cpu.h (31172B)
1/* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20#ifndef QEMU_CPU_H 21#define QEMU_CPU_H 22 23#include "hw/qdev-core.h" 24#include "disas/dis-asm.h" 25#include "exec/hwaddr.h" 26#include "exec/memattrs.h" 27#include "qapi/qapi-types-run-state.h" 28#include "qemu/bitmap.h" 29#include "qemu/rcu_queue.h" 30#include "qemu/queue.h" 31#include "qemu/thread.h" 32#include "qemu/plugin.h" 33#include "qom/object.h" 34 35typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38/** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42typedef uint64_t vaddr; 43#define VADDR_PRId PRId64 44#define VADDR_PRIu PRIu64 45#define VADDR_PRIo PRIo64 46#define VADDR_PRIx PRIx64 47#define VADDR_PRIX PRIX64 48#define VADDR_MAX UINT64_MAX 49 50/** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57#define TYPE_CPU "cpu" 58 59/* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63#define CPU(obj) ((CPUState *)(obj)) 64 65typedef struct CPUClass CPUClass; 66DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73} MMUAccessType; 74 75typedef struct CPUWatchpoint CPUWatchpoint; 76 77/* see tcg-cpu-ops.h */ 78struct TCGCPUOps; 79 80/* see accel-cpu.h */ 81struct AccelCPUClass; 82 83/* see sysemu-cpu-ops.h */ 84struct SysemuCPUOps; 85 86/** 87 * CPUClass: 88 * @class_by_name: Callback to map -cpu command line model name to an 89 * instantiatable CPU type. 90 * @parse_features: Callback to parse command line arguments. 91 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 92 * @has_work: Callback for checking if there is work to do. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 96 * @set_pc: Callback for setting the Program Counter register. This 97 * should have the semantics used by the target architecture when 98 * setting the PC from a source such as an ELF file entry point; 99 * for example on Arm it will also set the Thumb mode bit based 100 * on the least significant bit of the new PC value. 101 * If the target behaviour here is anything other than "set 102 * the PC register to the value passed in" then the target must 103 * also implement the synchronize_from_tb hook. 104 * @gdb_read_register: Callback for letting GDB read a register. 105 * @gdb_write_register: Callback for letting GDB write a register. 106 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 107 * breakpoint. Used by AVR to handle a gdb mis-feature with 108 * its Harvard architecture split code and data. 109 * @gdb_num_core_regs: Number of core registers accessible to GDB. 110 * @gdb_core_xml_file: File name for core registers GDB XML description. 111 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 112 * before the insn which triggers a watchpoint rather than after it. 113 * @gdb_arch_name: Optional callback that returns the architecture name known 114 * to GDB. The caller must free the returned string with g_free. 115 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 116 * gdb stub. Returns a pointer to the XML contents for the specified XML file 117 * or NULL if the CPU doesn't have a dynamically generated content for it. 118 * @disas_set_info: Setup architecture specific components of disassembly info 119 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 120 * address before attempting to match it against watchpoints. 121 * @deprecation_note: If this CPUClass is deprecated, this field provides 122 * related information. 123 * 124 * Represents a CPU family or model. 125 */ 126struct CPUClass { 127 /*< private >*/ 128 DeviceClass parent_class; 129 /*< public >*/ 130 131 ObjectClass *(*class_by_name)(const char *cpu_model); 132 void (*parse_features)(const char *typename, char *str, Error **errp); 133 134 bool (*has_work)(CPUState *cpu); 135 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 136 uint8_t *buf, int len, bool is_write); 137 void (*dump_state)(CPUState *cpu, FILE *, int flags); 138 int64_t (*get_arch_id)(CPUState *cpu); 139 void (*set_pc)(CPUState *cpu, vaddr value); 140 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 141 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 142 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 143 144 const char *gdb_core_xml_file; 145 gchar * (*gdb_arch_name)(CPUState *cpu); 146 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 147 148 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 149 150 const char *deprecation_note; 151 struct AccelCPUClass *accel_cpu; 152 153 /* when system emulation is not available, this pointer is NULL */ 154 const struct SysemuCPUOps *sysemu_ops; 155 156 /* when TCG is not available, this pointer is NULL */ 157 const struct TCGCPUOps *tcg_ops; 158 159 /* 160 * if not NULL, this is called in order for the CPUClass to initialize 161 * class data that depends on the accelerator, see accel/accel-common.c. 162 */ 163 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 164 165 /* 166 * Keep non-pointer data at the end to minimize holes. 