cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

drm_fourcc.h (53777B)


      1/*
      2 * Copyright 2011 Intel Corporation
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice (including the next
     12 * paragraph) shall be included in all copies or substantial portions of the
     13 * Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     21 * OTHER DEALINGS IN THE SOFTWARE.
     22 */
     23
     24#ifndef DRM_FOURCC_H
     25#define DRM_FOURCC_H
     26
     27
     28#if defined(__cplusplus)
     29extern "C" {
     30#endif
     31
     32/**
     33 * DOC: overview
     34 *
     35 * In the DRM subsystem, framebuffer pixel formats are described using the
     36 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
     37 * fourcc code, a Format Modifier may optionally be provided, in order to
     38 * further describe the buffer's format - for example tiling or compression.
     39 *
     40 * Format Modifiers
     41 * ----------------
     42 *
     43 * Format modifiers are used in conjunction with a fourcc code, forming a
     44 * unique fourcc:modifier pair. This format:modifier pair must fully define the
     45 * format and data layout of the buffer, and should be the only way to describe
     46 * that particular buffer.
     47 *
     48 * Having multiple fourcc:modifier pairs which describe the same layout should
     49 * be avoided, as such aliases run the risk of different drivers exposing
     50 * different names for the same data format, forcing userspace to understand
     51 * that they are aliases.
     52 *
     53 * Format modifiers may change any property of the buffer, including the number
     54 * of planes and/or the required allocation size. Format modifiers are
     55 * vendor-namespaced, and as such the relationship between a fourcc code and a
     56 * modifier is specific to the modifer being used. For example, some modifiers
     57 * may preserve meaning - such as number of planes - from the fourcc code,
     58 * whereas others may not.
     59 *
     60 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
     61 * match only a single modifier. A modifier must not be a subset of layouts of
     62 * another modifier. For instance, it's incorrect to encode pitch alignment in
     63 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
     64 * aligned modifier. That said, modifiers can have implicit minimal
     65 * requirements.
     66 *
     67 * For modifiers where the combination of fourcc code and modifier can alias,
     68 * a canonical pair needs to be defined and used by all drivers. Preferred
     69 * combinations are also encouraged where all combinations might lead to
     70 * confusion and unnecessarily reduced interoperability. An example for the
     71 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
     72 *
     73 * There are two kinds of modifier users:
     74 *
     75 * - Kernel and user-space drivers: for drivers it's important that modifiers
     76 *   don't alias, otherwise two drivers might support the same format but use
     77 *   different aliases, preventing them from sharing buffers in an efficient
     78 *   format.
     79 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
     80 *   see modifiers as opaque tokens they can check for equality and intersect.
     81 *   These users musn't need to know to reason about the modifier value
     82 *   (i.e. they are not expected to extract information out of the modifier).
     83 *
     84 * Vendors should document their modifier usage in as much detail as
     85 * possible, to ensure maximum compatibility across devices, drivers and
     86 * applications.
     87 *
     88 * The authoritative list of format modifier codes is found in
     89 * `include/uapi/drm/drm_fourcc.h`
     90 */
     91
     92#define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
     93				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
     94
     95#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
     96
     97/* Reserve 0 for the invalid format specifier */
     98#define DRM_FORMAT_INVALID	0
     99
    100/* color index */
    101#define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
    102
    103/* 8 bpp Red */
    104#define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
    105
    106/* 16 bpp Red */
    107#define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
    108
    109/* 16 bpp RG */
    110#define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
    111#define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
    112
    113/* 32 bpp RG */
    114#define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
    115#define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
    116
    117/* 8 bpp RGB */
    118#define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
    119#define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
    120
    121/* 16 bpp RGB */
    122#define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
    123#define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
    124#define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
    125#define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
    126
    127#define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
    128#define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
    129#define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
    130#define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
    131
    132#define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
    133#define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
    134#define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
    135#define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
    136
    137#define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
    138#define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
    139#define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
    140#define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
    141
    142#define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
    143#define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
    144
    145/* 24 bpp RGB */
    146#define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
    147#define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
    148
    149/* 32 bpp RGB */
    150#define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
    151#define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
    152#define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
    153#define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
    154
    155#define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
    156#define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
    157#define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
    158#define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
    159
    160#define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
    161#define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
    162#define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
    163#define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
    164
    165#define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
    166#define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
    167#define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
    168#define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
    169
    170/* 64 bpp RGB */
    171#define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
    172#define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
    173
    174#define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
