cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

xive_regs.h (11577B)


      1/*
      2 * QEMU PowerPC XIVE internal structure definitions
      3 *
      4 *
      5 * The XIVE structures are accessed by the HW and their format is
      6 * architected to be big-endian. Some macros are provided to ease
      7 * access to the different fields.
      8 *
      9 *
     10 * Copyright (c) 2016-2018, IBM Corporation.
     11 *
     12 * This code is licensed under the GPL version 2 or later. See the
     13 * COPYING file in the top-level directory.
     14 */
     15
     16#ifndef PPC_XIVE_REGS_H
     17#define PPC_XIVE_REGS_H
     18
     19#include "qemu/bswap.h"
     20#include "qemu/host-utils.h"
     21
     22/*
     23 * Interrupt source number encoding on PowerBUS
     24 */
     25/*
     26 * Trigger data definition
     27 *
     28 * The trigger definition is used for triggers both for HW source
     29 * interrupts (PHB, PSI), as well as for rerouting interrupts between
     30 * Interrupt Controller.
     31 *
     32 * HW source controllers set bit0 of word0 to ‘0’ as they provide EAS
     33 * information (EAS block + EAS index) in the 8 byte data and not END
     34 * information, which is use for rerouting interrupts.
     35 *
     36 * bit1 of word0 to ‘1’ signals that the state bit check has been
     37 * performed.
     38 */
     39#define XIVE_TRIGGER_END        PPC_BIT(0)
     40#define XIVE_TRIGGER_PQ         PPC_BIT(1)
     41
     42/*
     43 * QEMU macros to manipulate the trigger payload in native endian
     44 */
     45#define XIVE_EAS_BLOCK(n)       (((n) >> 28) & 0xf)
     46#define XIVE_EAS_INDEX(n)       ((n) & 0x0fffffff)
     47#define XIVE_EAS(blk, idx)      ((uint32_t)(blk) << 28 | (idx))
     48
     49#define TM_SHIFT                16
     50
     51/* TM register offsets */
     52#define TM_QW0_USER             0x000 /* All rings */
     53#define TM_QW1_OS               0x010 /* Ring 0..2 */
     54#define TM_QW2_HV_POOL          0x020 /* Ring 0..1 */
     55#define TM_QW3_HV_PHYS          0x030 /* Ring 0..1 */
     56
     57/* Byte offsets inside a QW             QW0 QW1 QW2 QW3 */
     58#define TM_NSR                  0x0  /*  +   +   -   +  */
     59#define TM_CPPR                 0x1  /*  -   +   -   +  */
     60#define TM_IPB                  0x2  /*  -   +   +   +  */
     61#define TM_LSMFB                0x3  /*  -   +   +   +  */
     62#define TM_ACK_CNT              0x4  /*  -   +   -   -  */
     63#define TM_INC                  0x5  /*  -   +   -   +  */
     64#define TM_AGE                  0x6  /*  -   +   -   +  */
     65#define TM_PIPR                 0x7  /*  -   +   -   +  */
     66
     67#define TM_WORD0                0x0
     68#define TM_WORD1                0x4
     69
     70/*
     71 * QW word 2 contains the valid bit at the top and other fields
     72 * depending on the QW.
