xive_regs.h (11577B)
1/* 2 * QEMU PowerPC XIVE internal structure definitions 3 * 4 * 5 * The XIVE structures are accessed by the HW and their format is 6 * architected to be big-endian. Some macros are provided to ease 7 * access to the different fields. 8 * 9 * 10 * Copyright (c) 2016-2018, IBM Corporation. 11 * 12 * This code is licensed under the GPL version 2 or later. See the 13 * COPYING file in the top-level directory. 14 */ 15 16#ifndef PPC_XIVE_REGS_H 17#define PPC_XIVE_REGS_H 18 19#include "qemu/bswap.h" 20#include "qemu/host-utils.h" 21 22/* 23 * Interrupt source number encoding on PowerBUS 24 */ 25/* 26 * Trigger data definition 27 * 28 * The trigger definition is used for triggers both for HW source 29 * interrupts (PHB, PSI), as well as for rerouting interrupts between 30 * Interrupt Controller. 31 * 32 * HW source controllers set bit0 of word0 to ‘0’ as they provide EAS 33 * information (EAS block + EAS index) in the 8 byte data and not END 34 * information, which is use for rerouting interrupts. 35 * 36 * bit1 of word0 to ‘1’ signals that the state bit check has been 37 * performed. 38 */ 39#define XIVE_TRIGGER_END PPC_BIT(0) 40#define XIVE_TRIGGER_PQ PPC_BIT(1) 41 42/* 43 * QEMU macros to manipulate the trigger payload in native endian 44 */ 45#define XIVE_EAS_BLOCK(n) (((n) >> 28) & 0xf) 46#define XIVE_EAS_INDEX(n) ((n) & 0x0fffffff) 47#define XIVE_EAS(blk, idx) ((uint32_t)(blk) << 28 | (idx)) 48 49#define TM_SHIFT 16 50 51/* TM register offsets */ 52#define TM_QW0_USER 0x000 /* All rings */ 53#define TM_QW1_OS 0x010 /* Ring 0..2 */ 54#define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */ 55#define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */ 56 57/* Byte offsets inside a QW QW0 QW1 QW2 QW3 */ 58#define TM_NSR 0x0 /* + + - + */ 59#define TM_CPPR 0x1 /* - + - + */ 60#define TM_IPB 0x2 /* - + + + */ 61#define TM_LSMFB 0x3 /* - + + + */ 62#define TM_ACK_CNT 0x4 /* - + - - */ 63#define TM_INC 0x5 /* - + - + */ 64#define TM_AGE 0x6 /* - + - + */ 65#define TM_PIPR 0x7 /* - + - + */ 66 67#define TM_WORD0 0x0 68#define TM_WORD1 0x4 69 70/* 71 * QW word 2 contains the valid bit at the top and other fields 72 * depending on the QW. 73 */ 74#define TM_WORD2 0x8 75#define TM_QW0W2_VU PPC_BIT32(0) 76#define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1, 31) /* XX 2,31 ? */ 77#define TM_QW1W2_VO PPC_BIT32(0) 78#define TM_QW1W2_OS_CAM PPC_BITMASK32(8, 31) 79#define TM_QW2W2_VP PPC_BIT32(0) 80#define TM_QW2W2_POOL_CAM PPC_BITMASK32(8, 31) 81#define TM_QW3W2_VT PPC_BIT32(0) 82#define TM_QW3W2_LP PPC_BIT32(6) 83#define TM_QW3W2_LE PPC_BIT32(7) 84#define TM_QW3W2_T PPC_BIT32(31) 85 86/* 87 * In addition to normal loads to "peek" and writes (only when invalid) 88 * using 4 and 8 bytes accesses, the above registers support these 89 * "special" byte operations: 90 * 91 * - Byte load from QW0[NSR] - User level NSR (EBB) 92 * - Byte store to QW0[NSR] - User level NSR (EBB) 93 * - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access 94 * - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0 95 * otherwise VT||0000000 96 * - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present) 97 * 98 * Then we have all these "special" CI ops at these offset that trigger 99 * all sorts of side effects: 100 */ 101#define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/ 102#define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */ 103#define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */ 