cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

bitops.h (18510B)


      1/*
      2 * Bitops Module
      3 *
      4 * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
      5 *
      6 * Mostly inspired by (stolen from) linux/bitmap.h and linux/bitops.h
      7 *
      8 * This work is licensed under the terms of the GNU LGPL, version 2.1 or later.
      9 * See the COPYING.LIB file in the top-level directory.
     10 */
     11
     12#ifndef BITOPS_H
     13#define BITOPS_H
     14
     15
     16#include "host-utils.h"
     17#include "atomic.h"
     18
     19#define BITS_PER_BYTE           CHAR_BIT
     20#define BITS_PER_LONG           (sizeof (unsigned long) * BITS_PER_BYTE)
     21
     22#define BIT(nr)                 (1UL << (nr))
     23#define BIT_ULL(nr)             (1ULL << (nr))
     24#define BIT_MASK(nr)            (1UL << ((nr) % BITS_PER_LONG))
     25#define BIT_WORD(nr)            ((nr) / BITS_PER_LONG)
     26#define BITS_TO_LONGS(nr)       DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
     27
     28#define MAKE_64BIT_MASK(shift, length) \
     29    (((~0ULL) >> (64 - (length))) << (shift))
     30
     31/**
     32 * set_bit - Set a bit in memory
     33 * @nr: the bit to set
     34 * @addr: the address to start counting from
     35 */
     36static inline void set_bit(long nr, unsigned long *addr)
     37{
     38    unsigned long mask = BIT_MASK(nr);
     39    unsigned long *p = addr + BIT_WORD(nr);
     40
     41    *p  |= mask;
     42}
     43
     44/**
     45 * set_bit_atomic - Set a bit in memory atomically
     46 * @nr: the bit to set
     47 * @addr: the address to start counting from
     48 */
     49static inline void set_bit_atomic(long nr, unsigned long *addr)
     50{
     51    unsigned long mask = BIT_MASK(nr);
     52    unsigned long *p = addr + BIT_WORD(nr);
     53
     54    qatomic_or(p, mask);
     55}
     56
     57/**
     58 * clear_bit - Clears a bit in memory
     59 * @nr: Bit to clear
     60 * @addr: Address to start counting from
     61 */
     62static inline void clear_bit(long nr, unsigned long *addr)
     63{
     64    unsigned long mask = BIT_MASK(nr);
     65    unsigned long *p = addr + BIT_WORD(nr);
     66
     67    *p &= ~mask;
     68}
     69
     70/**
     71 * change_bit - Toggle a bit in memory
     72 * @nr: Bit to change
     73 * @addr: Address to start counting from
     74 */
     75static inline void change_bit(long nr, unsigned long *addr)
     76{
     77    unsigned long mask = BIT_MASK(nr);
     78    unsigned long *p = addr + BIT_WORD(nr);
     79
     80    *p ^= mask;
     81}
     82
     83/**
     84 * test_and_set_bit - Set a bit and return its old value
     85 * @nr: Bit to set
     86 * @addr: Address to count from
     87 */
     88static inline int test_and_set_bit(long nr, unsigned long *addr)
     89{
     90    unsigned long mask = BIT_MASK(nr);
     91    unsigned long *p = addr + BIT_WORD(nr);
     92    unsigned long old = *p;
     93
     94    *p = old | mask;
     95    return (old & mask) != 0;
     96}
     97
     98/**
     99 * test_and_clear_bit - Clear a bit and return its old value
    100 * @nr: Bit to clear
    101 * @addr: Address to count from
    102 */
    103static inline int test_and_clear_bit(long nr, unsigned long *addr)
    104{
    105    unsigned long mask = BIT_MASK(nr);
    106    unsigned long *p = addr + BIT_WORD(nr);
    107    unsigned long old = *p;
    108
    109    *p = old & ~mask;
    110    return (old & mask) != 0;
    111}
    112
    113/**
    114 * test_and_change_bit - Change a bit and return its old value
    115 * @nr: Bit to change
    116 * @addr: Address to count from
    117 */
    118static inline int test_and_change_bit(long nr, unsigned long *addr)
    119{
    120    unsigned long mask = BIT_MASK(nr);
    121    unsigned long *p = addr + BIT_WORD(nr);
    122    unsigned long old = *p;
    123
    124    *p = old ^ mask;
    125    return (old & mask) != 0;
    126}
    127
    128/**
    129 * test_bit - Determine whether a bit is set
    130 * @nr: bit number to test
    131 * @addr: Address to start counting from
    132 */
    133static inline int test_bit(long nr, const unsigned long *addr)
    134{
    135    return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
    136}
    137
    138/**
    139 * find_last_bit - find the last set bit in a memory region
    140 * @addr: The address to start the search at
    141 * @size: The maximum size to search
    142 *
    143 * Returns the bit number of the last set bit,
    144 * or @size if there is no set bit in the bitmap.