167 */ 168 int reset_dump_flags; 169 int gdb_num_core_regs; 170 bool gdb_stop_before_watchpoint; 171}; 172 173/* 174 * Low 16 bits: number of cycles left, used only in icount mode. 175 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 176 * for this CPU and return to its top level loop (even in non-icount mode). 177 * This allows a single read-compare-cbranch-write sequence to test 178 * for both decrementer underflow and exceptions. 179 */ 180typedef union IcountDecr { 181 uint32_t u32; 182 struct { 183#ifdef HOST_WORDS_BIGENDIAN 184 uint16_t high; 185 uint16_t low; 186#else 187 uint16_t low; 188 uint16_t high; 189#endif 190 } u16; 191} IcountDecr; 192 193typedef struct CPUBreakpoint { 194 vaddr pc; 195 int flags; /* BP_* */ 196 QTAILQ_ENTRY(CPUBreakpoint) entry; 197} CPUBreakpoint; 198 199struct CPUWatchpoint { 200 vaddr vaddr; 201 vaddr len; 202 vaddr hitaddr; 203 MemTxAttrs hitattrs; 204 int flags; /* BP_* */ 205 QTAILQ_ENTRY(CPUWatchpoint) entry; 206}; 207 208#ifdef CONFIG_PLUGIN 209/* 210 * For plugins we sometime need to save the resolved iotlb data before 211 * the memory regions get moved around by io_writex. 212 */ 213typedef struct SavedIOTLB { 214 hwaddr addr; 215 MemoryRegionSection *section; 216 hwaddr mr_offset; 217} SavedIOTLB; 218#endif 219 220struct KVMState; 221struct kvm_run; 222 223struct hax_vcpu_state; 224struct hvf_vcpu_state; 225 226#define TB_JMP_CACHE_BITS 12 227#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 228 229/* work queue */ 230 231/* The union type allows passing of 64 bit target pointers on 32 bit 232 * hosts in a single parameter 233 */ 234typedef union { 235 int host_int; 236 unsigned long host_ulong; 237 void *host_ptr; 238 vaddr target_ptr; 239} run_on_cpu_data; 240 241#define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 242#define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 243#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 244#define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 245#define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 246 247typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 248 249struct qemu_work_item; 250 251#define CPU_UNSET_NUMA_NODE_ID -1 252#define CPU_TRACE_DSTATE_MAX_EVENTS 32 253 254/** 255 * CPUState: 256 * @cpu_index: CPU index (informative). 257 * @cluster_index: Identifies which cluster this CPU is in. 258 * For boards which don't define clusters or for "loose" CPUs not assigned 259 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 260 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 261 * QOM parent. 262 * @tcg_cflags: Pre-computed cflags for this cpu. 263 * @nr_cores: Number of cores within this CPU package. 264 * @nr_threads: Number of threads within this CPU. 265 * @running: #true if CPU is currently running (lockless). 266 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 267 * valid under cpu_list_lock. 268 * @created: Indicates whether the CPU thread has been successfully created. 269 * @interrupt_request: Indicates a pending interrupt request. 270 * @halted: Nonzero if the CPU is in suspended state. 271 * @stop: Indicates a pending stop request. 272 * @stopped: Indicates the CPU has been artificially stopped. 273 * @unplug: Indicates a pending CPU unplug request. 274 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 275 * @singlestep_enabled: Flags for single-stepping. 276 * @icount_extra: Instructions until next timer event. 277 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 278 * requires that IO only be performed on the last instruction of a TB 279 * so that interrupts take effect immediately. 