size of the region.
   1176 * @errp: pointer to Error*, to store an error if it happens.
   1177 *
   1178 * Note that this function does not do anything to cause the data in the
   1179 * RAM memory region to be migrated; that is the responsibility of the caller.
   1180 */
   1181void memory_region_init_ram_nomigrate(MemoryRegion *mr,
   1182                                      Object *owner,
   1183                                      const char *name,
   1184                                      uint64_t size,
   1185                                      Error **errp);
   1186
   1187/**
   1188 * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
   1189 *                                          Accesses into the region will
   1190 *                                          modify memory directly.
   1191 *
   1192 * @mr: the #MemoryRegion to be initialized.
   1193 * @owner: the object that tracks the region's reference count
   1194 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1195 *        must be unique within any device
   1196 * @size: size of the region.
   1197 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
   1198 * @errp: pointer to Error*, to store an error if it happens.
   1199 *
   1200 * Note that this function does not do anything to cause the data in the
   1201 * RAM memory region to be migrated; that is the responsibility of the caller.
   1202 */
   1203void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
   1204                                            Object *owner,
   1205                                            const char *name,
   1206                                            uint64_t size,
   1207                                            uint32_t ram_flags,
   1208                                            Error **errp);
   1209
   1210/**
   1211 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
   1212 *                                     RAM.  Accesses into the region will
   1213 *                                     modify memory directly.  Only an initial
   1214 *                                     portion of this RAM is actually used.
   1215 *                                     Changing the size while migrating
   1216 *                                     can result in the migration being
   1217 *                                     canceled.
   1218 *
   1219 * @mr: the #MemoryRegion to be initialized.
   1220 * @owner: the object that tracks the region's reference count
   1221 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1222 *        must be unique within any device
   1223 * @size: used size of the region.
   1224 * @max_size: max size of the region.
   1225 * @resized: callback to notify owner about used size change.
   1226 * @errp: pointer to Error*, to store an error if it happens.
   1227 *
   1228 * Note that this function does not do anything to cause the data in the
   1229 * RAM memory region to be migrated; that is the responsibility of the caller.
   1230 */
   1231void memory_region_init_resizeable_ram(MemoryRegion *mr,
   1232                                       Object *owner,
   1233                                       const char *name,
   1234                                       uint64_t size,
   1235                                       uint64_t max_size,
   1236                                       void (*resized)(const char*,
   1237                                                       uint64_t length,
   1238                                                       void *host),
   1239                                       Error **errp);
   1240#ifdef CONFIG_POSIX
   1241
   1242/**
   1243 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
   1244 *                                    mmap-ed backend.
   1245 *
   1246 * @mr: the #MemoryRegion to be initialized.
   1247 * @owner: the object that tracks the region's reference count
   1248 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1249 *        must be unique within any device
   1250 * @size: size of the region.
   1251 * @align: alignment of the region base address; if 0, the default alignment
   1252 *         (getpagesize()) will be used.
   1253 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
   1254 *             RAM_NORESERVE,
   1255 * @path: the path in which to allocate the RAM.
   1256 * @readonly: true to open @path for reading, false for read/write.
   1257 * @errp: pointer to Error*, to store an error if it happens.
   1258 *
   1259 * Note that this function does not do anything to cause the data in the
   1260 * RAM memory region to be migrated; that is the responsibility of the caller.
   1261 */
   1262void memory_region_init_ram_from_file(MemoryRegion *mr,
   1263                                      Object *owner,
   1264                                      const char *name,
   1265                                      uint64_t size,
   1266                                      uint64_t align,
   1267                                      uint32_t ram_flags,
   1268                                      const char *path,
   1269                                      bool readonly,
   1270                                      Error **errp);
   1271
   1272/**
   1273 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
   1274 *                                  mmap-ed backend.
   1275 *
   1276 * @mr: the #MemoryRegion to be initialized.
   1277 * @owner: the object that tracks the region's reference count
   1278 * @name: the name of the region.
   1279 * @size: size of the region.
   1280 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
   1281 *             RAM_NORESERVE, RAM_PROTECTED.
   1282 * @fd: the fd to mmap.
   1283 * @offset: offset within the file referenced by fd
   1284 * @errp: pointer to Error*, to store an error if it happens.
   1285 *
   1286 * Note that this function does not do anything to cause the data in the
   1287 * RAM memory region to be migrated; that is the responsibility of the caller.
   1288 */
   1289void memory_region_init_ram_from_fd(MemoryRegion *mr,
   1290                                    Object *owner,
   1291                                    const char *name,
   1292                                    uint64_t size,
   1293                                    uint32_t ram_flags,
   1294                                    int fd,
   1295                                    ram_addr_t offset,
   1296                                    Error **errp);
   1297#endif
   1298
   1299/**
   1300 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
   1301 *                              user-provided pointer.  Accesses into the
   1302 *                              region will modify memory directly.
   1303 *
   1304 * @mr: the #MemoryRegion to be initialized.
   1305 * @owner: the object that tracks the region's reference count
   1306 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1307 *        must be unique within any device
   1308 * @size: size of the region.
   1309 * @ptr: memory to be mapped; must contain at least @size bytes.
   1310 *
   1311 * Note that this function does not do anything to cause the data in the
   1312 * RAM memory region to be migrated; that is the responsibility of the caller.
   1313 */
   1314void memory_region_init_ram_ptr(MemoryRegion *mr,
   1315                                Object *owner,
   1316                                const char *name,
   1317                                uint64_t size,
   1318                                void *ptr);
   1319
   1320/**
   1321 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
   1322 *                                     a user-provided pointer.
   1323 *
   1324 * A RAM device represents a mapping to a physical device, such as to a PCI
   1325 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
   1326 * into the VM address space and access to the region will modify memory
   1327 * directly.  However, the memory region should not be included in a memory
   1328 * dump (device may not be enabled/mapped at the time of the dump), and
   1329 * operations incompatible with manipulating MMIO should be avoided.  Replaces
   1330 * skip_dump flag.
   1331 *
   1332 * @mr: the #MemoryRegion to be initialized.
   1333 * @owner: the object that tracks the region's reference count
   1334 * @name: the name of the region.
   1335 * @size: size of the region.
   1336 * @ptr: memory to be mapped; must contain at least @size bytes.
   1337 *
   1338 * Note that this function does not do anything to cause the data in the
   1339 * RAM memory region to be migrated; that is the responsibility of the caller.
   1340 * (For RAM device memory regions, migrating the contents rarely makes sense.)
   1341 */
   1342void memory_region_init_ram_device_ptr(MemoryRegion *mr,
   1343                                       Object *owner,
   1344                                       const char *name,
   1345                                       uint64_t size,
   1346                                       void *ptr);
   1347
   1348/**
   1349 * memory_region_init_alias: Initialize a memory region that aliases all or a
   1350 *                           part of another memory region.
   1351 *
   1352 * @mr: the #MemoryRegion to be initialized.
   1353 * @owner: the object that tracks the region's reference count
   1354 * @name: used for debugging; not visible to the user or ABI
   1355 * @orig: the region to be referenced; @mr will be equivalent to
   1356 *        @orig between @offset and @offset + @size - 1.
   1357 * @offset: start of the section in @orig to be referenced.
   1358 * @size: size of the region.
   1359 */
   1360void memory_region_init_alias(MemoryRegion *mr,
   1361                              Object *owner,
   1362                              const char *name,
   1363                              MemoryRegion *orig,
   1364                              hwaddr offset,
   1365                              uint64_t size);
   1366
   1367/**
   1368 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
   1369 *
   1370 * This has the same effect as calling memory_region_init_ram_nomigrate()
   1371 * and then marking the resulting region read-only with
   1372 * memory_region_set_readonly().
   1373 *
   1374 * Note that this function does not do anything to cause the data in the
   1375 * RAM side of the memory region to be migrated; that is the responsibility
   1376 * of the caller.
   1377 *
   1378 * @mr: the #MemoryRegion to be initialized.
   1379 * @owner: the object that tracks the region's reference count
   1380 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1381 *        must be unique within any device
   1382 * @size: size of the region.
   1383 * @errp: pointer to Error*, to store an error if it happens.