    175#define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
    176
    177/*
    178 * Floating point 64bpp RGB
    179 * IEEE 754-2008 binary16 half-precision float
    180 * [15:0] sign:exponent:mantissa 1:5:10
    181 */
    182#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
    183#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
    184
    185#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
    186#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
    187
    188/*
    189 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
    190 * of unused padding per component:
    191 */
    192#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
    193
    194/* packed YCbCr */
    195#define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
    196#define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
    197#define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
    198#define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
    199
    200#define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
    201#define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
    202#define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
    203#define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
    204
    205/*
    206 * packed Y2xx indicate for each component, xx valid data occupy msb
    207 * 16-xx padding occupy lsb
    208 */
    209#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
    210#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
    211#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
    212
    213/*
    214 * packed Y4xx indicate for each component, xx valid data occupy msb
    215 * 16-xx padding occupy lsb except Y410
    216 */
    217#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
    218#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
    219#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
    220
    221#define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
    222#define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
    223#define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
    224
    225/*
    226 * packed YCbCr420 2x2 tiled formats
    227 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
    228 */
    229/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    230#define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
    231/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    232#define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
    233
    234/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    235#define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
    236/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    237#define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
    238
    239/*
    240 * 1-plane YUV 4:2:0
    241 * In these formats, the component ordering is specified (Y, followed by U
    242 * then V), but the exact Linear layout is undefined.
    243 * These formats can only be used with a non-Linear modifier.
    244 */
    245#define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
    246#define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
    247
    248/*
    249 * 2 plane RGB + A
    250 * index 0 = RGB plane, same format as the corresponding non _A8 format has
    251 * index 1 = A plane, [7:0] A
    252 */
    253#define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
    254#define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
    255#define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
    256#define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
    257#define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
    258#define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
    259#define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
    260#define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
    261
    262/*
    263 * 2 plane YCbCr
    264 * index 0 = Y plane, [7:0] Y
    265 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
    266 * or
    267 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
    268 */
    269#define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
    270#define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
    271#define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
    272#define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
    273#define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
    274#define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
    275/*
    276 * 2 plane YCbCr
    277 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
    278 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
    279 */
    280#define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
    281
    282/*
    283 * 2 plane YCbCr MSB aligned
    284 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
    285 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
    286 */
    287#define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
    288
    289/*
    290 * 2 plane YCbCr MSB aligned
    291 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
    292 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
    293 */
    294#define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
    295
    296/*
    297 * 2 plane YCbCr MSB aligned
    298 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
    299 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
    300 */
    301#define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
    302
    303/*
    304 * 2 plane YCbCr MSB aligned
    305 * index 0 = Y plane, [15:0] Y little endian
    306 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
    307 */
    308#define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
    309
    310/* 3 plane non-subsampled (444) YCbCr
    311 * 16 bits per component, but only 10 bits are used and 6 bits are padded
    312 * index 0: Y plane, [15:0] Y:x [10:6] little endian
    313 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
    314 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
    315 */
    316#define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
    317
    318/* 3 plane non-subsampled (444) YCrCb
    319 * 16 bits per component, but only 10 bits are used and 6 bits are padded
    320 * index 0: Y plane, [15:0] Y:x [10:6] little endian
    321 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
    322 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
    323 */
    324#define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
    325
    326/*
    327 * 3 plane YCbCr
    328 * index 0: Y plane, [7:0] Y
    329 * index 1: Cb plane, [7:0] Cb
    330 * index 2: Cr plane, [7:0] Cr
    331 * or
    332 * index 1: Cr plane, [7:0] Cr
    333 * index 2: Cb plane, [7:0] Cb
    334 */
    335#define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
    336#define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
    337#define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
    338#define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
    339#define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
    340#define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
    341#define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
    342#define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
    343#define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
    344#define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
    345
    346
    347/*
    348 * Format Modifiers:
    349 *
    350 * Format modifiers describe, typically, a re-ordering or modification
    351 * of the data in a plane of an FB.  This can be used to express tiled/
    352 * swizzled formats, or compression, or a combination of the two.