280 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 281 * AddressSpaces this CPU has) 282 * @num_ases: number of CPUAddressSpaces in @cpu_ases 283 * @as: Pointer to the first AddressSpace, for the convenience of targets which 284 * only have a single AddressSpace 285 * @env_ptr: Pointer to subclass-specific CPUArchState field. 286 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 287 * @gdb_regs: Additional GDB registers. 288 * @gdb_num_regs: Number of total registers accessible to GDB. 289 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 290 * @next_cpu: Next CPU sharing TB cache. 291 * @opaque: User data. 292 * @mem_io_pc: Host Program Counter at which the memory was accessed. 293 * @kvm_fd: vCPU file descriptor for KVM. 294 * @work_mutex: Lock to prevent multiple access to @work_list. 295 * @work_list: List of pending asynchronous work. 296 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 297 * to @trace_dstate). 298 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 299 * @plugin_mask: Plugin event bitmap. Modified only via async work. 300 * @ignore_memory_transaction_failures: Cached copy of the MachineState 301 * flag of the same name: allows the board to suppress calling of the 302 * CPU do_transaction_failed hook function. 303 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 304 * ring is enabled. 305 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 306 * dirty ring structure. 307 * 308 * State of one CPU core or thread. 309 */ 310struct CPUState { 311 /*< private >*/ 312 DeviceState parent_obj; 313 /*< public >*/ 314 315 int nr_cores; 316 int nr_threads; 317 318 struct QemuThread *thread; 319#ifdef _WIN32 320 HANDLE hThread; 321#endif 322 int thread_id; 323 bool running, has_waiter; 324 struct QemuCond *halt_cond; 325 bool thread_kicked; 326 bool created; 327 bool stop; 328 bool stopped; 329 330 /* Should CPU start in powered-off state? */ 331 bool start_powered_off; 332 333 bool unplug; 334 bool crash_occurred; 335 bool exit_request; 336 bool in_exclusive_context; 337 uint32_t cflags_next_tb; 338 /* updates protected by BQL */ 339 uint32_t interrupt_request; 340 int singlestep_enabled; 341 int64_t icount_budget; 342 int64_t icount_extra; 343 uint64_t random_seed; 344 sigjmp_buf jmp_env; 345 346 QemuMutex work_mutex; 347 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 348 349 CPUAddressSpace *cpu_ases; 350 int num_ases; 351 AddressSpace *as; 352 MemoryRegion *memory; 353 354 void *env_ptr; /* CPUArchState */ 355 IcountDecr *icount_decr_ptr; 356 357 /* Accessed in parallel; all accesses must be atomic */ 358 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 359 360 struct GDBRegisterState *gdb_regs; 361 int gdb_num_regs; 362 int gdb_num_g_regs; 363 QTAILQ_ENTRY(CPUState) node; 364 365 /* ice debug support */ 366 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 367 368 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 369 CPUWatchpoint *watchpoint_hit; 370 371 void *opaque; 372 373 /* In order to avoid passing too many arguments to the MMIO helpers, 374 * we store some rarely used information in the CPU context. 375 */ 376 uintptr_t mem_io_pc; 377 378 /* Only used in KVM */ 379 int kvm_fd; 380 struct KVMState *kvm_state; 381 struct kvm_run *kvm_run; 382 struct kvm_dirty_gfn *kvm_dirty_gfns; 383 uint32_t kvm_fetch_index; 384 385 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 386 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 387 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 388 389 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 390 391#ifdef CONFIG_PLUGIN 392 GArray *plugin_mem_cbs; 393 /* saved iotlb data from io_writex */ 394 SavedIOTLB saved_iotlb; 395#endif 396 397 /* TODO Move common fields from CPUArchState here. */ 398 int cpu_index; 399 int cluster_index; 400 uint32_t tcg_cflags; 401 uint32_t halted; 402 uint32_t can_do_io; 403 int32_t exception_index; 404 405 /* shared by kvm, hax and hvf */ 406 bool vcpu_dirty; 407 408 /* Used to keep track of an outstanding cpu throttle thread for migration 409 * autoconverge 410 */ 411 bool throttle_thread_scheduled; 412 413 bool ignore_memory_transaction_failures; 414 415 struct hax_vcpu_state *hax_vcpu; 416 417 struct hvf_vcpu_state *hvf; 418 419 /* track IOMMUs whose translations we've cached in the TCG TLB */ 420 GArray *iommu_notifiers; 421}; 422 423typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 424extern CPUTailQ cpus; 425 426#define first_cpu QTAILQ_FIRST_RCU(&cpus) 