    145 */
    146unsigned long find_last_bit(const unsigned long *addr,
    147                            unsigned long size);
    148
    149/**
    150 * find_next_bit - find the next set bit in a memory region
    151 * @addr: The address to base the search on
    152 * @offset: The bitnumber to start searching at
    153 * @size: The bitmap size in bits
    154 *
    155 * Returns the bit number of the next set bit,
    156 * or @size if there are no further set bits in the bitmap.
    157 */
    158unsigned long find_next_bit(const unsigned long *addr,
    159                            unsigned long size,
    160                            unsigned long offset);
    161
    162/**
    163 * find_next_zero_bit - find the next cleared bit in a memory region
    164 * @addr: The address to base the search on
    165 * @offset: The bitnumber to start searching at
    166 * @size: The bitmap size in bits
    167 *
    168 * Returns the bit number of the next cleared bit,
    169 * or @size if there are no further clear bits in the bitmap.
    170 */
    171
    172unsigned long find_next_zero_bit(const unsigned long *addr,
    173                                 unsigned long size,
    174                                 unsigned long offset);
    175
    176/**
    177 * find_first_bit - find the first set bit in a memory region
    178 * @addr: The address to start the search at
    179 * @size: The maximum size to search
    180 *
    181 * Returns the bit number of the first set bit,
    182 * or @size if there is no set bit in the bitmap.
    183 */
    184static inline unsigned long find_first_bit(const unsigned long *addr,
    185                                           unsigned long size)
    186{
    187    unsigned long result, tmp;
    188
    189    for (result = 0; result < size; result += BITS_PER_LONG) {
    190        tmp = *addr++;
    191        if (tmp) {
    192            result += ctzl(tmp);
    193            return result < size ? result : size;
    194        }
    195    }
    196    /* Not found */
    197    return size;
    198}
    199
    200/**
    201 * find_first_zero_bit - find the first cleared bit in a memory region
    202 * @addr: The address to start the search at
    203 * @size: The maximum size to search
    204 *
    205 * Returns the bit number of the first cleared bit,
    206 * or @size if there is no clear bit in the bitmap.
    207 */
    208static inline unsigned long find_first_zero_bit(const unsigned long *addr,
    209                                                unsigned long size)
    210{
    211    return find_next_zero_bit(addr, size, 0);
    212}
    213
    214/**
    215 * rol8 - rotate an 8-bit value left
    216 * @word: value to rotate
    217 * @shift: bits to roll
    218 */
    219static inline uint8_t rol8(uint8_t word, unsigned int shift)
    220{
    221    return (word << shift) | (word >> ((8 - shift) & 7));
    222}
    223
    224/**
    225 * ror8 - rotate an 8-bit value right
    226 * @word: value to rotate
    227 * @shift: bits to roll
    228 */
    229static inline uint8_t ror8(uint8_t word, unsigned int shift)
    230{
    231    return (word >> shift) | (word << ((8 - shift) & 7));
    232}
    233
    234/**
    235 * rol16 - rotate a 16-bit value left
    236 * @word: value to rotate
    237 * @shift: bits to roll
    238 */
    239static inline uint16_t rol16(uint16_t word, unsigned int shift)
    240{
    241    return (word << shift) | (word >> ((16 - shift) & 15));
    242}
    243
    244/**
    245 * ror16 - rotate a 16-bit value right
    246 * @word: value to rotate
    247 * @shift: bits to roll
    248 */
    249static inline uint16_t ror16(uint16_t word, unsigned int shift)
    250{
    251    return (word >> shift) | (word << ((16 - shift) & 15));
    252}
    253
    254/**
    255 * rol32 - rotate a 32-bit value left
    256 * @word: value to rotate
    257 * @shift: bits to roll
    258 */
    259static inline uint32_t rol32(uint32_t word, unsigned int shift)
    260{
    261    return (word << shift) | (word >> ((32 - shift) & 31));
    262}
    263
    264/**
    265 * ror32 - rotate a 32-bit value right
    266 * @word: value to rotate
    267 * @shift: bits to roll
    268 */
    269static inline uint32_t ror32(uint32_t word, unsigned int shift)
    270{
    271    return (word >> shift) | (word << ((32 - shift) & 31));
    272}
    273
    274/**