    353 *
    354 * The upper 8 bits of the format modifier are a vendor-id as assigned
    355 * below.  The lower 56 bits are assigned as vendor sees fit.
    356 */
    357
    358/* Vendor Ids: */
    359#define DRM_FORMAT_MOD_VENDOR_NONE    0
    360#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
    361#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
    362#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
    363#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
    364#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
    365#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
    366#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
    367#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
    368#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
    369#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
    370
    371/* add more to the end as needed */
    372
    373#define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
    374
    375#define fourcc_mod_code(vendor, val) \
    376	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
    377
    378/*
    379 * Format Modifier tokens:
    380 *
    381 * When adding a new token please document the layout with a code comment,
    382 * similar to the fourcc codes above. drm_fourcc.h is considered the
    383 * authoritative source for all of these.
    384 *
    385 * Generic modifier names:
    386 *
    387 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
    388 * for layouts which are common across multiple vendors. To preserve
    389 * compatibility, in cases where a vendor-specific definition already exists and
    390 * a generic name for it is desired, the common name is a purely symbolic alias
    391 * and must use the same numerical value as the original definition.
    392 *
    393 * Note that generic names should only be used for modifiers which describe
    394 * generic layouts (such as pixel re-ordering), which may have
    395 * independently-developed support across multiple vendors.
    396 *
    397 * In future cases where a generic layout is identified before merging with a
    398 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
    399 * 'NONE' could be considered. This should only be for obvious, exceptional
    400 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
    401 * apply to a single vendor.
    402 *
    403 * Generic names should not be used for cases where multiple hardware vendors
    404 * have implementations of the same standardised compression scheme (such as
    405 * AFBC). In those cases, all implementations should use the same format
    406 * modifier(s), reflecting the vendor of the standard.
    407 */
    408
    409#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
    410
    411/*
    412 * Invalid Modifier
    413 *
    414 * This modifier can be used as a sentinel to terminate the format modifiers
    415 * list, or to initialize a variable with an invalid modifier. It might also be
    416 * used to report an error back to userspace for certain APIs.
    417 */
    418#define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
    419
    420/*
    421 * Linear Layout
    422 *
    423 * Just plain linear layout. Note that this is different from no specifying any
    424 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
    425 * which tells the driver to also take driver-internal information into account
    426 * and so might actually result in a tiled framebuffer.
    427 */
    428#define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
    429
    430/*
    431 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
    432 *
    433 * The "none" format modifier doesn't actually mean that the modifier is
    434 * implicit, instead it means that the layout is linear. Whether modifiers are
    435 * used is out-of-band information carried in an API-specific way (e.g. in a
    436 * flag for drm_mode_fb_cmd2).
    437 */
    438#define DRM_FORMAT_MOD_NONE	0
    439
    440/* Intel framebuffer modifiers */
    441
    442/*
    443 * Intel X-tiling layout
    444 *
    445 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    446 * in row-major layout. Within the tile bytes are laid out row-major, with
    447 * a platform-dependent stride. On top of that the memory can apply
    448 * platform-depending swizzling of some higher address bits into bit6.
    449 *
    450 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
    451 * On earlier platforms the is highly platforms specific and not useful for
    452 * cross-driver sharing. It exists since on a given platform it does uniquely
    453 * identify the layout in a simple way for i915-specific userspace, which
    454 * facilitated conversion of userspace to modifiers. Additionally the exact
    455 * format on some really old platforms is not known.
    456 */
    457#define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
    458
    459/*
    460 * Intel Y-tiling layout
    461 *
    462 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    463 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
    464 * chunks column-major, with a platform-dependent height. On top of that the
    465 * memory can apply platform-depending swizzling of some higher address bits
    466 * into bit6.
    467 *
    468 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
    469 * On earlier platforms the is highly platforms specific and not useful for
    470 * cross-driver sharing. It exists since on a given platform it does uniquely
    471 * identify the layout in a simple way for i915-specific userspace, which
    472 * facilitated conversion of userspace to modifiers. Additionally the exact
    473 * format on some really old platforms is not known.
    474 */
    475#define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
    476
    477/*
    478 * Intel Yf-tiling layout
    479 *
    480 * This is a tiled layout using 4Kb tiles in row-major layout.
    481 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
    482 * are arranged in four groups (two wide, two high) with column-major layout.