427#define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 428#define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 429#define CPU_FOREACH_SAFE(cpu, next_cpu) \ 430 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 431 432extern __thread CPUState *current_cpu; 433 434static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 435{ 436 unsigned int i; 437 438 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 439 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 440 } 441} 442 443/** 444 * qemu_tcg_mttcg_enabled: 445 * Check whether we are running MultiThread TCG or not. 446 * 447 * Returns: %true if we are in MTTCG mode %false otherwise. 448 */ 449extern bool mttcg_enabled; 450#define qemu_tcg_mttcg_enabled() (mttcg_enabled) 451 452/** 453 * cpu_paging_enabled: 454 * @cpu: The CPU whose state is to be inspected. 455 * 456 * Returns: %true if paging is enabled, %false otherwise. 457 */ 458bool cpu_paging_enabled(const CPUState *cpu); 459 460/** 461 * cpu_get_memory_mapping: 462 * @cpu: The CPU whose memory mappings are to be obtained. 463 * @list: Where to write the memory mappings to. 464 * @errp: Pointer for reporting an #Error. 465 */ 466void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 467 Error **errp); 468 469#if !defined(CONFIG_USER_ONLY) 470 471/** 472 * cpu_write_elf64_note: 473 * @f: pointer to a function that writes memory to a file 474 * @cpu: The CPU whose memory is to be dumped 475 * @cpuid: ID number of the CPU 476 * @opaque: pointer to the CPUState struct 477 */ 478int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 479 int cpuid, void *opaque); 480 481/** 482 * cpu_write_elf64_qemunote: 483 * @f: pointer to a function that writes memory to a file 484 * @cpu: The CPU whose memory is to be dumped 485 * @cpuid: ID number of the CPU 486 * @opaque: pointer to the CPUState struct 487 */ 488int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 489 void *opaque); 490 491/** 492 * cpu_write_elf32_note: 493 * @f: pointer to a function that writes memory to a file 494 * @cpu: The CPU whose memory is to be dumped 495 * @cpuid: ID number of the CPU 496 * @opaque: pointer to the CPUState struct 497 */ 498int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 499 int cpuid, void *opaque); 500 501/** 502 * cpu_write_elf32_qemunote: 503 * @f: pointer to a function that writes memory to a file 504 * @cpu: The CPU whose memory is to be dumped 505 * @cpuid: ID number of the CPU 506 * @opaque: pointer to the CPUState struct 507 */ 508int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 509 void *opaque); 510 511/** 512 * cpu_get_crash_info: 513 * @cpu: The CPU to get crash information for 514 * 515 * Gets the previously saved crash information. 516 * Caller is responsible for freeing the data. 517 */ 518GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 519 520#endif /* !CONFIG_USER_ONLY */ 521 522/** 523 * CPUDumpFlags: 524 * @CPU_DUMP_CODE: 525 * @CPU_DUMP_FPU: dump FPU register state, not just integer 526 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 527 */ 528enum CPUDumpFlags { 529 CPU_DUMP_CODE = 0x00010000, 530 CPU_DUMP_FPU = 0x00020000, 531 CPU_DUMP_CCOP = 0x00040000, 532}; 533 534/** 535 * cpu_dump_state: 536 * @cpu: The CPU whose state is to be dumped. 537 * @f: If non-null, dump to this stream, else to current print sink. 538 * 539 * Dumps CPU state. 540 */ 541void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 542 543#ifndef CONFIG_USER_ONLY 544/** 545 * cpu_get_phys_page_attrs_debug: 546 * @cpu: The CPU to obtain the physical page address for. 547 * @addr: The virtual address. 548 * @attrs: Updated on return with the memory transaction attributes to use 549 * for this access. 550 * 551 * Obtains the physical page corresponding to a virtual one, together 552 * with the corresponding memory transaction attributes to use for the access. 553 * Use it only for debugging because no protection checks are done. 554 * 555 * Returns: Corresponding physical page address or -1 if no page found. 556 */ 557hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 558 MemTxAttrs *attrs); 559 560/** 561 * cpu_get_phys_page_debug: 562 * @cpu: The CPU to obtain the physical page address for. 563 * @addr: The virtual address. 