    275 * rol64 - rotate a 64-bit value left
    276 * @word: value to rotate
    277 * @shift: bits to roll
    278 */
    279static inline uint64_t rol64(uint64_t word, unsigned int shift)
    280{
    281    return (word << shift) | (word >> ((64 - shift) & 63));
    282}
    283
    284/**
    285 * ror64 - rotate a 64-bit value right
    286 * @word: value to rotate
    287 * @shift: bits to roll
    288 */
    289static inline uint64_t ror64(uint64_t word, unsigned int shift)
    290{
    291    return (word >> shift) | (word << ((64 - shift) & 63));
    292}
    293
    294/**
    295 * hswap32 - swap 16-bit halfwords within a 32-bit value
    296 * @h: value to swap
    297 */
    298static inline uint32_t hswap32(uint32_t h)
    299{
    300    return rol32(h, 16);
    301}
    302
    303/**
    304 * hswap64 - swap 16-bit halfwords within a 64-bit value
    305 * @h: value to swap
    306 */
    307static inline uint64_t hswap64(uint64_t h)
    308{
    309    uint64_t m = 0x0000ffff0000ffffull;
    310    h = rol64(h, 32);
    311    return ((h & m) << 16) | ((h >> 16) & m);
    312}
    313
    314/**
    315 * wswap64 - swap 32-bit words within a 64-bit value
    316 * @h: value to swap
    317 */
    318static inline uint64_t wswap64(uint64_t h)
    319{
    320    return rol64(h, 32);
    321}
    322
    323/**
    324 * extract32:
    325 * @value: the value to extract the bit field from
    326 * @start: the lowest bit in the bit field (numbered from 0)
    327 * @length: the length of the bit field
    328 *
    329 * Extract from the 32 bit input @value the bit field specified by the
    330 * @start and @length parameters, and return it. The bit field must
    331 * lie entirely within the 32 bit word. It is valid to request that
    332 * all 32 bits are returned (ie @length 32 and @start 0).
    333 *
    334 * Returns: the value of the bit field extracted from the input value.
    335 */
    336static inline uint32_t extract32(uint32_t value, int start, int length)
    337{
    338    assert(start >= 0 && length > 0 && length <= 32 - start);
    339    return (value >> start) & (~0U >> (32 - length));
    340}
    341
    342/**
    343 * extract8:
    344 * @value: the value to extract the bit field from
    345 * @start: the lowest bit in the bit field (numbered from 0)
    346 * @length: the length of the bit field
    347 *
    348 * Extract from the 8 bit input @value the bit field specified by the
    349 * @start and @length parameters, and return it. The bit field must
    350 * lie entirely within the 8 bit word. It is valid to request that
    351 * all 8 bits are returned (ie @length 8 and @start 0).
    352 *
    353 * Returns: the value of the bit field extracted from the input value.
    354 */
    355static inline uint8_t extract8(uint8_t value, int start, int length)
    356{
    357    assert(start >= 0 && length > 0 && length <= 8 - start);
    358    return extract32(value, start, length);
    359}
    360
    361/**
    362 * extract16:
    363 * @value: the value to extract the bit field from
    364 * @start: the lowest bit in the bit field (numbered from 0)
    365 * @length: the length of the bit field
    366 *
    367 * Extract from the 16 bit input @value the bit field specified by the
    368 * @start and @length parameters, and return it. The bit field must
    369 * lie entirely within the 16 bit word. It is valid to request that
    370 * all 16 bits are returned (ie @length 16 and @start 0).
    371 *
    372 * Returns: the value of the bit field extracted from the input value.
    373 */
    374static inline uint16_t extract16(uint16_t value, int start, int length)
    375{
    376    assert(start >= 0 && length > 0 && length <= 16 - start);
    377    return extract32(value, start, length);
    378}
    379
    380/**
    381 * extract64:
    382 * @value: the value to extract the bit field from
    383 * @start: the lowest bit in the bit field (numbered from 0)
    384 * @length: the length of the bit field
    385 *
    386 * Extract from the 64 bit input @value the bit field specified by the
    387 * @start and @length parameters, and return it. The bit field must
    388 * lie entirely within the 64 bit word. It is valid to request that
    389 * all 64 bits are returned (ie @length 64 and @start 0).
    390 *
    391 * Returns: the value of the bit field extracted from the input value.