     73 */
     74#define   TM_WORD2              0x8
     75#define   TM_QW0W2_VU           PPC_BIT32(0)
     76#define   TM_QW0W2_LOGIC_SERV   PPC_BITMASK32(1, 31) /* XX 2,31 ? */
     77#define   TM_QW1W2_VO           PPC_BIT32(0)
     78#define   TM_QW1W2_OS_CAM       PPC_BITMASK32(8, 31)
     79#define   TM_QW2W2_VP           PPC_BIT32(0)
     80#define   TM_QW2W2_POOL_CAM     PPC_BITMASK32(8, 31)
     81#define   TM_QW3W2_VT           PPC_BIT32(0)
     82#define   TM_QW3W2_LP           PPC_BIT32(6)
     83#define   TM_QW3W2_LE           PPC_BIT32(7)
     84#define   TM_QW3W2_T            PPC_BIT32(31)
     85
     86/*
     87 * In addition to normal loads to "peek" and writes (only when invalid)
     88 * using 4 and 8 bytes accesses, the above registers support these
     89 * "special" byte operations:
     90 *
     91 *   - Byte load from QW0[NSR] - User level NSR (EBB)
     92 *   - Byte store to QW0[NSR] - User level NSR (EBB)
     93 *   - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
     94 *   - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
     95 *                                    otherwise VT||0000000
     96 *   - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
     97 *
     98 * Then we have all these "special" CI ops at these offset that trigger
     99 * all sorts of side effects:
    100 */
    101#define TM_SPC_ACK_EBB          0x800   /* Load8 ack EBB to reg*/
    102#define TM_SPC_ACK_OS_REG       0x810   /* Load16 ack OS irq to reg */
    103#define TM_SPC_PUSH_USR_CTX     0x808   /* Store32 Push/Validate user context */
    104#define TM_SPC_PULL_USR_CTX     0x808   /* Load32 Pull/Invalidate user
    105                                         * context */
    106#define TM_SPC_SET_OS_PENDING   0x812   /* Store8 Set OS irq pending bit */
    107#define TM_SPC_PULL_OS_CTX      0x818   /* Load32/Load64 Pull/Invalidate OS
    108                                         * context to reg */
    109#define TM_SPC_PULL_POOL_CTX    0x828   /* Load32/Load64 Pull/Invalidate Pool
    110                                         * context to reg*/
    111#define TM_SPC_ACK_HV_REG       0x830   /* Load16 ack HV irq to reg */
    112#define TM_SPC_PULL_USR_CTX_OL  0xc08   /* Store8 Pull/Inval usr ctx to odd
    113                                         * line */
    114#define TM_SPC_ACK_OS_EL        0xc10   /* Store8 ack OS irq to even line */
    115#define TM_SPC_ACK_HV_POOL_EL   0xc20   /* Store8 ack HV evt pool to even
    116                                         * line */
    117#define TM_SPC_ACK_HV_EL        0xc30   /* Store8 ack HV irq to even line */
    118/* XXX more... */
    119
    120/* NSR fields for the various QW ack types */
    121#define TM_QW0_NSR_EB           PPC_BIT8(0)
    122#define TM_QW1_NSR_EO           PPC_BIT8(0)
    123#define TM_QW3_NSR_HE           PPC_BITMASK8(0, 1)
    124#define  TM_QW3_NSR_HE_NONE     0
    125#define  TM_QW3_NSR_HE_POOL     1
    126#define  TM_QW3_NSR_HE_PHYS     2
    127#define  TM_QW3_NSR_HE_LSI      3
    128#define TM_QW3_NSR_I            PPC_BIT8(2)
    129#define TM_QW3_NSR_GRP_LVL      PPC_BIT8(3, 7)
    130
    131/*
    132 * EAS (Event Assignment Structure)
    133 *
    134 * One per interrupt source. Targets an interrupt to a given Event
    135 * Notification Descriptor (END) and provides the corresponding
    136 * logical interrupt number (END data)
    137 */
    138typedef struct XiveEAS {
    139        /*
    140         * Use a single 64-bit definition to make it easier to perform
    141         * atomic updates