    483 * Each group therefore consits out of four 256 byte units, which are also laid
    484 * out as 2x2 column-major.
    485 * 256 byte units are made out of four 64 byte blocks of pixels, producing
    486 * either a square block or a 2:1 unit.
    487 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
    488 * in pixel depends on the pixel depth.
    489 */
    490#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
    491
    492/*
    493 * Intel color control surface (CCS) for render compression
    494 *
    495 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
    496 * The main surface will be plane index 0 and must be Y/Yf-tiled,
    497 * the CCS will be plane index 1.
    498 *
    499 * Each CCS tile matches a 1024x512 pixel area of the main surface.
    500 * To match certain aspects of the 3D hardware the CCS is
    501 * considered to be made up of normal 128Bx32 Y tiles, Thus
    502 * the CCS pitch must be specified in multiples of 128 bytes.
    503 *
    504 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
    505 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
    506 * But that fact is not relevant unless the memory is accessed
    507 * directly.
    508 */
    509#define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
    510#define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
    511
    512/*
    513 * Intel color control surfaces (CCS) for Gen-12 render compression.
    514 *
    515 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
    516 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
    517 * main surface. In other words, 4 bits in CCS map to a main surface cache
    518 * line pair. The main surface pitch is required to be a multiple of four
    519 * Y-tile widths.
    520 */
    521#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
    522
    523/*
    524 * Intel color control surfaces (CCS) for Gen-12 media compression
    525 *
    526 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
    527 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
    528 * main surface. In other words, 4 bits in CCS map to a main surface cache
    529 * line pair. The main surface pitch is required to be a multiple of four
    530 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
    531 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
    532 * planes 2 and 3 for the respective CCS.
    533 */
    534#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
    535
    536/*
    537 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
    538 * compression.
    539 *
    540 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
    541 * and at index 1. The clear color is stored at index 2, and the pitch should
    542 * be ignored. The clear color structure is 256 bits. The first 128 bits
    543 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
    544 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
    545 * the converted clear color of size 64 bits. The first 32 bits store the Lower
    546 * Converted Clear Color value and the next 32 bits store the Higher Converted
    547 * Clear Color value when applicable. The Converted Clear Color values are
    548 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
    549 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
    550 * corresponds to an area of 4x1 tiles in the main surface. The main surface
    551 * pitch is required to be a multiple of 4 tile widths.
    552 */
    553#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
    554
    555/*
    556 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
    557 *
    558 * Macroblocks are laid in a Z-shape, and each pixel data is following the
    559 * standard NV12 style.
    560 * As for NV12, an image is the result of two frame buffers: one for Y,
    561 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
    562 * Alignment requirements are (for each buffer):
    563 * - multiple of 128 pixels for the width
    564 * - multiple of  32 pixels for the height
    565 *
    566 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
    567 */
    568#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
    569
    570/*
    571 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
    572 *
    573 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
    574 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
    575 * they correspond to their 16x16 luma block.
    576 */
    577#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
    578
    579/*
    580 * Qualcomm Compressed Format
    581 *
    582 * Refers to a compressed variant of the base format that is compressed.
    583 * Implementation may be platform and base-format specific.
    584 *
    585 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
    586 * Pixel data pitch/stride is aligned with macrotile width.
    587 * Pixel data height is aligned with macrotile height.
    588 * Entire pixel data buffer is aligned with 4k(bytes).
    589 */
    590#define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
    591
    592/* Vivante framebuffer modifiers */
    593
    594/*
    595 * Vivante 4x4 tiling layout
    596 *
    597 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
    598 * layout.
    599 */
    600#define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
    601
    602/*
    603 * Vivante 64x64 super-tiling layout
    604 *
    605 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
    606 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
    607 * major layout.
    608 *
    609 * For more information: see
    610 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
    611 */
    612#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
    613
    614/*
    615 * Vivante 4x4 tiling layout for dual-pipe
    616 *
    617 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
    618 * different base address. Offsets from the base addresses are therefore halved
    619 * compared to the non-split tiled layout.
    620 */
    621#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
    622
    623/*
    624 * Vivante 64x64 super-tiling layout for dual-pipe
    625 *
    626 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
    627 * starts at a different base address. Offsets from the base addresses are
    628 * therefore halved compared to the non-split super-tiled layout.