564 * 565 * Obtains the physical page corresponding to a virtual one. 566 * Use it only for debugging because no protection checks are done. 567 * 568 * Returns: Corresponding physical page address or -1 if no page found. 569 */ 570hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 571 572/** cpu_asidx_from_attrs: 573 * @cpu: CPU 574 * @attrs: memory transaction attributes 575 * 576 * Returns the address space index specifying the CPU AddressSpace 577 * to use for a memory access with the given transaction attributes. 578 */ 579int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 580 581/** 582 * cpu_virtio_is_big_endian: 583 * @cpu: CPU 584 585 * Returns %true if a CPU which supports runtime configurable endianness 586 * is currently big-endian. 587 */ 588bool cpu_virtio_is_big_endian(CPUState *cpu); 589 590#endif /* CONFIG_USER_ONLY */ 591 592/** 593 * cpu_list_add: 594 * @cpu: The CPU to be added to the list of CPUs. 595 */ 596void cpu_list_add(CPUState *cpu); 597 598/** 599 * cpu_list_remove: 600 * @cpu: The CPU to be removed from the list of CPUs. 601 */ 602void cpu_list_remove(CPUState *cpu); 603 604/** 605 * cpu_reset: 606 * @cpu: The CPU whose state is to be reset. 607 */ 608void cpu_reset(CPUState *cpu); 609 610/** 611 * cpu_class_by_name: 612 * @typename: The CPU base type. 613 * @cpu_model: The model string without any parameters. 614 * 615 * Looks up a CPU #ObjectClass matching name @cpu_model. 616 * 617 * Returns: A #CPUClass or %NULL if not matching class is found. 618 */ 619ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 620 621/** 622 * cpu_create: 623 * @typename: The CPU type. 624 * 625 * Instantiates a CPU and realizes the CPU. 626 * 627 * Returns: A #CPUState or %NULL if an error occurred. 628 */ 629CPUState *cpu_create(const char *typename); 630 631/** 632 * parse_cpu_option: 633 * @cpu_option: The -cpu option including optional parameters. 634 * 635 * processes optional parameters and registers them as global properties 636 * 637 * Returns: type of CPU to create or prints error and terminates process 638 * if an error occurred. 639 */ 640const char *parse_cpu_option(const char *cpu_option); 641 642/** 643 * cpu_has_work: 644 * @cpu: The vCPU to check. 645 * 646 * Checks whether the CPU has work to do. 647 * 648 * Returns: %true if the CPU has work, %false otherwise. 649 */ 650static inline bool cpu_has_work(CPUState *cpu) 651{ 652 CPUClass *cc = CPU_GET_CLASS(cpu); 653 654 g_assert(cc->has_work); 655 return cc->has_work(cpu); 656} 657 658/** 659 * qemu_cpu_is_self: 660 * @cpu: The vCPU to check against. 661 * 662 * Checks whether the caller is executing on the vCPU thread. 663 * 664 * Returns: %true if called from @cpu's thread, %false otherwise. 665 */ 666bool qemu_cpu_is_self(CPUState *cpu); 667 668/** 669 * qemu_cpu_kick: 670 * @cpu: The vCPU to kick. 671 * 672 * Kicks @cpu's thread. 673 */ 674void qemu_cpu_kick(CPUState *cpu); 675 676/** 677 * cpu_is_stopped: 678 * @cpu: The CPU to check. 679 * 680 * Checks whether the CPU is stopped. 681 * 682 * Returns: %true if run state is not running or if artificially stopped; 683 * %false otherwise. 684 */ 685bool cpu_is_stopped(CPUState *cpu); 686 687/** 688 * do_run_on_cpu: 689 * @cpu: The vCPU to run on. 690 * @func: The function to be executed. 691 * @data: Data to pass to the function. 692 * @mutex: Mutex to release while waiting for @func to run. 693 * 694 * Used internally in the implementation of run_on_cpu. 695 */ 696void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 697 QemuMutex *mutex); 698 699/** 700 * run_on_cpu: 701 * @cpu: The vCPU to run on. 702 * @func: The function to be executed. 703 * @data: Data to pass to the function. 704 * 705 * Schedules the function @func for execution on the vCPU @cpu. 706 */ 707void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 708 709/** 710 * async_run_on_cpu: 711 * @cpu: The vCPU to run on. 712 * @func: The function to be executed. 713 * @data: Data to pass to the function. 714 * 715 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 716 */ 717void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 718 719/** 720 * async_safe_run_on_cpu: 721 * @cpu: The vCPU to run on. 722 * @func: The function to be executed. 723 * @data: Data to pass to the function. 724 * 725 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 726 * while all other vCPUs are sleeping. 