   1384 */
   1385void memory_region_init_rom_nomigrate(MemoryRegion *mr,
   1386                                      Object *owner,
   1387                                      const char *name,
   1388                                      uint64_t size,
   1389                                      Error **errp);
   1390
   1391/**
   1392 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
   1393 *                                 Writes are handled via callbacks.
   1394 *
   1395 * Note that this function does not do anything to cause the data in the
   1396 * RAM side of the memory region to be migrated; that is the responsibility
   1397 * of the caller.
   1398 *
   1399 * @mr: the #MemoryRegion to be initialized.
   1400 * @owner: the object that tracks the region's reference count
   1401 * @ops: callbacks for write access handling (must not be NULL).
   1402 * @opaque: passed to the read and write callbacks of the @ops structure.
   1403 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1404 *        must be unique within any device
   1405 * @size: size of the region.
   1406 * @errp: pointer to Error*, to store an error if it happens.
   1407 */
   1408void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
   1409                                             Object *owner,
   1410                                             const MemoryRegionOps *ops,
   1411                                             void *opaque,
   1412                                             const char *name,
   1413                                             uint64_t size,
   1414                                             Error **errp);
   1415
   1416/**
   1417 * memory_region_init_iommu: Initialize a memory region of a custom type
   1418 * that translates addresses
   1419 *
   1420 * An IOMMU region translates addresses and forwards accesses to a target
   1421 * memory region.
   1422 *
   1423 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
   1424 * @_iommu_mr should be a pointer to enough memory for an instance of
   1425 * that subclass, @instance_size is the size of that subclass, and
   1426 * @mrtypename is its name. This function will initialize @_iommu_mr as an
   1427 * instance of the subclass, and its methods will then be called to handle
   1428 * accesses to the memory region. See the documentation of
   1429 * #IOMMUMemoryRegionClass for further details.
   1430 *
   1431 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
   1432 * @instance_size: the IOMMUMemoryRegion subclass instance size
   1433 * @mrtypename: the type name of the #IOMMUMemoryRegion
   1434 * @owner: the object that tracks the region's reference count
   1435 * @name: used for debugging; not visible to the user or ABI
   1436 * @size: size of the region.
   1437 */
   1438void memory_region_init_iommu(void *_iommu_mr,
   1439                              size_t instance_size,
   1440                              const char *mrtypename,
   1441                              Object *owner,
   1442                              const char *name,
   1443                              uint64_t size);
   1444
   1445/**
   1446 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
   1447 *                          region will modify memory directly.
   1448 *
   1449 * @mr: the #MemoryRegion to be initialized
   1450 * @owner: the object that tracks the region's reference count (must be
   1451 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
   1452 * @name: name of the memory region
   1453 * @size: size of the region in bytes
   1454 * @errp: pointer to Error*, to store an error if it happens.
   1455 *
   1456 * This function allocates RAM for a board model or device, and
   1457 * arranges for it to be migrated (by calling vmstate_register_ram()
   1458 * if @owner is a DeviceState, or vmstate_register_ram_global() if
   1459 * @owner is NULL).
   1460 *
   1461 * TODO: Currently we restrict @owner to being either NULL (for
   1462 * global RAM regions with no owner) or devices, so that we can
   1463 * give the RAM block a unique name for migration purposes.
   1464 * We should lift this restriction and allow arbitrary Objects.
   1465 * If you pass a non-NULL non-device @owner then we will assert.
   1466 */
   1467void memory_region_init_ram(MemoryRegion *mr,
   1468                            Object *owner,
   1469                            const char *name,
   1470                            uint64_t size,
   1471                            Error **errp);
   1472
   1473/**
   1474 * memory_region_init_rom: Initialize a ROM memory region.
   1475 *
   1476 * This has the same effect as calling memory_region_init_ram()
   1477 * and then marking the resulting region read-only with
   1478 * memory_region_set_readonly(). This includes arranging for the
   1479 * contents to be migrated.
   1480 *
   1481 * TODO: Currently we restrict @owner to being either NULL (for
   1482 * global RAM regions with no owner) or devices, so that we can
   1483 * give the RAM block a unique name for migration purposes.
   1484 * We should lift this restriction and allow arbitrary Objects.
   1485 * If you pass a non-NULL non-device @owner then we will assert.
   1486 *
   1487 * @mr: the #MemoryRegion to be initialized.
   1488 * @owner: the object that tracks the region's reference count
   1489 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1490 *        must be unique within any device
   1491 * @size: size of the region.
   1492 * @errp: pointer to Error*, to store an error if it happens.
   1493 */
   1494void memory_region_init_rom(MemoryRegion *mr,
   1495                            Object *owner,
   1496                            const char *name,
   1497                            uint64_t size,
   1498                            Error **errp);
   1499
   1500/**
   1501 * memory_region_init_rom_device:  Initialize a ROM memory region.
   1502 *                                 Writes are handled via callbacks.
   1503 *
   1504 * This function initializes a memory region backed by RAM for reads
   1505 * and callbacks for writes, and arranges for the RAM backing to
   1506 * be migrated (by calling vmstate_register_ram()
   1507 * if @owner is a DeviceState, or vmstate_register_ram_global() if
   1508 * @owner is NULL).
   1509 *
   1510 * TODO: Currently we restrict @owner to being either NULL (for
   1511 * global RAM regions with no owner) or devices, so that we can
   1512 * give the RAM block a unique name for migration purposes.
   1513 * We should lift this restriction and allow arbitrary Objects.
   1514 * If you pass a non-NULL non-device @owner then we will assert.
   1515 *
   1516 * @mr: the #MemoryRegion to be initialized.
   1517 * @owner: the object that tracks the region's reference count
   1518 * @ops: callbacks for write access handling (must not be NULL).
   1519 * @opaque: passed to the read and write callbacks of the @ops structure.
   1520 * @name: Region name, becomes part of RAMBlock name used in migration stream
   1521 *        must be unique within any device
   1522 * @size: size of the region.
   1523 * @errp: pointer to Error*, to store an error if it happens.
   1524 */
   1525void memory_region_init_rom_device(MemoryRegion *mr,
   1526                                   Object *owner,
   1527                                   const MemoryRegionOps *ops,
   1528                                   void *opaque,
   1529                                   const char *name,
   1530                                   uint64_t size,
   1531                                   Error **errp);
   1532
   1533
   1534/**
   1535 * memory_region_owner: get a memory region's owner.
   1536 *
   1537 * @mr: the memory region being queried.
   1538 */
   1539Object *memory_region_owner(MemoryRegion *mr);
   1540
   1541/**
   1542 * memory_region_size: get a memory region's size.
   1543 *
   1544 * @mr: the memory region being queried.
   1545 */
   1546uint64_t memory_region_size(MemoryRegion *mr);
   1547
   1548/**
   1549 * memory_region_is_ram: check whether a memory region is random access
   1550 *
   1551 * Returns %true if a memory region is random access.
   1552 *
   1553 * @mr: the memory region being queried
   1554 */
   1555static inline bool memory_region_is_ram(MemoryRegion *mr)
   1556{
   1557    return mr->ram;
   1558}
   1559
   1560/**
   1561 * memory_region_is_ram_device: check whether a memory region is a ram device
   1562 *
   1563 * Returns %true if a memory region is a device backed ram region
   1564 *
   1565 * @mr: the memory region being queried
   1566 */
   1567bool memory_region_is_ram_device(MemoryRegion *mr);
   1568
   1569/**
   1570 * memory_region_is_romd: check whether a memory region is in ROMD mode
   1571 *
   1572 * Returns %true if a memory region is a ROM device and currently set to allow
   1573 * direct reads.
   1574 *
   1575 * @mr: the memory region being queried
   1576 */
   1577static inline bool memory_region_is_romd(MemoryRegion *mr)
   1578{
   1579    return mr->rom_device && mr->romd_mode;
   1580}
   1581
   1582/**
   1583 * memory_region_is_protected: check whether a memory region is protected
   1584 *
   1585 * Returns %true if a memory region is protected RAM and cannot be accessed
   1586 * via standard mechanisms, e.g. DMA.