    629 */
    630#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
    631
    632/* NVIDIA frame buffer modifiers */
    633
    634/*
    635 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
    636 *
    637 * Pixels are arranged in simple tiles of 16 x 16 bytes.
    638 */
    639#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
    640
    641/*
    642 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
    643 * and Tegra GPUs starting with Tegra K1.
    644 *
    645 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
    646 * based on the architecture generation.  GOBs themselves are then arranged in
    647 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
    648 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
    649 * a block depth or height of "4").
    650 *
    651 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
    652 * in full detail.
    653 *
    654 *       Macro
    655 * Bits  Param Description
    656 * ----  ----- -----------------------------------------------------------------
    657 *
    658 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
    659 *             compatibility with the existing
    660 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
    661 *
    662 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
    663 *             compatibility with the existing
    664 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
    665 *
    666 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
    667 *             size).  Must be zero.
    668 *
    669 *             Note there is no log2(width) parameter.  Some portions of the
    670 *             hardware support a block width of two gobs, but it is impractical
    671 *             to use due to lack of support elsewhere, and has no known
    672 *             benefits.
    673 *
    674 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
    675 *             in blocks, specified via log2(tile width in blocks)).  Must be
    676 *             zero.
    677 *
    678 * 19:12 k     Page Kind.  This value directly maps to a field in the page
    679 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
    680 *             in memory and can be derived from the tuple
    681 *
    682 *               (format, GPU model, compression type, samples per pixel)
    683 *
    684 *             Where compression type is defined below.  If GPU model were
    685 *             implied by the format modifier, format, or memory buffer, page
    686 *             kind would not need to be included in the modifier itself, but
    687 *             since the modifier should define the layout of the associated
    688 *             memory buffer independent from any device or other context, it
    689 *             must be included here.
    690 *
    691 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
    692 *             starting with Fermi GPUs.  Additionally, the mapping between page
    693 *             kind and bit layout has changed at various points.
    694 *
    695 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
    696 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
    697 *               2 = Gob Height 8, Turing+ Page Kind mapping
    698 *               3 = Reserved for future use.
    699 *
    700 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
    701 *             bit remapping step that occurs at an even lower level than the
    702 *             page kind and block linear swizzles.  This causes the layout of
    703 *             surfaces mapped in those SOC's GPUs to be incompatible with the
    704 *             equivalent mapping on other GPUs in the same system.
    705 *
    706 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
    707 *               1 = Desktop GPU and Tegra Xavier+ Layout
    708 *
    709 * 25:23 c     Lossless Framebuffer Compression type.
    710 *
    711 *               0 = none
    712 *               1 = ROP/3D, layout 1, exact compression format implied by Page
    713 *                   Kind field
    714 *               2 = ROP/3D, layout 2, exact compression format implied by Page
    715 *                   Kind field
    716 *               3 = CDE horizontal
    717 *               4 = CDE vertical
    718 *               5 = Reserved for future use
    719 *               6 = Reserved for future use
    720 *               7 = Reserved for future use
    721 *
    722 * 55:25 -     Reserved for future use.  Must be zero.
    723 */
    724#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
    725	fourcc_mod_code(NVIDIA, (0x10 | \
    726				 ((h) & 0xf) | \
    727				 (((k) & 0xff) << 12) | \
    728				 (((g) & 0x3) << 20) | \
    729				 (((s) & 0x1) << 22) | \
    730				 (((c) & 0x7) << 23)))
    731
    732/* To grandfather in prior block linear format modifiers to the above layout,
    733 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
    734 * with block-linear layouts, is remapped within drivers to the value 0xfe,
    735 * which corresponds to the "generic" kind used for simple single-sample
    736 * uncompressed color formats on Fermi - Volta GPUs.
    737 */
    738static inline uint64_t
    739drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
    740{
    741	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
    742		return modifier;
    743	else
    744		return modifier | (0xfe << 12);
    745}
    746
    747/*
    748 * 16Bx2 Block Linear layout, used by Tegra K1 and later
    749 *
    750 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
    751 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
    752 *
    753 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
    754 *
    755 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
    756 * Valid values are:
    757 *
    758 * 0 == ONE_GOB
    759 * 1 == TWO_GOBS
    760 * 2 == FOUR_GOBS
    761 * 3 == EIGHT_GOBS
    762 * 4 == SIXTEEN_GOBS
    763 * 5 == THIRTYTWO_GOBS
    764 *
    765 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
    766 * in full detail.