727 * 728 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 729 * BQL. 730 */ 731void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 732 733/** 734 * cpu_in_exclusive_context() 735 * @cpu: The vCPU to check 736 * 737 * Returns true if @cpu is an exclusive context, for example running 738 * something which has previously been queued via async_safe_run_on_cpu(). 739 */ 740static inline bool cpu_in_exclusive_context(const CPUState *cpu) 741{ 742 return cpu->in_exclusive_context; 743} 744 745/** 746 * qemu_get_cpu: 747 * @index: The CPUState@cpu_index value of the CPU to obtain. 748 * 749 * Gets a CPU matching @index. 750 * 751 * Returns: The CPU or %NULL if there is no matching CPU. 752 */ 753CPUState *qemu_get_cpu(int index); 754 755/** 756 * cpu_exists: 757 * @id: Guest-exposed CPU ID to lookup. 758 * 759 * Search for CPU with specified ID. 760 * 761 * Returns: %true - CPU is found, %false - CPU isn't found. 762 */ 763bool cpu_exists(int64_t id); 764 765/** 766 * cpu_by_arch_id: 767 * @id: Guest-exposed CPU ID of the CPU to obtain. 768 * 769 * Get a CPU with matching @id. 770 * 771 * Returns: The CPU or %NULL if there is no matching CPU. 772 */ 773CPUState *cpu_by_arch_id(int64_t id); 774 775/** 776 * cpu_interrupt: 777 * @cpu: The CPU to set an interrupt on. 778 * @mask: The interrupts to set. 779 * 780 * Invokes the interrupt handler. 781 */ 782 783void cpu_interrupt(CPUState *cpu, int mask); 784 785/** 786 * cpu_set_pc: 787 * @cpu: The CPU to set the program counter for. 788 * @addr: Program counter value. 789 * 790 * Sets the program counter for a CPU. 791 */ 792static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 793{ 794 CPUClass *cc = CPU_GET_CLASS(cpu); 795 796 cc->set_pc(cpu, addr); 797} 798 799/** 800 * cpu_reset_interrupt: 801 * @cpu: The CPU to clear the interrupt on. 802 * @mask: The interrupt mask to clear. 803 * 804 * Resets interrupts on the vCPU @cpu. 805 */ 806void cpu_reset_interrupt(CPUState *cpu, int mask); 807 808/** 809 * cpu_exit: 810 * @cpu: The CPU to exit. 811 * 812 * Requests the CPU @cpu to exit execution. 813 */ 814void cpu_exit(CPUState *cpu); 815 816/** 817 * cpu_resume: 818 * @cpu: The CPU to resume. 819 * 820 * Resumes CPU, i.e. puts CPU into runnable state. 821 */ 822void cpu_resume(CPUState *cpu); 823 824/** 825 * cpu_remove_sync: 826 * @cpu: The CPU to remove. 827 * 828 * Requests the CPU to be removed and waits till it is removed. 829 */ 830void cpu_remove_sync(CPUState *cpu); 831 832/** 833 * process_queued_cpu_work() - process all items on CPU work queue 834 * @cpu: The CPU which work queue to process. 835 */ 836void process_queued_cpu_work(CPUState *cpu); 837 838/** 839 * cpu_exec_start: 840 * @cpu: The CPU for the current thread. 841 * 842 * Record that a CPU has started execution and can be interrupted with 843 * cpu_exit. 844 */ 845void cpu_exec_start(CPUState *cpu); 846 847/** 848 * cpu_exec_end: 849 * @cpu: The CPU for the current thread. 850 * 851 * Record that a CPU has stopped execution and exclusive sections 852 * can be executed without interrupting it. 853 */ 854void cpu_exec_end(CPUState *cpu); 855 856/** 857 * start_exclusive: 858 * 859 * Wait for a concurrent exclusive section to end, and then start 860 * a section of work that is run while other CPUs are not running 861 * between cpu_exec_start and cpu_exec_end. CPUs that are running 862 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 863 * during the exclusive section go to sleep until this CPU calls 864 * end_exclusive. 865 */ 866void start_exclusive(void); 867 868/** 869 * end_exclusive: 870 * 871 * Concludes an exclusive execution section started by start_exclusive. 872 */ 873void end_exclusive(void); 874 875/** 876 * qemu_init_vcpu: 877 * @cpu: The vCPU to initialize. 878 * 879 * Initializes a vCPU. 880 */ 881void qemu_init_vcpu(CPUState *cpu); 882 883#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 884#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 885#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 886 887/** 888 * cpu_single_step: 889 * @cpu: CPU to the flags for. 890 * @enabled: Flags to enable. 