   1587 *
   1588 * @mr: the memory region being queried
   1589 */
   1590bool memory_region_is_protected(MemoryRegion *mr);
   1591
   1592/**
   1593 * memory_region_get_iommu: check whether a memory region is an iommu
   1594 *
   1595 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
   1596 * otherwise NULL.
   1597 *
   1598 * @mr: the memory region being queried
   1599 */
   1600static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
   1601{
   1602    if (mr->alias) {
   1603        return memory_region_get_iommu(mr->alias);
   1604    }
   1605    if (mr->is_iommu) {
   1606        return (IOMMUMemoryRegion *) mr;
   1607    }
   1608    return NULL;
   1609}
   1610
   1611/**
   1612 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
   1613 *   if an iommu or NULL if not
   1614 *
   1615 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
   1616 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
   1617 *
   1618 * @iommu_mr: the memory region being queried
   1619 */
   1620static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
   1621        IOMMUMemoryRegion *iommu_mr)
   1622{
   1623    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
   1624}
   1625
   1626#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
   1627
   1628/**
   1629 * memory_region_iommu_get_min_page_size: get minimum supported page size
   1630 * for an iommu
   1631 *
   1632 * Returns minimum supported page size for an iommu.
   1633 *
   1634 * @iommu_mr: the memory region being queried
   1635 */
   1636uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
   1637
   1638/**
   1639 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
   1640 *
   1641 * Note: for any IOMMU implementation, an in-place mapping change
   1642 * should be notified with an UNMAP followed by a MAP.
   1643 *
   1644 * @iommu_mr: the memory region that was changed
   1645 * @iommu_idx: the IOMMU index for the translation table which has changed
   1646 * @event: TLB event with the new entry in the IOMMU translation table.
   1647 *         The entry replaces all old entries for the same virtual I/O address
   1648 *         range.
   1649 */
   1650void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
   1651                                int iommu_idx,
   1652                                IOMMUTLBEvent event);
   1653
   1654/**
   1655 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
   1656 *                           entry to a single notifier
   1657 *
   1658 * This works just like memory_region_notify_iommu(), but it only
   1659 * notifies a specific notifier, not all of them.
   1660 *
   1661 * @notifier: the notifier to be notified
   1662 * @event: TLB event with the new entry in the IOMMU translation table.
   1663 *         The entry replaces all old entries for the same virtual I/O address
   1664 *         range.
   1665 */
   1666void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
   1667                                    IOMMUTLBEvent *event);
   1668
   1669/**
   1670 * memory_region_register_iommu_notifier: register a notifier for changes to
   1671 * IOMMU translation entries.
   1672 *
   1673 * Returns 0 on success, or a negative errno otherwise. In particular,
   1674 * -EINVAL indicates that at least one of the attributes of the notifier
   1675 * is not supported (flag/range) by the IOMMU memory region. In case of error
   1676 * the error object must be created.
   1677 *
   1678 * @mr: the memory region to observe
   1679 * @n: the IOMMUNotifier to be added; the notify callback receives a
   1680 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
   1681 *     ceases to be valid on exit from the notifier.
   1682 * @errp: pointer to Error*, to store an error if it happens.
   1683 */
   1684int memory_region_register_iommu_notifier(MemoryRegion *mr,
   1685                                          IOMMUNotifier *n, Error **errp);
   1686
   1687/**
   1688 * memory_region_iommu_replay: replay existing IOMMU translations to
   1689 * a notifier with the minimum page granularity returned by
   1690 * mr->iommu_ops->get_page_size().
   1691 *
   1692 * Note: this is not related to record-and-replay functionality.
   1693 *
   1694 * @iommu_mr: the memory region to observe
   1695 * @n: the notifier to which to replay iommu mappings
   1696 */
   1697void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
   1698
   1699/**
   1700 * memory_region_unregister_iommu_notifier: unregister a notifier for
   1701 * changes to IOMMU translation entries.
   1702 *
   1703 * @mr: the memory region which was observed and for which notity_stopped()
   1704 *      needs to be called
   1705 * @n: the notifier to be removed.
   1706 */
   1707void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
   1708                                             IOMMUNotifier *n);
   1709
   1710/**
   1711 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
   1712 * defined on the IOMMU.
   1713 *
   1714 * Returns 0 on success, or a negative errno otherwise. In particular,
   1715 * -EINVAL indicates that the IOMMU does not support the requested
   1716 * attribute.
   1717 *
   1718 * @iommu_mr: the memory region
   1719 * @attr: the requested attribute
   1720 * @data: a pointer to the requested attribute data
   1721 */
   1722int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
   1723                                 enum IOMMUMemoryRegionAttr attr,
   1724                                 void *data);
   1725
   1726/**
   1727 * memory_region_iommu_attrs_to_index: return the IOMMU index to
   1728 * use for translations with the given memory transaction attributes.
   1729 *
   1730 * @iommu_mr: the memory region
   1731 * @attrs: the memory transaction attributes
   1732 */
   1733int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
   1734                                       MemTxAttrs attrs);
   1735
   1736/**
   1737 * memory_region_iommu_num_indexes: return the total number of IOMMU
   1738 * indexes that this IOMMU supports.
   1739 *
   1740 * @iommu_mr: the memory region
   1741 */
   1742int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
   1743
   1744/**
   1745 * memory_region_iommu_set_page_size_mask: set the supported page
   1746 * sizes for a given IOMMU memory region
   1747 *
   1748 * @iommu_mr: IOMMU memory region
   1749 * @page_size_mask: supported page size mask
   1750 * @errp: pointer to Error*, to store an error if it happens.
   1751 */
   1752int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
   1753                                           uint64_t page_size_mask,
   1754                                           Error **errp);
   1755
   1756/**
   1757 * memory_region_name: get a memory region's name
   1758 *
   1759 * Returns the string that was used to initialize the memory region.
   1760 *
   1761 * @mr: the memory region being queried
   1762 */
   1763const char *memory_region_name(const MemoryRegion *mr);
   1764
   1765/**
   1766 * memory_region_is_logging: return whether a memory region is logging writes
   1767 *
   1768 * Returns %true if the memory region is logging writes for the given client
   1769 *
   1770 * @mr: the memory region being queried
   1771 * @client: the client being queried
   1772 */
   1773bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
   1774
   1775/**
   1776 * memory_region_get_dirty_log_mask: return the clients for which a
   1777 * memory region is logging writes.
   1778 *
   1779 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
   1780 * are the bit indices.
   1781 *
   1782 * @mr: the memory region being queried
   1783 */
   1784uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
   1785
   1786/**
   1787 * memory_region_is_rom: check whether a memory region is ROM
   1788 *
   1789 * Returns %true if a memory region is read-only memory.
   1790 *
   1791 * @mr: the memory region being queried
   1792 */
   1793static inline bool memory_region_is_rom(MemoryRegion *mr)
   1794{
   1795    return mr->ram && mr->readonly;
   1796}
   1797
   1798/**
   1799 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
   1800 *
   1801 * Returns %true is a memory region is non-volatile memory.
   1802 *
   1803 * @mr: the memory region being queried
   1804 */
   1805static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
   1806{
   1807    return mr->nonvolatile;
   1808}
   1809
   1810/**
   1811 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
   1812 *
   1813 * Returns a file descriptor backing a file-based RAM memory region,
   1814 * or -1 if the region is not a file-based RAM memory region.
   1815 *
   1816 * @mr: the RAM or alias memory region being queried.
   1817 */
   1818int memory_region_get_fd(MemoryRegion *mr);
   1819
   1820/**
   1821 * memory_region_from_host: Convert a pointer into a RAM memory region
   1822 * and an offset within it.
   1823 *
   1824 * Given a host pointer inside a RAM memory region (created with
   1825 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
   1826 * the MemoryRegion and the offset within it.
   1827 *
   1828 * Use with care; by the time this function returns, the returned pointer is
   1829 * not protected by RCU anymore.  If the caller is not within an RCU critical
   1830 * section and does not hold the iothread lock, it must have other means of
   1831 * protecting the pointer, such as a reference to the region that includes
   1832 * the incoming ram_addr_t.
   1833 *
   1834 * @ptr: the host pointer to be converted
   1835 * @offset: the offset within memory region
   1836 */
   1837MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
   1838
   1839/**
   1840 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
   1841 *
   1842 * Returns a host pointer to a RAM memory region (created with
   1843 * memory_region_init_ram() or memory_region_init_ram_ptr()).