    767 */
    768#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
    769	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
    770
    771#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
    772	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
    773#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
    774	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
    775#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
    776	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
    777#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
    778	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
    779#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
    780	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
    781#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
    782	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
    783
    784/*
    785 * Some Broadcom modifiers take parameters, for example the number of
    786 * vertical lines in the image. Reserve the lower 32 bits for modifier
    787 * type, and the next 24 bits for parameters. Top 8 bits are the
    788 * vendor code.
    789 */
    790#define __fourcc_mod_broadcom_param_shift 8
    791#define __fourcc_mod_broadcom_param_bits 48
    792#define fourcc_mod_broadcom_code(val, params) \
    793	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
    794#define fourcc_mod_broadcom_param(m) \
    795	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
    796	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
    797#define fourcc_mod_broadcom_mod(m) \
    798	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
    799		 __fourcc_mod_broadcom_param_shift))
    800
    801/*
    802 * Broadcom VC4 "T" format
    803 *
    804 * This is the primary layout that the V3D GPU can texture from (it
    805 * can't do linear).  The T format has:
    806 *
    807 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
    808 *   pixels at 32 bit depth.
    809 *
    810 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
    811 *   16x16 pixels).
    812 *
    813 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
    814 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
    815 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
    816 *
    817 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
    818 *   tiles) or right-to-left (odd rows of 4k tiles).
    819 */
    820#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
    821
    822/*
    823 * Broadcom SAND format
    824 *
    825 * This is the native format that the H.264 codec block uses.  For VC4
    826 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
    827 *
    828 * The image can be considered to be split into columns, and the
    829 * columns are placed consecutively into memory.  The width of those
    830 * columns can be either 32, 64, 128, or 256 pixels, but in practice
    831 * only 128 pixel columns are used.
    832 *
    833 * The pitch between the start of each column is set to optimally
    834 * switch between SDRAM banks. This is passed as the number of lines
    835 * of column width in the modifier (we can't use the stride value due
    836 * to various core checks that look at it , so you should set the
    837 * stride to width*cpp).
    838 *
    839 * Note that the column height for this format modifier is the same
    840 * for all of the planes, assuming that each column contains both Y
    841 * and UV.  Some SAND-using hardware stores UV in a separate tiled
    842 * image from Y to reduce the column height, which is not supported
    843 * with these modifiers.
    844 */
    845
    846#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
    847	fourcc_mod_broadcom_code(2, v)
    848#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
    849	fourcc_mod_broadcom_code(3, v)
    850#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
    851	fourcc_mod_broadcom_code(4, v)
    852#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
    853	fourcc_mod_broadcom_code(5, v)
    854
    855#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
    856	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
    857#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
    858	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
    859#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
    860	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
    861#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
    862	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
    863
    864/* Broadcom UIF format
    865 *
    866 * This is the common format for the current Broadcom multimedia
    867 * blocks, including V3D 3.x and newer, newer video codecs, and
    868 * displays.
    869 *
    870 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
    871 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
    872 * stored in columns, with padding between the columns to ensure that
    873 * moving from one column to the next doesn't hit the same SDRAM page
    874 * bank.
    875 *
    876 * To calculate the padding, it is assumed that each hardware block
    877 * and the software driving it knows the platform's SDRAM page size,
    878 * number of banks, and XOR address, and that it's identical between
    879 * all blocks using the format.  This tiling modifier will use XOR as
    880 * necessary to reduce the padding.  If a hardware block can't do XOR,
    881 * the assumption is that a no-XOR tiling modifier will be created.
    882 */
    883#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
    884
    885/*
    886 * Arm Framebuffer Compression (AFBC) modifiers
    887 *
    888 * AFBC is a proprietary lossless image compression protocol and format.
    889 * It provides fine-grained random access and minimizes the amount of data
    890 * transferred between IP blocks.
    891 *
    892 * AFBC has several features which may be supported and/or used, which are
    893 * represented using bits in the modifier. Not all combinations are valid,
    894 * and different devices or use-cases may support different combinations.