104#define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user 105 * context */ 106#define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */ 107#define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS 108 * context to reg */ 109#define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool 110 * context to reg*/ 111#define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */ 112#define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd 113 * line */ 114#define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */ 115#define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even 116 * line */ 117#define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */ 118/* XXX more... */ 119 120/* NSR fields for the various QW ack types */ 121#define TM_QW0_NSR_EB PPC_BIT8(0) 122#define TM_QW1_NSR_EO PPC_BIT8(0) 123#define TM_QW3_NSR_HE PPC_BITMASK8(0, 1) 124#define TM_QW3_NSR_HE_NONE 0 125#define TM_QW3_NSR_HE_POOL 1 126#define TM_QW3_NSR_HE_PHYS 2 127#define TM_QW3_NSR_HE_LSI 3 128#define TM_QW3_NSR_I PPC_BIT8(2) 129#define TM_QW3_NSR_GRP_LVL PPC_BIT8(3, 7) 130 131/* 132 * EAS (Event Assignment Structure) 133 * 134 * One per interrupt source. Targets an interrupt to a given Event 135 * Notification Descriptor (END) and provides the corresponding 136 * logical interrupt number (END data) 137 */ 138typedef struct XiveEAS { 139 /* 140 * Use a single 64-bit definition to make it easier to perform 141 * atomic updates 142 */ 143 uint64_t w; 144#define EAS_VALID PPC_BIT(0) 145#define EAS_END_BLOCK PPC_BITMASK(4, 7) /* Destination END block# */ 146#define EAS_END_INDEX PPC_BITMASK(8, 31) /* Destination END index */ 147#define EAS_MASKED PPC_BIT(32) /* Masked */ 148#define EAS_END_DATA PPC_BITMASK(33, 63) /* Data written to the END */ 149} XiveEAS; 150 151#define xive_eas_is_valid(eas) (be64_to_cpu((eas)->w) & EAS_VALID) 152#define xive_eas_is_masked(eas) (be64_to_cpu((eas)->w) & EAS_MASKED) 153 154void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon); 155 156static inline uint64_t xive_get_field64(uint64_t mask, uint64_t word) 157{ 158 return (be64_to_cpu(word) & mask) >> ctz64(mask); 159} 160 161static inline uint64_t xive_set_field64(uint64_t mask, uint64_t word, 162 uint64_t value) 163{ 164 uint64_t tmp = 165 (be64_to_cpu(word) & ~mask) | ((value << ctz64(mask)) & mask); 166 return cpu_to_be64(tmp); 167} 168 169static inline uint32_t xive_get_field32(uint32_t mask, uint32_t word) 170{ 171 return (be32_to_cpu(word) & mask) >> ctz32(mask); 172} 173 174static inline uint32_t xive_set_field32(uint32_t mask, uint32_t word, 175 uint32_t value) 176{ 177 uint32_t tmp = 178 (be32_to_cpu(word) & ~mask) | ((value << ctz32(mask)) & mask); 179 return cpu_to_be32(tmp); 180} 181 182/* Event Notification Descriptor (END) */ 183typedef struct XiveEND { 184 uint32_t w0; 185#define END_W0_VALID PPC_BIT32(0) /* "v" bit */ 186#define END_W0_ENQUEUE PPC_BIT32(1) /* "q" bit */ 187#define END_W0_UCOND_NOTIFY PPC_BIT32(2) /* "n" bit */ 188#define END_W0_BACKLOG PPC_BIT32(3) /* "b" bit */ 189#define END_W0_PRECL_ESC_CTL PPC_BIT32(4) /* "p" bit */ 190#define END_W0_ESCALATE_CTL PPC_BIT32(5) /* "e" bit */ 191#define END_W0_UNCOND_ESCALATE PPC_BIT32(6) /* "u" bit - DD2.0 */ 192#define END_W0_SILENT_ESCALATE PPC_BIT32(7) /* "s" bit - DD2.0 */ 193#define END_W0_QSIZE PPC_BITMASK32(12, 15) 194#define END_W0_SW0 PPC_BIT32(16) 195#define END_W0_FIRMWARE END_W0_SW0 /* Owned by FW */ 196#define END_QSIZE_4K 0 197#define END_QSIZE_64K 4 198#define