   1844 *
   1845 * Use with care; by the time this function returns, the returned pointer is
   1846 * not protected by RCU anymore.  If the caller is not within an RCU critical
   1847 * section and does not hold the iothread lock, it must have other means of
   1848 * protecting the pointer, such as a reference to the region that includes
   1849 * the incoming ram_addr_t.
   1850 *
   1851 * @mr: the memory region being queried.
   1852 */
   1853void *memory_region_get_ram_ptr(MemoryRegion *mr);
   1854
   1855/* memory_region_ram_resize: Resize a RAM region.
   1856 *
   1857 * Resizing RAM while migrating can result in the migration being canceled.
   1858 * Care has to be taken if the guest might have already detected the memory.
   1859 *
   1860 * @mr: a memory region created with @memory_region_init_resizeable_ram.
   1861 * @newsize: the new size the region
   1862 * @errp: pointer to Error*, to store an error if it happens.
   1863 */
   1864void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
   1865                              Error **errp);
   1866
   1867/**
   1868 * memory_region_msync: Synchronize selected address range of
   1869 * a memory mapped region
   1870 *
   1871 * @mr: the memory region to be msync
   1872 * @addr: the initial address of the range to be sync
   1873 * @size: the size of the range to be sync
   1874 */
   1875void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
   1876
   1877/**
   1878 * memory_region_writeback: Trigger cache writeback for
   1879 * selected address range
   1880 *
   1881 * @mr: the memory region to be updated
   1882 * @addr: the initial address of the range to be written back
   1883 * @size: the size of the range to be written back
   1884 */
   1885void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
   1886
   1887/**
   1888 * memory_region_set_log: Turn dirty logging on or off for a region.
   1889 *
   1890 * Turns dirty logging on or off for a specified client (display, migration).
   1891 * Only meaningful for RAM regions.
   1892 *
   1893 * @mr: the memory region being updated.
   1894 * @log: whether dirty logging is to be enabled or disabled.
   1895 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
   1896 */
   1897void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
   1898
   1899/**
   1900 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
   1901 *
   1902 * Marks a range of bytes as dirty, after it has been dirtied outside
   1903 * guest code.
   1904 *
   1905 * @mr: the memory region being dirtied.
   1906 * @addr: the address (relative to the start of the region) being dirtied.
   1907 * @size: size of the range being dirtied.
   1908 */
   1909void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
   1910                             hwaddr size);
   1911
   1912/**
   1913 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
   1914 *
   1915 * This function is called when the caller wants to clear the remote
   1916 * dirty bitmap of a memory range within the memory region.  This can
   1917 * be used by e.g. KVM to manually clear dirty log when
   1918 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
   1919 * kernel.
   1920 *
   1921 * @mr:     the memory region to clear the dirty log upon
   1922 * @start:  start address offset within the memory region
   1923 * @len:    length of the memory region to clear dirty bitmap
   1924 */
   1925void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
   1926                                      hwaddr len);
   1927
   1928/**
   1929 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
   1930 *                                         bitmap and clear it.
   1931 *
   1932 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
   1933 * returns the snapshot.  The snapshot can then be used to query dirty
   1934 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
   1935 * querying the same page multiple times, which is especially useful for
   1936 * display updates where the scanlines often are not page aligned.
   1937 *
   1938 * The dirty bitmap region which gets copyed into the snapshot (and
   1939 * cleared afterwards) can be larger than requested.  The boundaries
   1940 * are rounded up/down so complete bitmap longs (covering 64 pages on
   1941 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
   1942 * isn't a problem for display updates as the extra pages are outside
   1943 * the visible area, and in case the visible area changes a full
   1944 * display redraw is due anyway.  Should other use cases for this
   1945 * function emerge we might have to revisit this implementation
   1946 * detail.
   1947 *
   1948 * Use g_free to release DirtyBitmapSnapshot.
   1949 *
   1950 * @mr: the memory region being queried.
   1951 * @addr: the address (relative to the start of the region) being queried.
   1952 * @size: the size of the range being queried.
   1953 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
   1954 */
   1955DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
   1956                                                            hwaddr addr,
   1957                                                            hwaddr size,
   1958                                                            unsigned client);
   1959
   1960/**
   1961 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
   1962 *                                   in the specified dirty bitmap snapshot.
   1963 *
   1964 * @mr: the memory region being queried.
   1965 * @snap: the dirty bitmap snapshot
   1966 * @addr: the address (relative to the start of the region) being queried.
   1967 * @size: the size of the range being queried.
   1968 */
   1969bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
   1970                                      DirtyBitmapSnapshot *snap,
   1971                                      hwaddr addr, hwaddr size);
   1972
   1973/**
   1974 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
   1975 *                            client.
   1976 *
   1977 * Marks a range of pages as no longer dirty.
   1978 *
   1979 * @mr: the region being updated.
   1980 * @addr: the start of the subrange being cleaned.
   1981 * @size: the size of the subrange being cleaned.
   1982 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
   1983 *          %DIRTY_MEMORY_VGA.
   1984 */
   1985void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
   1986                               hwaddr size, unsigned client);
   1987
   1988/**
   1989 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
   1990 *                                 TBs (for self-modifying code).
   1991 *
   1992 * The MemoryRegionOps->write() callback of a ROM device must use this function
   1993 * to mark byte ranges that have been modified internally, such as by directly
   1994 * accessing the memory returned by memory_region_get_ram_ptr().
   1995 *
   1996 * This function marks the range dirty and invalidates TBs so that TCG can
   1997 * detect self-modifying code.
   1998 *
   1999 * @mr: the region being flushed.
   2000 * @addr: the start, relative to the start of the region, of the range being
   2001 *        flushed.
   2002 * @size: the size, in bytes, of the range being flushed.
   2003 */
   2004void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
   2005
   2006/**
   2007 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
   2008 *
   2009 * Allows a memory region to be marked as read-only (turning it into a ROM).
   2010 * only useful on RAM regions.
   2011 *
   2012 * @mr: the region being updated.
   2013 * @readonly: whether rhe region is to be ROM or RAM.
   2014 */
   2015void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
   2016
   2017/**
   2018 * memory_region_set_nonvolatile: Turn a memory region non-volatile
   2019 *
   2020 * Allows a memory region to be marked as non-volatile.
   2021 * only useful on RAM regions.
   2022 *
   2023 * @mr: the region being updated.
   2024 * @nonvolatile: whether rhe region is to be non-volatile.
   2025 */
   2026void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
   2027
   2028/**
   2029 * memory_region_rom_device_set_romd: enable/disable ROMD mode
   2030 *
   2031 * Allows a ROM device (initialized with memory_region_init_rom_device() to
   2032 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
   2033 * device is mapped to guest memory and satisfies read access directly.
   2034 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
   2035 * Writes are always handled by the #MemoryRegion.write function.
   2036 *
   2037 * @mr: the memory region to be updated
   2038 * @romd_mode: %true to put the region into ROMD mode
   2039 */
   2040void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
   2041
   2042/**
   2043 * memory_region_set_coalescing: Enable memory coalescing for the region.
   2044 *
   2045 * Enabled writes to a region to be queued for later processing. MMIO ->write
   2046 * callbacks may be delayed until a non-coalesced MMIO is issued.
   2047 * Only useful for IO regions.  Roughly similar to write-combining hardware.
   2048 *
   2049 * @mr: the memory region to be write coalesced
   2050 */
   2051void memory_region_set_coalescing(MemoryRegion *mr);
   2052
   2053/**
   2054 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
   2055 *                               a region.
   2056 *
   2057 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
   2058 * Multiple calls can be issued coalesced disjoint ranges.
   2059 *
   2060 * @mr: the memory region to be updated.
   2061 * @offset: the start of the range within the region to be coalesced.
   2062 * @size: the size of the subrange to be coalesced.
   2063 */
   2064void memory_region_add_coalescing(MemoryRegion *mr,
   2065                                  hwaddr offset,
   2066                                  uint64_t size);
   2067
   2068/**
   2069 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
   2070 *
   2071 * Disables any coalescing caused by memory_region_set_coalescing() or
   2072 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
   2073 * hardware.