    895 *
    896 * Further information on the use of AFBC modifiers can be found in
    897 * Documentation/gpu/afbc.rst
    898 */
    899
    900/*
    901 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
    902 * modifiers) denote the category for modifiers. Currently we have only two
    903 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
    904 * different categories.
    905 */
    906#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
    907	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
    908
    909#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
    910#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
    911
    912#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
    913	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
    914
    915/*
    916 * AFBC superblock size
    917 *
    918 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
    919 * size (in pixels) must be aligned to a multiple of the superblock size.
    920 * Four lowest significant bits(LSBs) are reserved for block size.
    921 *
    922 * Where one superblock size is specified, it applies to all planes of the
    923 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
    924 * the first applies to the Luma plane and the second applies to the Chroma
    925 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
    926 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
    927 */
    928#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
    929#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
    930#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
    931#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
    932#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
    933
    934/*
    935 * AFBC lossless colorspace transform
    936 *
    937 * Indicates that the buffer makes use of the AFBC lossless colorspace
    938 * transform.
    939 */
    940#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
    941
    942/*
    943 * AFBC block-split
    944 *
    945 * Indicates that the payload of each superblock is split. The second
    946 * half of the payload is positioned at a predefined offset from the start
    947 * of the superblock payload.
    948 */
    949#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
    950
    951/*
    952 * AFBC sparse layout
    953 *
    954 * This flag indicates that the payload of each superblock must be stored at a
    955 * predefined position relative to the other superblocks in the same AFBC
    956 * buffer. This order is the same order used by the header buffer. In this mode
    957 * each superblock is given the same amount of space as an uncompressed
    958 * superblock of the particular format would require, rounding up to the next
    959 * multiple of 128 bytes in size.
    960 */
    961#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
    962
    963/*
    964 * AFBC copy-block restrict
    965 *
    966 * Buffers with this flag must obey the copy-block restriction. The restriction
    967 * is such that there are no copy-blocks referring across the border of 8x8
    968 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
    969 */
    970#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
    971
    972/*
    973 * AFBC tiled layout
    974 *
    975 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
    976 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
    977 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
    978 * larger bpp formats. The order between the tiles is scan line.
    979 * When the tiled layout is used, the buffer size (in pixels) must be aligned
    980 * to the tile size.
    981 */
    982#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
    983
    984/*
    985 * AFBC solid color blocks
    986 *
    987 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
    988 * can be reduced if a whole superblock is a single color.
    989 */
    990#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
    991
    992/*
    993 * AFBC double-buffer
    994 *
    995 * Indicates that the buffer is allocated in a layout safe for front-buffer
    996 * rendering.
    997 */
    998#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
    999
   1000/*
   1001 * AFBC buffer content hints
   1002 *
   1003 * Indicates that the buffer includes per-superblock content hints.
   1004 */
   1005#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
   1006
   1007/* AFBC uncompressed storage mode
   1008 *
   1009 * Indicates that the buffer is using AFBC uncompressed storage mode.
   1010 * In this mode all superblock payloads in the buffer use the uncompressed
   1011 * storage mode, which is usually only used for data which cannot be compressed.
   1012 * The buffer layout is the same as for AFBC buffers without USM set, this only
   1013 * affects the storage mode of the individual superblocks. Note that even a
   1014 * buffer without USM set may use uncompressed storage mode for some or all
   1015 * superblocks, USM just guarantees it for all.
   1016 */
   1017#define AFBC_FORMAT_MOD_USM	(1ULL << 12)
   1018
   1019/*
   1020 * Arm 16x16 Block U-Interleaved modifier
   1021 *
   1022 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
   1023 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
   1024 * in the block are reordered.
   1025 */
   1026#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
   1027	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
   1028
   1029/*
   1030 * Allwinner tiled modifier
   1031 *
   1032 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
   1033 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
   1034 * planes.
   1035 *
   1036 * With this tiling, the luminance samples are disposed in tiles representing
   1037 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
   1038 * The pixel order in each tile is linear and the tiles are disposed linearly,
   1039 * both in row-major order.
   1040 */
   1041#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
   1042
   1043/*
   1044 * Amlogic Video Framebuffer Compression modifiers
   1045 *
   1046 * Amlogic uses a proprietary lossless image compression protocol and format
   1047 * for their hardware video codec accelerators, either video decoders or
   1048 * video input encoders.