    392 */
    393static inline uint64_t extract64(uint64_t value, int start, int length)
    394{
    395    assert(start >= 0 && length > 0 && length <= 64 - start);
    396    return (value >> start) & (~0ULL >> (64 - length));
    397}
    398
    399/**
    400 * sextract32:
    401 * @value: the value to extract the bit field from
    402 * @start: the lowest bit in the bit field (numbered from 0)
    403 * @length: the length of the bit field
    404 *
    405 * Extract from the 32 bit input @value the bit field specified by the
    406 * @start and @length parameters, and return it, sign extended to
    407 * an int32_t (ie with the most significant bit of the field propagated
    408 * to all the upper bits of the return value). The bit field must lie
    409 * entirely within the 32 bit word. It is valid to request that
    410 * all 32 bits are returned (ie @length 32 and @start 0).
    411 *
    412 * Returns: the sign extended value of the bit field extracted from the
    413 * input value.
    414 */
    415static inline int32_t sextract32(uint32_t value, int start, int length)
    416{
    417    assert(start >= 0 && length > 0 && length <= 32 - start);
    418    /* Note that this implementation relies on right shift of signed
    419     * integers being an arithmetic shift.
    420     */
    421    return ((int32_t)(value << (32 - length - start))) >> (32 - length);
    422}
    423
    424/**
    425 * sextract64:
    426 * @value: the value to extract the bit field from
    427 * @start: the lowest bit in the bit field (numbered from 0)
    428 * @length: the length of the bit field
    429 *
    430 * Extract from the 64 bit input @value the bit field specified by the
    431 * @start and @length parameters, and return it, sign extended to
    432 * an int64_t (ie with the most significant bit of the field propagated
    433 * to all the upper bits of the return value). The bit field must lie
    434 * entirely within the 64 bit word. It is valid to request that
    435 * all 64 bits are returned (ie @length 64 and @start 0).
    436 *
    437 * Returns: the sign extended value of the bit field extracted from the
    438 * input value.
    439 */
    440static inline int64_t sextract64(uint64_t value, int start, int length)
    441{
    442    assert(start >= 0 && length > 0 && length <= 64 - start);
    443    /* Note that this implementation relies on right shift of signed
    444     * integers being an arithmetic shift.
    445     */
    446    return ((int64_t)(value << (64 - length - start))) >> (64 - length);
    447}
    448
    449/**
    450 * deposit32:
    451 * @value: initial value to insert bit field into
    452 * @start: the lowest bit in the bit field (numbered from 0)
    453 * @length: the length of the bit field
    454 * @fieldval: the value to insert into the bit field
    455 *
    456 * Deposit @fieldval into the 32 bit @value at the bit field specified
    457 * by the @start and @length parameters, and return the modified
    458 * @value. Bits of @value outside the bit field are not modified.
    459 * Bits of @fieldval above the least significant @length bits are
    460 * ignored. The bit field must lie entirely within the 32 bit word.
    461 * It is valid to request that all 32 bits are modified (ie @length
    462 * 32 and @start 0).
    463 *
    464 * Returns: the modified @value.
    465 */
    466static inline uint32_t deposit32(uint32_t value, int start, int length,
    467                                 uint32_t fieldval)
    468{
    469    uint32_t mask;
    470    assert(start >= 0 && length > 0 && length <= 32 - start);
    471    mask = (~0U >> (32 - length)) << start;
    472    return (value & ~mask) | ((fieldval << start) & mask);
    473}
    474
    475/**
    476 * deposit64:
    477 * @value: initial value to insert bit field into
    478 * @start: the lowest bit in the bit field (numbered from 0)
    479 * @length: the length of the bit field
    480 * @fieldval: the value to insert into the bit field
    481 *
    482 * Deposit @fieldval into the 64 bit @value at the bit field specified
    483 * by the @start and @length parameters, and return the modified
    484 * @value. Bits of @value outside the bit field are not modified.
    485 * Bits of @fieldval above the least significant @length bits are
    486 * ignored. The bit field must lie entirely within the 64 bit word.
    487 * It is valid to request that all 64 bits are modified (ie @length
    488 * 64 and @start 0).
    489 *
    490 * Returns: the modified @value.
    491 */
    492static inline uint64_t deposit64(uint64_t value, int start, int length,
    493                                 uint64_t fieldval)
    494{
    495    uint64_t mask;
    496    assert(start >= 0 && length > 0 && length <= 64 - start);
    497    mask = (~0ULL >> (64 - length)) << start;
    498    return (value & ~mask) | ((fieldval << start) & mask);
    499}
    500
    501/**
    502 * half_shuffle32:
    503 * @x: 32-bit value (of which only the bottom 16 bits are of interest)
    504 *
    505 * Given an input value::
    506 *
    507 *   xxxx xxxx xxxx xxxx ABCD EFGH IJKL MNOP
    508 *
    509 * return the value where the bottom 16 bits are spread out into
    510 * the odd bits in the word, and the even bits are zeroed::
    511 *
    512 *   0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P
    513 *
    514 * Any bits set in the top half of the input are ignored.