   2074 *
   2075 * @mr: the memory region to be updated.
   2076 */
   2077void memory_region_clear_coalescing(MemoryRegion *mr);
   2078
   2079/**
   2080 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
   2081 *                                    accesses.
   2082 *
   2083 * Ensure that pending coalesced MMIO request are flushed before the memory
   2084 * region is accessed. This property is automatically enabled for all regions
   2085 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
   2086 *
   2087 * @mr: the memory region to be updated.
   2088 */
   2089void memory_region_set_flush_coalesced(MemoryRegion *mr);
   2090
   2091/**
   2092 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
   2093 *                                      accesses.
   2094 *
   2095 * Clear the automatic coalesced MMIO flushing enabled via
   2096 * memory_region_set_flush_coalesced. Note that this service has no effect on
   2097 * memory regions that have MMIO coalescing enabled for themselves. For them,
   2098 * automatic flushing will stop once coalescing is disabled.
   2099 *
   2100 * @mr: the memory region to be updated.
   2101 */
   2102void memory_region_clear_flush_coalesced(MemoryRegion *mr);
   2103
   2104/**
   2105 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
   2106 *                            is written to a location.
   2107 *
   2108 * Marks a word in an IO region (initialized with memory_region_init_io())
   2109 * as a trigger for an eventfd event.  The I/O callback will not be called.
   2110 * The caller must be prepared to handle failure (that is, take the required
   2111 * action if the callback _is_ called).
   2112 *
   2113 * @mr: the memory region being updated.
   2114 * @addr: the address within @mr that is to be monitored
   2115 * @size: the size of the access to trigger the eventfd
   2116 * @match_data: whether to match against @data, instead of just @addr
   2117 * @data: the data to match against the guest write
   2118 * @e: event notifier to be triggered when @addr, @size, and @data all match.
   2119 **/
   2120void memory_region_add_eventfd(MemoryRegion *mr,
   2121                               hwaddr addr,
   2122                               unsigned size,
   2123                               bool match_data,
   2124                               uint64_t data,
   2125                               EventNotifier *e);
   2126
   2127/**
   2128 * memory_region_del_eventfd: Cancel an eventfd.
   2129 *
   2130 * Cancels an eventfd trigger requested by a previous
   2131 * memory_region_add_eventfd() call.
   2132 *
   2133 * @mr: the memory region being updated.
   2134 * @addr: the address within @mr that is to be monitored
   2135 * @size: the size of the access to trigger the eventfd
   2136 * @match_data: whether to match against @data, instead of just @addr
   2137 * @data: the data to match against the guest write
   2138 * @e: event notifier to be triggered when @addr, @size, and @data all match.
   2139 */
   2140void memory_region_del_eventfd(MemoryRegion *mr,
   2141                               hwaddr addr,
   2142                               unsigned size,
   2143                               bool match_data,
   2144                               uint64_t data,
   2145                               EventNotifier *e);
   2146
   2147/**
   2148 * memory_region_add_subregion: Add a subregion to a container.
   2149 *
   2150 * Adds a subregion at @offset.  The subregion may not overlap with other
   2151 * subregions (except for those explicitly marked as overlapping).  A region
   2152 * may only be added once as a subregion (unless removed with
   2153 * memory_region_del_subregion()); use memory_region_init_alias() if you
   2154 * want a region to be a subregion in multiple locations.
   2155 *
   2156 * @mr: the region to contain the new subregion; must be a container
   2157 *      initialized with memory_region_init().
   2158 * @offset: the offset relative to @mr where @subregion is added.
   2159 * @subregion: the subregion to be added.
   2160 */
   2161void memory_region_add_subregion(MemoryRegion *mr,
   2162                                 hwaddr offset,
   2163                                 MemoryRegion *subregion);
   2164/**
   2165 * memory_region_add_subregion_overlap: Add a subregion to a container
   2166 *                                      with overlap.
   2167 *
   2168 * Adds a subregion at @offset.  The subregion may overlap with other
   2169 * subregions.  Conflicts are resolved by having a higher @priority hide a
   2170 * lower @priority. Subregions without priority are taken as @priority 0.
   2171 * A region may only be added once as a subregion (unless removed with
   2172 * memory_region_del_subregion()); use memory_region_init_alias() if you
   2173 * want a region to be a subregion in multiple locations.
   2174 *
   2175 * @mr: the region to contain the new subregion; must be a container
   2176 *      initialized with memory_region_init().
   2177 * @offset: the offset relative to @mr where @subregion is added.
   2178 * @subregion: the subregion to be added.
   2179 * @priority: used for resolving overlaps; highest priority wins.
   2180 */
   2181void memory_region_add_subregion_overlap(MemoryRegion *mr,
   2182                                         hwaddr offset,
   2183                                         MemoryRegion *subregion,
   2184                                         int priority);
   2185
   2186/**
   2187 * memory_region_get_ram_addr: Get the ram address associated with a memory
   2188 *                             region
   2189 *
   2190 * @mr: the region to be queried
   2191 */
   2192ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
   2193
   2194uint64_t memory_region_get_alignment(const MemoryRegion *mr);
   2195/**
   2196 * memory_region_del_subregion: Remove a subregion.
   2197 *
   2198 * Removes a subregion from its container.
   2199 *
   2200 * @mr: the container to be updated.
   2201 * @subregion: the region being removed; must be a current subregion of @mr.
   2202 */
   2203void memory_region_del_subregion(MemoryRegion *mr,
   2204                                 MemoryRegion *subregion);
   2205
   2206/*
   2207 * memory_region_set_enabled: dynamically enable or disable a region
   2208 *
   2209 * Enables or disables a memory region.  A disabled memory region
   2210 * ignores all accesses to itself and its subregions.  It does not
   2211 * obscure sibling subregions with lower priority - it simply behaves as
   2212 * if it was removed from the hierarchy.
   2213 *
   2214 * Regions default to being enabled.
   2215 *
   2216 * @mr: the region to be updated
   2217 * @enabled: whether to enable or disable the region
   2218 */
   2219void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
   2220
   2221/*
   2222 * memory_region_set_address: dynamically update the address of a region
   2223 *
   2224 * Dynamically updates the address of a region, relative to its container.
   2225 * May be used on regions are currently part of a memory hierarchy.
   2226 *
   2227 * @mr: the region to be updated
   2228 * @addr: new address, relative to container region
   2229 */
   2230void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
   2231
   2232/*
   2233 * memory_region_set_size: dynamically update the size of a region.
   2234 *
   2235 * Dynamically updates the size of a region.
   2236 *
   2237 * @mr: the region to be updated
   2238 * @size: used size of the region.
   2239 */
   2240void memory_region_set_size(MemoryRegion *mr, uint64_t size);
   2241
   2242/*
   2243 * memory_region_set_alias_offset: dynamically update a memory alias's offset
   2244 *
   2245 * Dynamically updates the offset into the target region that an alias points
   2246 * to, as if the fourth argument to memory_region_init_alias() has changed.
   2247 *
   2248 * @mr: the #MemoryRegion to be updated; should be an alias.
   2249 * @offset: the new offset into the target memory region
   2250 */
   2251void memory_region_set_alias_offset(MemoryRegion *mr,
   2252                                    hwaddr offset);
   2253
   2254/**
   2255 * memory_region_present: checks if an address relative to a @container
   2256 * translates into #MemoryRegion within @container
   2257 *
   2258 * Answer whether a #MemoryRegion within @container covers the address
   2259 * @addr.
   2260 *
   2261 * @container: a #MemoryRegion within which @addr is a relative address
   2262 * @addr: the area within @container to be searched
   2263 */
   2264bool memory_region_present(MemoryRegion *container, hwaddr addr);
   2265
   2266/**
   2267 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
   2268 * into any address space.
   2269 *
   2270 * @mr: a #MemoryRegion which should be checked if it's mapped
   2271 */
   2272bool memory_region_is_mapped(MemoryRegion *mr);
   2273
   2274/**
   2275 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
   2276 * #MemoryRegion
   2277 *
   2278 * The #RamDiscardManager cannot change while a memory region is mapped.