    142         */
    143        uint64_t        w;
    144#define EAS_VALID       PPC_BIT(0)
    145#define EAS_END_BLOCK   PPC_BITMASK(4, 7)        /* Destination END block# */
    146#define EAS_END_INDEX   PPC_BITMASK(8, 31)       /* Destination END index */
    147#define EAS_MASKED      PPC_BIT(32)              /* Masked */
    148#define EAS_END_DATA    PPC_BITMASK(33, 63)      /* Data written to the END */
    149} XiveEAS;
    150
    151#define xive_eas_is_valid(eas)   (be64_to_cpu((eas)->w) & EAS_VALID)
    152#define xive_eas_is_masked(eas)  (be64_to_cpu((eas)->w) & EAS_MASKED)
    153
    154void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon);
    155
    156static inline uint64_t xive_get_field64(uint64_t mask, uint64_t word)
    157{
    158    return (be64_to_cpu(word) & mask) >> ctz64(mask);
    159}
    160
    161static inline uint64_t xive_set_field64(uint64_t mask, uint64_t word,
    162                                        uint64_t value)
    163{
    164    uint64_t tmp =
    165        (be64_to_cpu(word) & ~mask) | ((value << ctz64(mask)) & mask);
    166    return cpu_to_be64(tmp);
    167}
    168
    169static inline uint32_t xive_get_field32(uint32_t mask, uint32_t word)
    170{
    171    return (be32_to_cpu(word) & mask) >> ctz32(mask);
    172}
    173
    174static inline uint32_t xive_set_field32(uint32_t mask, uint32_t word,
    175                                        uint32_t value)
    176{
    177    uint32_t tmp =
    178        (be32_to_cpu(word) & ~mask) | ((value << ctz32(mask)) & mask);
    179    return cpu_to_be32(tmp);
    180}
    181
    182/* Event Notification Descriptor (END) */
    183typedef struct XiveEND {
    184        uint32_t        w0;
    185#define END_W0_VALID             PPC_BIT32(0) /* "v" bit */
    186#define END_W0_ENQUEUE           PPC_BIT32(1) /* "q" bit */
    187#define END_W0_UCOND_NOTIFY      PPC_BIT32(2) /* "n" bit */
    188#define END_W0_BACKLOG           PPC_BIT32(3) /* "b" bit */
    189#define END_W0_PRECL_ESC_CTL     PPC_BIT32(4) /* "p" bit */
    190#define END_W0_ESCALATE_CTL      PPC_BIT32(5) /* "e" bit */
    191#define END_W0_UNCOND_ESCALATE   PPC_BIT32(6) /* "u" bit - DD2.0 */
    192#define END_W0_SILENT_ESCALATE   PPC_BIT32(7) /* "s" bit - DD2.0 */
    193#define END_W0_QSIZE             PPC_BITMASK32(12, 15)
    194#define END_W0_SW0               PPC_BIT32(16)
    195#define END_W0_FIRMWARE          END_W0_SW0 /* Owned by FW */
    196#define END_QSIZE_4K             0
    197#define END_QSIZE_64K            4
    198#define END_W0_HWDEP             PPC_BITMASK32(24, 31)
    199        uint32_t        w1;
    200#define END_W1_ESn               PPC_BITMASK32(0, 1)
    201#define END_W1_ESn_P             PPC_BIT32(0)
    202#define END_W1_ESn_Q             PPC_BIT32(1)
    203#define END_W1_ESe               PPC_BITMASK32(2, 3)
    204#define END_W1_ESe_P             PPC_BIT32(2)
    205#define END_W1_ESe_Q             PPC_BIT32(3)
    206#define END_W1_GENERATION        PPC_BIT32(9)
    207#define END_W1_PAGE_OFF          PPC_BITMASK32(10, 31)
    208        uint32_t        w2;
    209#define END_W2_MIGRATION_REG     PPC_BITMASK32(0, 3)
    210#define END_W2_OP_DESC_HI        PPC_BITMASK32(4, 31)
    211        uint32_t        w3;
    212#define END_W3_OP_DESC_LO        PPC_BITMASK32(0, 31)
    213        uint32_t        w4;
    214#define END_W4_ESC_END_BLOCK     PPC_BITMASK32(4, 7)
    215#define END_W4_ESC_END_INDEX     PPC_BITMASK32(8, 31)
    216        uint32_t        w5;