    515 *
    516 * Returns: the shuffled bits.
    517 */
    518static inline uint32_t half_shuffle32(uint32_t x)
    519{
    520    /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
    521     * It ignores any bits set in the top half of the input.
    522     */
    523    x = ((x & 0xFF00) << 8) | (x & 0x00FF);
    524    x = ((x << 4) | x) & 0x0F0F0F0F;
    525    x = ((x << 2) | x) & 0x33333333;
    526    x = ((x << 1) | x) & 0x55555555;
    527    return x;
    528}
    529
    530/**
    531 * half_shuffle64:
    532 * @x: 64-bit value (of which only the bottom 32 bits are of interest)
    533 *
    534 * Given an input value::
    535 *
    536 *   xxxx xxxx xxxx .... xxxx xxxx ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
    537 *
    538 * return the value where the bottom 32 bits are spread out into
    539 * the odd bits in the word, and the even bits are zeroed::
    540 *
    541 *   0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N .... 0U0V 0W0X 0Y0Z 0a0b 0c0d 0e0f
    542 *
    543 * Any bits set in the top half of the input are ignored.
    544 *
    545 * Returns: the shuffled bits.
    546 */
    547static inline uint64_t half_shuffle64(uint64_t x)
    548{
    549    /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
    550     * It ignores any bits set in the top half of the input.
    551     */
    552    x = ((x & 0xFFFF0000ULL) << 16) | (x & 0xFFFF);
    553    x = ((x << 8) | x) & 0x00FF00FF00FF00FFULL;
    554    x = ((x << 4) | x) & 0x0F0F0F0F0F0F0F0FULL;
    555    x = ((x << 2) | x) & 0x3333333333333333ULL;
    556    x = ((x << 1) | x) & 0x5555555555555555ULL;
    557    return x;
    558}
    559
    560/**
    561 * half_unshuffle32:
    562 * @x: 32-bit value (of which only the odd bits are of interest)
    563 *
    564 * Given an input value::
    565 *
    566 *   xAxB xCxD xExF xGxH xIxJ xKxL xMxN xOxP
    567 *
    568 * return the value where all the odd bits are compressed down
    569 * into the low half of the word, and the high half is zeroed::
    570 *
    571 *   0000 0000 0000 0000 ABCD EFGH IJKL MNOP
    572 *
    573 * Any even bits set in the input are ignored.
    574 *
    575 * Returns: the unshuffled bits.
    576 */
    577static inline uint32_t half_unshuffle32(uint32_t x)
    578{
    579    /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
    580     * where it is called an inverse half shuffle.
    581     */
    582    x &= 0x55555555;
    583    x = ((x >> 1) | x) & 0x33333333;
    584    x = ((x >> 2) | x) & 0x0F0F0F0F;
    585    x = ((x >> 4) | x) & 0x00FF00FF;
    586    x = ((x >> 8) | x) & 0x0000FFFF;
    587    return x;
    588}
    589
    590/**
    591 * half_unshuffle64:
    592 * @x: 64-bit value (of which only the odd bits are of interest)
    593 *
    594 * Given an input value::
    595 *
    596 *   xAxB xCxD xExF xGxH xIxJ xKxL xMxN .... xUxV xWxX xYxZ xaxb xcxd xexf
    597 *
    598 * return the value where all the odd bits are compressed down
    599 * into the low half of the word, and the high half is zeroed::
    600 *
    601 *   0000 0000 0000 .... 0000 0000 ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
    602 *
    603 * Any even bits set in the input are ignored.
    604 *
    605 * Returns: the unshuffled bits.
    606 */
    607static inline uint64_t half_unshuffle64(uint64_t x)
    608{
    609    /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
    610     * where it is called an inverse half shuffle.
    611     */
    612    x &= 0x5555555555555555ULL;
    613    x = ((x >> 1) | x) & 0x3333333333333333ULL;
    614    x = ((x >> 2) | x) & 0x0F0F0F0F0F0F0F0FULL;
    615    x = ((x >> 4) | x) & 0x00FF00FF00FF00FFULL;
    616    x = ((x >> 8) | x) & 0x0000FFFF0000FFFFULL;
    617    x = ((x >> 16) | x) & 0x00000000FFFFFFFFULL;
    618    return x;
    619}
    620
    621#endif