   2279 *
   2280 * @mr: the #MemoryRegion
   2281 */
   2282RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
   2283
   2284/**
   2285 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
   2286 * #RamDiscardManager assigned
   2287 *
   2288 * @mr: the #MemoryRegion
   2289 */
   2290static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
   2291{
   2292    return !!memory_region_get_ram_discard_manager(mr);
   2293}
   2294
   2295/**
   2296 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
   2297 * #MemoryRegion
   2298 *
   2299 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
   2300 * that does not cover RAM, or a #MemoryRegion that already has a
   2301 * #RamDiscardManager assigned.
   2302 *
   2303 * @mr: the #MemoryRegion
   2304 * @rdm: #RamDiscardManager to set
   2305 */
   2306void memory_region_set_ram_discard_manager(MemoryRegion *mr,
   2307                                           RamDiscardManager *rdm);
   2308
   2309/**
   2310 * memory_region_find: translate an address/size relative to a
   2311 * MemoryRegion into a #MemoryRegionSection.
   2312 *
   2313 * Locates the first #MemoryRegion within @mr that overlaps the range
   2314 * given by @addr and @size.
   2315 *
   2316 * Returns a #MemoryRegionSection that describes a contiguous overlap.
   2317 * It will have the following characteristics:
   2318 * - @size = 0 iff no overlap was found
   2319 * - @mr is non-%NULL iff an overlap was found
   2320 *
   2321 * Remember that in the return value the @offset_within_region is
   2322 * relative to the returned region (in the .@mr field), not to the
   2323 * @mr argument.
   2324 *
   2325 * Similarly, the .@offset_within_address_space is relative to the
   2326 * address space that contains both regions, the passed and the
   2327 * returned one.  However, in the special case where the @mr argument
   2328 * has no container (and thus is the root of the address space), the
   2329 * following will hold:
   2330 * - @offset_within_address_space >= @addr
   2331 * - @offset_within_address_space + .@size <= @addr + @size
   2332 *
   2333 * @mr: a MemoryRegion within which @addr is a relative address
   2334 * @addr: start of the area within @as to be searched
   2335 * @size: size of the area to be searched
   2336 */
   2337MemoryRegionSection memory_region_find(MemoryRegion *mr,
   2338                                       hwaddr addr, uint64_t size);
   2339
   2340/**
   2341 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
   2342 *
   2343 * Synchronizes the dirty page log for all address spaces.
   2344 */
   2345void memory_global_dirty_log_sync(void);
   2346
   2347/**
   2348 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
   2349 *
   2350 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
   2351 * This function must be called after the dirty log bitmap is cleared, and
   2352 * before dirty guest memory pages are read.  If you are using
   2353 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
   2354 * care of doing this.
   2355 */
   2356void memory_global_after_dirty_log_sync(void);
   2357
   2358/**
   2359 * memory_region_transaction_begin: Start a transaction.
   2360 *
   2361 * During a transaction, changes will be accumulated and made visible
   2362 * only when the transaction ends (is committed).
   2363 */
   2364void memory_region_transaction_begin(void);
   2365
   2366/**
   2367 * memory_region_transaction_commit: Commit a transaction and make changes
   2368 *                                   visible to the guest.
   2369 */
   2370void memory_region_transaction_commit(void);
   2371
   2372/**
   2373 * memory_listener_register: register callbacks to be called when memory
   2374 *                           sections are mapped or unmapped into an address
   2375 *                           space
   2376 *
   2377 * @listener: an object containing the callbacks to be called
   2378 * @filter: if non-%NULL, only regions in this address space will be observed
   2379 */
   2380void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
   2381
   2382/**
   2383 * memory_listener_unregister: undo the effect of memory_listener_register()
   2384 *
   2385 * @listener: an object containing the callbacks to be removed
   2386 */
   2387void memory_listener_unregister(MemoryListener *listener);
   2388
   2389/**
   2390 * memory_global_dirty_log_start: begin dirty logging for all regions
   2391 */
   2392void memory_global_dirty_log_start(void);
   2393
   2394/**
   2395 * memory_global_dirty_log_stop: end dirty logging for all regions
   2396 */
   2397void memory_global_dirty_log_stop(void);
   2398
   2399void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
   2400
   2401/**
   2402 * memory_region_dispatch_read: perform a read directly to the specified
   2403 * MemoryRegion.
   2404 *
   2405 * @mr: #MemoryRegion to access
   2406 * @addr: address within that region
   2407 * @pval: pointer to uint64_t which the data is written to
   2408 * @op: size, sign, and endianness of the memory operation
   2409 * @attrs: memory transaction attributes to use for the access
   2410 */
   2411MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
   2412                                        hwaddr addr,
   2413                                        uint64_t *pval,
   2414                                        MemOp op,
   2415                                        MemTxAttrs attrs);
   2416/**
   2417 * memory_region_dispatch_write: perform a write directly to the specified
   2418 * MemoryRegion.
   2419 *
   2420 * @mr: #MemoryRegion to access
   2421 * @addr: address within that region
   2422 * @data: data to write
   2423 * @op: size, sign, and endianness of the memory operation
   2424 * @attrs: memory transaction attributes to use for the access
   2425 */
   2426MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
   2427                                         hwaddr addr,
   2428                                         uint64_t data,
   2429                                         MemOp op,
   2430                                         MemTxAttrs attrs);
   2431
   2432/**
   2433 * address_space_init: initializes an address space
   2434 *
   2435 * @as: an uninitialized #AddressSpace
   2436 * @root: a #MemoryRegion that routes addresses for the address space
   2437 * @name: an address space name.  The name is only used for debugging
   2438 *        output.
   2439 */
   2440void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
   2441
   2442/**
   2443 * address_space_destroy: destroy an address space
   2444 *
   2445 * Releases all resources associated with an address space.  After an address space
   2446 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
   2447 * as well.
   2448 *
   2449 * @as: address space to be destroyed
   2450 */
   2451void address_space_destroy(AddressSpace *as);
   2452
   2453/**
   2454 * address_space_remove_listeners: unregister all listeners of an address space
   2455 *
   2456 * Removes all callbacks previously registered with memory_listener_register()
   2457 * for @as.
   2458 *
   2459 * @as: an initialized #AddressSpace
   2460 */
   2461void address_space_remove_listeners(AddressSpace *as);
   2462
   2463/**
   2464 * address_space_rw: read from or write to an address space.
   2465 *
   2466 * Return a MemTxResult indicating whether the operation succeeded
   2467 * or failed (eg unassigned memory, device rejected the transaction,
   2468 * IOMMU fault).
   2469 *
   2470 * @as: #AddressSpace to be accessed
   2471 * @addr: address within that address space
   2472 * @attrs: memory transaction attributes
   2473 * @buf: buffer with the data transferred
   2474 * @len: the number of bytes to read or write
   2475 * @is_write: indicates the transfer direction
   2476 */
   2477MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
   2478                             MemTxAttrs attrs, void *buf,
   2479                             hwaddr len, bool is_write);
   2480
   2481/**
   2482 * address_space_write: write to address space.
   2483 *
   2484 * Return a MemTxResult indicating whether the operation succeeded
   2485 * or failed (eg unassigned memory, device rejected the transaction,
   2486 * IOMMU fault).
   2487 *
   2488 * @as: #AddressSpace to be accessed
   2489 * @addr: address within that address space
   2490 * @attrs: memory transaction attributes
   2491 * @buf: buffer with the data transferred
   2492 * @len: the number of bytes to write
   2493 */
   2494MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
   2495                                MemTxAttrs attrs,
   2496                                const void *buf, hwaddr len);
   2497
   2498/**
   2499 * address_space_write_rom: write to address space, including ROM.
   2500 *
   2501 * This function writes to the specified address space, but will
   2502 * write data to both ROM and RAM. This is used for non-guest
   2503 * writes like writes from the gdb debug stub or initial loading
   2504 * of ROM contents.
   2505 *
   2506 * Note that portions of the write which attempt to write data to
   2507 * a device will be silently ignored -- only real RAM and ROM will
   2508 * be written to.
   2509 *
   2510 * Return a MemTxResult indicating whether the operation succeeded
   2511 * or failed (eg unassigned memory, device rejected the transaction,
   2512 * IOMMU fault).