END_W0_HWDEP PPC_BITMASK32(24, 31) 199 uint32_t w1; 200#define END_W1_ESn PPC_BITMASK32(0, 1) 201#define END_W1_ESn_P PPC_BIT32(0) 202#define END_W1_ESn_Q PPC_BIT32(1) 203#define END_W1_ESe PPC_BITMASK32(2, 3) 204#define END_W1_ESe_P PPC_BIT32(2) 205#define END_W1_ESe_Q PPC_BIT32(3) 206#define END_W1_GENERATION PPC_BIT32(9) 207#define END_W1_PAGE_OFF PPC_BITMASK32(10, 31) 208 uint32_t w2; 209#define END_W2_MIGRATION_REG PPC_BITMASK32(0, 3) 210#define END_W2_OP_DESC_HI PPC_BITMASK32(4, 31) 211 uint32_t w3; 212#define END_W3_OP_DESC_LO PPC_BITMASK32(0, 31) 213 uint32_t w4; 214#define END_W4_ESC_END_BLOCK PPC_BITMASK32(4, 7) 215#define END_W4_ESC_END_INDEX PPC_BITMASK32(8, 31) 216 uint32_t w5; 217#define END_W5_ESC_END_DATA PPC_BITMASK32(1, 31) 218 uint32_t w6; 219#define END_W6_FORMAT_BIT PPC_BIT32(8) 220#define END_W6_NVT_BLOCK PPC_BITMASK32(9, 12) 221#define END_W6_NVT_INDEX PPC_BITMASK32(13, 31) 222 uint32_t w7; 223#define END_W7_F0_IGNORE PPC_BIT32(0) 224#define END_W7_F0_BLK_GROUPING PPC_BIT32(1) 225#define END_W7_F0_PRIORITY PPC_BITMASK32(8, 15) 226#define END_W7_F1_WAKEZ PPC_BIT32(0) 227#define END_W7_F1_LOG_SERVER_ID PPC_BITMASK32(1, 31) 228} XiveEND; 229 230#define xive_end_is_valid(end) (be32_to_cpu((end)->w0) & END_W0_VALID) 231#define xive_end_is_enqueue(end) (be32_to_cpu((end)->w0) & END_W0_ENQUEUE) 232#define xive_end_is_notify(end) (be32_to_cpu((end)->w0) & END_W0_UCOND_NOTIFY) 233#define xive_end_is_backlog(end) (be32_to_cpu((end)->w0) & END_W0_BACKLOG) 234#define xive_end_is_escalate(end) (be32_to_cpu((end)->w0) & END_W0_ESCALATE_CTL) 235#define xive_end_is_uncond_escalation(end) \ 236 (be32_to_cpu((end)->w0) & END_W0_UNCOND_ESCALATE) 237#define xive_end_is_silent_escalation(end) \ 238 (be32_to_cpu((end)->w0) & END_W0_SILENT_ESCALATE) 239#define xive_end_is_firmware(end) \ 240 (be32_to_cpu((end)->w0) & END_W0_FIRMWARE) 241 242static inline uint64_t xive_end_qaddr(XiveEND *end) 243{ 244 return ((uint64_t) be32_to_cpu(end->w2) & 0x0fffffff) << 32 | 245 be32_to_cpu(end->w3); 246} 247 248void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon); 249void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon); 250void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon); 251 252/* Notification Virtual Target (NVT) */ 253typedef struct XiveNVT { 254 uint32_t w0; 255#define NVT_W0_VALID PPC_BIT32(0) 256 uint32_t w1; 257#define NVT_W1_EQ_BLOCK PPC_BITMASK32(0, 3) 258#define NVT_W1_EQ_INDEX PPC_BITMASK32(4, 31) 259 uint32_t w2; 260 uint32_t w3; 261 uint32_t w4; 262#define NVT_W4_IPB PPC_BITMASK32(16, 23) 263 uint32_t w5; 264 uint32_t w6; 265 uint32_t w7; 266 uint32_t w8; 267#define NVT_W8_GRP_VALID PPC_BIT32(0) 268 uint32_t w9; 269 uint32_t wa; 270 uint32_t wb; 271 uint32_t wc; 272 uint32_t wd; 273 uint32_t we; 274 uint32_t wf; 275} XiveNVT; 276 277#define xive_nvt_is_valid(nvt) (be32_to_cpu((nvt)->w0) & NVT_W0_VALID) 278 279/* 280 * The VP number space in a block is defined by the END_W6_NVT_INDEX 281 * field of the XIVE END 282 */ 283#define XIVE_NVT_SHIFT 19 284#define XIVE_NVT_COUNT (1 << XIVE_NVT_SHIFT) 285 286static inline uint32_t xive_nvt_cam_line(uint8_t nvt_blk, uint32_t nvt_idx) 287{ 288 return (nvt_blk << XIVE_NVT_SHIFT) | nvt_idx; 289} 290 291static inline uint32_t xive_nvt_idx(uint32_t cam_line) 292{ 293 return cam_line & ((1 << XIVE_NVT_SHIFT) - 1); 294} 295 296static inline uint32_t xive_nvt_blk(uint32_t cam_line) 297{ 298 return (cam_line >> XIVE_NVT_SHIFT) & 0xf; 299} 300 301#endif /* PPC_XIVE_REGS_H */