891 * 892 * Enables or disables single-stepping for @cpu. 893 */ 894void cpu_single_step(CPUState *cpu, int enabled); 895 896/* Breakpoint/watchpoint flags */ 897#define BP_MEM_READ 0x01 898#define BP_MEM_WRITE 0x02 899#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 900#define BP_STOP_BEFORE_ACCESS 0x04 901/* 0x08 currently unused */ 902#define BP_GDB 0x10 903#define BP_CPU 0x20 904#define BP_ANY (BP_GDB | BP_CPU) 905#define BP_WATCHPOINT_HIT_READ 0x40 906#define BP_WATCHPOINT_HIT_WRITE 0x80 907#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 908 909int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 910 CPUBreakpoint **breakpoint); 911int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 912void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 913void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 914 915/* Return true if PC matches an installed breakpoint. */ 916static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 917{ 918 CPUBreakpoint *bp; 919 920 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 921 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 922 if (bp->pc == pc && (bp->flags & mask)) { 923 return true; 924 } 925 } 926 } 927 return false; 928} 929 930#ifdef CONFIG_USER_ONLY 931static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 932 int flags, CPUWatchpoint **watchpoint) 933{ 934 return -ENOSYS; 935} 936 937static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 938 vaddr len, int flags) 939{ 940 return -ENOSYS; 941} 942 943static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 944 CPUWatchpoint *wp) 945{ 946} 947 948static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 949{ 950} 951 952static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 953 MemTxAttrs atr, int fl, uintptr_t ra) 954{ 955} 956 957static inline int cpu_watchpoint_address_matches(CPUState *cpu, 958 vaddr addr, vaddr len) 959{ 960 return 0; 961} 962#else 963int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 964 int flags, CPUWatchpoint **watchpoint); 965int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 966 vaddr len, int flags); 967void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 968void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 969 970/** 971 * cpu_check_watchpoint: 972 * @cpu: cpu context 973 * @addr: guest virtual address 974 * @len: access length 975 * @attrs: memory access attributes 976 * @flags: watchpoint access type 977 * @ra: unwind return address 978 * 979 * Check for a watchpoint hit in [addr, addr+len) of the type 980 * specified by @flags. Exit via exception with a hit. 981 */ 982void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 983 MemTxAttrs attrs, int flags, uintptr_t ra); 984 985/** 986 * cpu_watchpoint_address_matches: 987 * @cpu: cpu context 988 * @addr: guest virtual address 989 * @len: access length 990 * 991 * Return the watchpoint flags that apply to [addr, addr+len). 992 * If no watchpoint is registered for the range, the result is 0. 993 */ 994int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 995#endif 996 997/** 998 * cpu_get_address_space: 999 * @cpu: CPU to get address space from 1000 * @asidx: index identifying which address space to get 1001 * 1002 * Return the requested address space of this CPU. @asidx 1003 * specifies which address space to read. 1004 */ 1005AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1006 1007void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1008 GCC_FMT_ATTR(2, 3); 1009 1010/* $(top_srcdir)/cpu.c */ 1011void cpu_exec_initfn(CPUState *cpu); 1012void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1013void cpu_exec_unrealizefn(CPUState *cpu); 1014 1015/** 1016 * target_words_bigendian: 1017 * Returns true if the (default) endianness of the target is big endian, 1018 * false otherwise. Note that in target-specific code, you can use 1019 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1020 * code should normally never need to know about the endianness of the 1021 * target, so please do *not* use this function unless you know very well 1022 * what you are doing! 1023 */ 1024bool target_words_bigendian(void); 1025 1026#ifdef NEED_CPU_H 1027 1028#ifdef CONFIG_SOFTMMU 1029 1030extern const VMStateDescription vmstate_cpu_common; 1031 1032#define VMSTATE_CPU() { \ 1033 .name = "parent_obj", \ 1034 .size = sizeof(CPUState), \ 1035 .vmsd = &vmstate_cpu_common, \ 1036 .flags = VMS_STRUCT, \ 1037 .offset = 0, \ 1038} 1039#endif /* CONFIG_SOFTMMU */ 1040 1041#endif /* NEED_CPU_H */ 1042 1043#define UNASSIGNED_CPU_INDEX -1 1044#define UNASSIGNED_CLUSTER_INDEX -1 1045 1046#endif