   2513 *
   2514 * @as: #AddressSpace to be accessed
   2515 * @addr: address within that address space
   2516 * @attrs: memory transaction attributes
   2517 * @buf: buffer with the data transferred
   2518 * @len: the number of bytes to write
   2519 */
   2520MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
   2521                                    MemTxAttrs attrs,
   2522                                    const void *buf, hwaddr len);
   2523
   2524/* address_space_ld*: load from an address space
   2525 * address_space_st*: store to an address space
   2526 *
   2527 * These functions perform a load or store of the byte, word,
   2528 * longword or quad to the specified address within the AddressSpace.
   2529 * The _le suffixed functions treat the data as little endian;
   2530 * _be indicates big endian; no suffix indicates "same endianness
   2531 * as guest CPU".
   2532 *
   2533 * The "guest CPU endianness" accessors are deprecated for use outside
   2534 * target-* code; devices should be CPU-agnostic and use either the LE
   2535 * or the BE accessors.
   2536 *
   2537 * @as #AddressSpace to be accessed
   2538 * @addr: address within that address space
   2539 * @val: data value, for stores
   2540 * @attrs: memory transaction attributes
   2541 * @result: location to write the success/failure of the transaction;
   2542 *   if NULL, this information is discarded
   2543 */
   2544
   2545#define SUFFIX
   2546#define ARG1         as
   2547#define ARG1_DECL    AddressSpace *as
   2548#include "exec/memory_ldst.h.inc"
   2549
   2550#define SUFFIX
   2551#define ARG1         as
   2552#define ARG1_DECL    AddressSpace *as
   2553#include "exec/memory_ldst_phys.h.inc"
   2554
   2555struct MemoryRegionCache {
   2556    void *ptr;
   2557    hwaddr xlat;
   2558    hwaddr len;
   2559    FlatView *fv;
   2560    MemoryRegionSection mrs;
   2561    bool is_write;
   2562};
   2563
   2564#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
   2565
   2566
   2567/* address_space_ld*_cached: load from a cached #MemoryRegion
   2568 * address_space_st*_cached: store into a cached #MemoryRegion
   2569 *
   2570 * These functions perform a load or store of the byte, word,
   2571 * longword or quad to the specified address.  The address is
   2572 * a physical address in the AddressSpace, but it must lie within
   2573 * a #MemoryRegion that was mapped with address_space_cache_init.
   2574 *
   2575 * The _le suffixed functions treat the data as little endian;
   2576 * _be indicates big endian; no suffix indicates "same endianness
   2577 * as guest CPU".
   2578 *
   2579 * The "guest CPU endianness" accessors are deprecated for use outside
   2580 * target-* code; devices should be CPU-agnostic and use either the LE
   2581 * or the BE accessors.
   2582 *
   2583 * @cache: previously initialized #MemoryRegionCache to be accessed
   2584 * @addr: address within the address space
   2585 * @val: data value, for stores
   2586 * @attrs: memory transaction attributes
   2587 * @result: location to write the success/failure of the transaction;
   2588 *   if NULL, this information is discarded
   2589 */
   2590
   2591#define SUFFIX       _cached_slow
   2592#define ARG1         cache
   2593#define ARG1_DECL    MemoryRegionCache *cache
   2594#include "exec/memory_ldst.h.inc"
   2595
   2596/* Inline fast path for direct RAM access.  */
   2597static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
   2598    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
   2599{
   2600    assert(addr < cache->len);
   2601    if (likely(cache->ptr)) {
   2602        return ldub_p(cache->ptr + addr);
   2603    } else {
   2604        return address_space_ldub_cached_slow(cache, addr, attrs, result);
   2605    }
   2606}
   2607
   2608static inline void address_space_stb_cached(MemoryRegionCache *cache,
   2609    hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
   2610{
   2611    assert(addr < cache->len);
   2612    if (likely(cache->ptr)) {
   2613        stb_p(cache->ptr + addr, val);
   2614    } else {
   2615        address_space_stb_cached_slow(cache, addr, val, attrs, result);
   2616    }
   2617}
   2618
   2619#define ENDIANNESS   _le
   2620#include "exec/memory_ldst_cached.h.inc"
   2621
   2622#define ENDIANNESS   _be
   2623#include "exec/memory_ldst_cached.h.inc"
   2624
   2625#define SUFFIX       _cached
   2626#define ARG1         cache
   2627#define ARG1_DECL    MemoryRegionCache *cache
   2628#include "exec/memory_ldst_phys.h.inc"
   2629
   2630/* address_space_cache_init: prepare for repeated access to a physical
   2631 * memory region
   2632 *
   2633 * @cache: #MemoryRegionCache to be filled
   2634 * @as: #AddressSpace to be accessed
   2635 * @addr: address within that address space
   2636 * @len: length of buffer
   2637 * @is_write: indicates the transfer direction
   2638 *
   2639 * Will only work with RAM, and may map a subset of the requested range by
   2640 * returning a value that is less than @len.  On failure, return a negative
   2641 * errno value.
   2642 *
   2643 * Because it only works with RAM, this function can be used for
   2644 * read-modify-write operations.  In this case, is_write should be %true.
   2645 *
   2646 * Note that addresses passed to the address_space_*_cached functions
   2647 * are relative to @addr.
   2648 */
   2649int64_t address_space_cache_init(MemoryRegionCache *cache,
   2650                                 AddressSpace *as,
   2651                                 hwaddr addr,
   2652                                 hwaddr len,
   2653                                 bool is_write);
   2654
   2655/**
   2656 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
   2657 *
   2658 * @cache: The #MemoryRegionCache to operate on.
   2659 * @addr: The first physical address that was written, relative to the
   2660 * address that was passed to @address_space_cache_init.
   2661 * @access_len: The number of bytes that were written starting at @addr.
   2662 */
   2663void address_space_cache_invalidate(MemoryRegionCache *cache,
   2664                                    hwaddr addr,
   2665                                    hwaddr access_len);
   2666
   2667/**
   2668 * address_space_cache_destroy: free a #MemoryRegionCache
   2669 *
   2670 * @cache: The #MemoryRegionCache whose memory should be released.
   2671 */
   2672void address_space_cache_destroy(MemoryRegionCache *cache);
   2673
   2674/* address_space_get_iotlb_entry: translate an address into an IOTLB
   2675 * entry. Should be called from an RCU critical section.
   2676 */
   2677IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
   2678                                            bool is_write, MemTxAttrs attrs);
   2679
   2680/* address_space_translate: translate an address range into an address space
   2681 * into a MemoryRegion and an address range into that section.  Should be
   2682 * called from an RCU critical section, to avoid that the last reference
   2683 * to the returned region disappears after address_space_translate returns.
   2684 *
   2685 * @fv: #FlatView to be accessed
   2686 * @addr: address within that address space
   2687 * @xlat: pointer to address within the returned memory region section's
   2688 * #MemoryRegion.
   2689 * @len: pointer to length
   2690 * @is_write: indicates the transfer direction
   2691 * @attrs: memory attributes
   2692 */
   2693MemoryRegion *flatview_translate(FlatView *fv,
   2694                                 hwaddr addr, hwaddr *xlat,
   2695                                 hwaddr *len, bool is_write,
   2696                                 MemTxAttrs attrs);
   2697
   2698static inline MemoryRegion *address_space_translate(AddressSpace *as,
   2699                                                    hwaddr addr, hwaddr *xlat,
   2700                                                    hwaddr *len, bool is_write,
   2701                                                    MemTxAttrs attrs)
   2702{
   2703    return flatview_translate(address_space_to_flatview(as),
   2704                              addr, xlat, len, is_write, attrs);
   2705}
   2706
   2707/* address_space_access_valid: check for validity of accessing an address
   2708 * space range
   2709 *
   2710 * Check whether memory is assigned to the given address space range, and
   2711 * access is permitted by any IOMMU regions that are active for the address
   2712 * space.
   2713 *
   2714 * For now, addr and len should be aligned to a page size.  This limitation
   2715 * will be lifted in the future.