    217#define END_W5_ESC_END_DATA      PPC_BITMASK32(1, 31)
    218        uint32_t        w6;
    219#define END_W6_FORMAT_BIT        PPC_BIT32(8)
    220#define END_W6_NVT_BLOCK         PPC_BITMASK32(9, 12)
    221#define END_W6_NVT_INDEX         PPC_BITMASK32(13, 31)
    222        uint32_t        w7;
    223#define END_W7_F0_IGNORE         PPC_BIT32(0)
    224#define END_W7_F0_BLK_GROUPING   PPC_BIT32(1)
    225#define END_W7_F0_PRIORITY       PPC_BITMASK32(8, 15)
    226#define END_W7_F1_WAKEZ          PPC_BIT32(0)
    227#define END_W7_F1_LOG_SERVER_ID  PPC_BITMASK32(1, 31)
    228} XiveEND;
    229
    230#define xive_end_is_valid(end)    (be32_to_cpu((end)->w0) & END_W0_VALID)
    231#define xive_end_is_enqueue(end)  (be32_to_cpu((end)->w0) & END_W0_ENQUEUE)
    232#define xive_end_is_notify(end)   (be32_to_cpu((end)->w0) & END_W0_UCOND_NOTIFY)
    233#define xive_end_is_backlog(end)  (be32_to_cpu((end)->w0) & END_W0_BACKLOG)
    234#define xive_end_is_escalate(end) (be32_to_cpu((end)->w0) & END_W0_ESCALATE_CTL)
    235#define xive_end_is_uncond_escalation(end)              \
    236    (be32_to_cpu((end)->w0) & END_W0_UNCOND_ESCALATE)
    237#define xive_end_is_silent_escalation(end)              \
    238    (be32_to_cpu((end)->w0) & END_W0_SILENT_ESCALATE)
    239#define xive_end_is_firmware(end)              \
    240    (be32_to_cpu((end)->w0) & END_W0_FIRMWARE)
    241
    242static inline uint64_t xive_end_qaddr(XiveEND *end)
    243{
    244    return ((uint64_t) be32_to_cpu(end->w2) & 0x0fffffff) << 32 |
    245        be32_to_cpu(end->w3);
    246}
    247
    248void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon);
    249void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon);
    250void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon);
    251
    252/* Notification Virtual Target (NVT) */
    253typedef struct XiveNVT {
    254        uint32_t        w0;
    255#define NVT_W0_VALID             PPC_BIT32(0)
    256        uint32_t        w1;
    257#define NVT_W1_EQ_BLOCK          PPC_BITMASK32(0, 3)
    258#define NVT_W1_EQ_INDEX          PPC_BITMASK32(4, 31)
    259        uint32_t        w2;
    260        uint32_t        w3;
    261        uint32_t        w4;
    262#define NVT_W4_IPB               PPC_BITMASK32(16, 23)
    263        uint32_t        w5;
    264        uint32_t        w6;
    265        uint32_t        w7;
    266        uint32_t        w8;
    267#define NVT_W8_GRP_VALID         PPC_BIT32(0)
    268        uint32_t        w9;
    269        uint32_t        wa;
    270        uint32_t        wb;
    271        uint32_t        wc;
    272        uint32_t        wd;
    273        uint32_t        we;
    274        uint32_t        wf;
    275} XiveNVT;
    276
    277#define xive_nvt_is_valid(nvt)    (be32_to_cpu((nvt)->w0) & NVT_W0_VALID)
    278
    279/*
    280 * The VP number space in a block is defined by the END_W6_NVT_INDEX
    281 * field of the XIVE END
    282 */
    283#define XIVE_NVT_SHIFT                19
    284#define XIVE_NVT_COUNT                (1 << XIVE_NVT_SHIFT)
    285
    286static inline uint32_t xive_nvt_cam_line(uint8_t nvt_blk, uint32_t nvt_idx)
    287{
    288    return (nvt_blk << XIVE_NVT_SHIFT) | nvt_idx;
    289}
    290
    291static inline uint32_t xive_nvt_idx(uint32_t cam_line)
    292{
    293    return cam_line & ((1 << XIVE_NVT_SHIFT) - 1);
    294}
    295
    296static inline uint32_t xive_nvt_blk(uint32_t cam_line)
    297{
    298    return (cam_line >> XIVE_NVT_SHIFT) & 0xf;
    299}
    300
    301#endif /* PPC_XIVE_REGS_H */