   2716 *
   2717 * @as: #AddressSpace to be accessed
   2718 * @addr: address within that address space
   2719 * @len: length of the area to be checked
   2720 * @is_write: indicates the transfer direction
   2721 * @attrs: memory attributes
   2722 */
   2723bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
   2724                                bool is_write, MemTxAttrs attrs);
   2725
   2726/* address_space_map: map a physical memory region into a host virtual address
   2727 *
   2728 * May map a subset of the requested range, given by and returned in @plen.
   2729 * May return %NULL and set *@plen to zero(0), if resources needed to perform
   2730 * the mapping are exhausted.
   2731 * Use only for reads OR writes - not for read-modify-write operations.
   2732 * Use cpu_register_map_client() to know when retrying the map operation is
   2733 * likely to succeed.
   2734 *
   2735 * @as: #AddressSpace to be accessed
   2736 * @addr: address within that address space
   2737 * @plen: pointer to length of buffer; updated on return
   2738 * @is_write: indicates the transfer direction
   2739 * @attrs: memory attributes
   2740 */
   2741void *address_space_map(AddressSpace *as, hwaddr addr,
   2742                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
   2743
   2744/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
   2745 *
   2746 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
   2747 * the amount of memory that was actually read or written by the caller.
   2748 *
   2749 * @as: #AddressSpace used
   2750 * @buffer: host pointer as returned by address_space_map()
   2751 * @len: buffer length as returned by address_space_map()
   2752 * @access_len: amount of data actually transferred
   2753 * @is_write: indicates the transfer direction
   2754 */
   2755void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
   2756                         bool is_write, hwaddr access_len);
   2757
   2758
   2759/* Internal functions, part of the implementation of address_space_read.  */
   2760MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
   2761                                    MemTxAttrs attrs, void *buf, hwaddr len);
   2762MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
   2763                                   MemTxAttrs attrs, void *buf,
   2764                                   hwaddr len, hwaddr addr1, hwaddr l,
   2765                                   MemoryRegion *mr);
   2766void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
   2767
   2768/* Internal functions, part of the implementation of address_space_read_cached
   2769 * and address_space_write_cached.  */
   2770MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
   2771                                           hwaddr addr, void *buf, hwaddr len);
   2772MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
   2773                                            hwaddr addr, const void *buf,
   2774                                            hwaddr len);
   2775
   2776static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
   2777{
   2778    if (is_write) {
   2779        return memory_region_is_ram(mr) && !mr->readonly &&
   2780               !mr->rom_device && !memory_region_is_ram_device(mr);
   2781    } else {
   2782        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
   2783               memory_region_is_romd(mr);
   2784    }
   2785}
   2786
   2787/**
   2788 * address_space_read: read from an address space.
   2789 *
   2790 * Return a MemTxResult indicating whether the operation succeeded
   2791 * or failed (eg unassigned memory, device rejected the transaction,
   2792 * IOMMU fault).  Called within RCU critical section.
   2793 *
   2794 * @as: #AddressSpace to be accessed
   2795 * @addr: address within that address space
   2796 * @attrs: memory transaction attributes
   2797 * @buf: buffer with the data transferred
   2798 * @len: length of the data transferred
   2799 */
   2800static inline __attribute__((__always_inline__))
   2801MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
   2802                               MemTxAttrs attrs, void *buf,
   2803                               hwaddr len)
   2804{
   2805    MemTxResult result = MEMTX_OK;
   2806    hwaddr l, addr1;
   2807    void *ptr;
   2808    MemoryRegion *mr;
   2809    FlatView *fv;
   2810
   2811    if (__builtin_constant_p(len)) {
   2812        if (len) {
   2813            RCU_READ_LOCK_GUARD();
   2814            fv = address_space_to_flatview(as);
   2815            l = len;
   2816            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
   2817            if (len == l && memory_access_is_direct(mr, false)) {
   2818                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
   2819                memcpy(buf, ptr, len);
   2820            } else {
   2821                result = flatview_read_continue(fv, addr, attrs, buf, len,
   2822                                                addr1, l, mr);
   2823            }
   2824        }
   2825    } else {
   2826        result = address_space_read_full(as, addr, attrs, buf, len);
   2827    }
   2828    return result;
   2829}
   2830
   2831/**
   2832 * address_space_read_cached: read from a cached RAM region
   2833 *
   2834 * @cache: Cached region to be addressed
   2835 * @addr: address relative to the base of the RAM region
   2836 * @buf: buffer with the data transferred
   2837 * @len: length of the data transferred
   2838 */
   2839static inline MemTxResult
   2840address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
   2841                          void *buf, hwaddr len)
   2842{
   2843    assert(addr < cache->len && len <= cache->len - addr);
   2844    fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
   2845    if (likely(cache->ptr)) {
   2846        memcpy(buf, cache->ptr + addr, len);
   2847        return MEMTX_OK;
   2848    } else {
   2849        return address_space_read_cached_slow(cache, addr, buf, len);
   2850    }
   2851}
   2852
   2853/**
   2854 * address_space_write_cached: write to a cached RAM region
   2855 *
   2856 * @cache: Cached region to be addressed
   2857 * @addr: address relative to the base of the RAM region
   2858 * @buf: buffer with the data transferred
   2859 * @len: length of the data transferred
   2860 */
   2861static inline MemTxResult
   2862address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
   2863                           const void *buf, hwaddr len)
   2864{
   2865    assert(addr < cache->len && len <= cache->len - addr);
   2866    if (likely(cache->ptr)) {
   2867        memcpy(cache->ptr + addr, buf, len);
   2868        return MEMTX_OK;
   2869    } else {
   2870        return address_space_write_cached_slow(cache, addr, buf, len);
   2871    }
   2872}
   2873
   2874#ifdef NEED_CPU_H
   2875/* enum device_endian to MemOp.  */
   2876static inline MemOp devend_memop(enum device_endian end)
   2877{
   2878    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
   2879                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
   2880
   2881#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
   2882    /* Swap if non-host endianness or native (target) endianness */
   2883    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
   2884#else
   2885    const int non_host_endianness =
   2886        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
   2887
   2888    /* In this case, native (target) endianness needs no swap.  */
   2889    return (end == non_host_endianness) ? MO_BSWAP : 0;
   2890#endif
   2891}
   2892#endif
   2893
   2894/*
   2895 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
   2896 * to manage the actual amount of memory consumed by the VM (then, the memory
   2897 * provided by RAM blocks might be bigger than the desired memory consumption).
   2898 * This *must* be set if:
   2899 * - Discarding parts of a RAM blocks does not result in the change being
   2900 *   reflected in the VM and the pages getting freed.
   2901 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
   2902 *   discards blindly.
   2903 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
   2904 *   encrypted VMs).
   2905 * Technologies that only temporarily pin the current working set of a
   2906 * driver are fine, because we don't expect such pages to be discarded
   2907 * (esp. based on guest action like balloon inflation).
   2908 *
   2909 * This is *not* to be used to protect from concurrent discards (esp.,
   2910 * postcopy).
   2911 *
   2912 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
   2913 * discards to work reliably is active.
   2914 */
   2915int ram_block_discard_disable(bool state);
   2916
   2917/*
   2918 * See ram_block_discard_disable(): only disable uncoordinated discards,
   2919 * keeping coordinated discards (via the RamDiscardManager) enabled.
   2920 */
   2921int ram_block_uncoordinated_discard_disable(bool state);
   2922
   2923/*
   2924 * Inhibit technologies that disable discarding of pages in RAM blocks.
   2925 *
   2926 * Returns 0 if successful. Returns -EBUSY if discards are already set to
   2927 * broken.
   2928 */
   2929int ram_block_discard_require(bool state);
   2930
   2931/*
   2932 * See ram_block_discard_require(): only inhibit technologies that disable
   2933 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
   2934 * technologies that only inhibit uncoordinated discards (via the
   2935 * RamDiscardManager).
   2936 */
   2937int ram_block_coordinated_discard_require(bool state);
   2938
   2939/*
   2940 * Test if any discarding of memory in ram blocks is disabled.
   2941 */
   2942bool ram_block_discard_is_disabled(void);
   2943
   2944/*
   2945 * Test if any discarding of memory in ram blocks is required to work reliably.
   2946 */
   2947bool ram_block_discard_is_required(void);
   2948
   2949#endif
   2950
   2951#endif