   1049 *
   1050 * It considerably reduces memory bandwidth while writing and reading
   1051 * frames in memory.
   1052 *
   1053 * The underlying storage is considered to be 3 components, 8bit or 10-bit
   1054 * per component YCbCr 420, single plane :
   1055 * - DRM_FORMAT_YUV420_8BIT
   1056 * - DRM_FORMAT_YUV420_10BIT
   1057 *
   1058 * The first 8 bits of the mode defines the layout, then the following 8 bits
   1059 * defines the options changing the layout.
   1060 *
   1061 * Not all combinations are valid, and different SoCs may support different
   1062 * combinations of layout and options.
   1063 */
   1064#define __fourcc_mod_amlogic_layout_mask 0xff
   1065#define __fourcc_mod_amlogic_options_shift 8
   1066#define __fourcc_mod_amlogic_options_mask 0xff
   1067
   1068#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
   1069	fourcc_mod_code(AMLOGIC, \
   1070			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
   1071			(((__options) & __fourcc_mod_amlogic_options_mask) \
   1072			 << __fourcc_mod_amlogic_options_shift))
   1073
   1074/* Amlogic FBC Layouts */
   1075
   1076/*
   1077 * Amlogic FBC Basic Layout
   1078 *
   1079 * The basic layout is composed of:
   1080 * - a body content organized in 64x32 superblocks with 4096 bytes per
   1081 *   superblock in default mode.
   1082 * - a 32 bytes per 128x64 header block
   1083 *
   1084 * This layout is transferrable between Amlogic SoCs supporting this modifier.
   1085 */
   1086#define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
   1087
   1088/*
   1089 * Amlogic FBC Scatter Memory layout
   1090 *
   1091 * Indicates the header contains IOMMU references to the compressed
   1092 * frames content to optimize memory access and layout.
   1093 *
   1094 * In this mode, only the header memory address is needed, thus the
   1095 * content memory organization is tied to the current producer
   1096 * execution and cannot be saved/dumped neither transferrable between
   1097 * Amlogic SoCs supporting this modifier.
   1098 *
   1099 * Due to the nature of the layout, these buffers are not expected to
   1100 * be accessible by the user-space clients, but only accessible by the
   1101 * hardware producers and consumers.
   1102 *
   1103 * The user-space clients should expect a failure while trying to mmap
   1104 * the DMA-BUF handle returned by the producer.
   1105 */
   1106#define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
   1107
   1108/* Amlogic FBC Layout Options Bit Mask */
   1109
   1110/*
   1111 * Amlogic FBC Memory Saving mode
   1112 *
   1113 * Indicates the storage is packed when pixel size is multiple of word
   1114 * boudaries, i.e. 8bit should be stored in this mode to save allocation
   1115 * memory.
   1116 *
   1117 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
   1118 * the basic layout and 3200 bytes per 64x32 superblock combined with
   1119 * the scatter layout.
   1120 */
   1121#define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
   1122
   1123/*
   1124 * AMD modifiers
   1125 *
   1126 * Memory layout:
   1127 *
   1128 * without DCC:
   1129 *   - main surface
   1130 *
   1131 * with DCC & without DCC_RETILE:
   1132 *   - main surface in plane 0
   1133 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
   1134 *
   1135 * with DCC & DCC_RETILE:
   1136 *   - main surface in plane 0
   1137 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
   1138 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
   1139 *
   1140 * For multi-plane formats the above surfaces get merged into one plane for
   1141 * each format plane, based on the required alignment only.
   1142 *
   1143 * Bits  Parameter                Notes
   1144 * ----- ------------------------ ---------------------------------------------
   1145 *
   1146 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
   1147 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
   1148 *    13 DCC
   1149 *    14 DCC_RETILE
   1150 *    15 DCC_PIPE_ALIGN
   1151 *    16 DCC_INDEPENDENT_64B
   1152 *    17 DCC_INDEPENDENT_128B
   1153 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
   1154 *    20 DCC_CONSTANT_ENCODE
   1155 * 23:21 PIPE_XOR_BITS            Only for some chips
   1156 * 26:24 BANK_XOR_BITS            Only for some chips
   1157 * 29:27 PACKERS                  Only for some chips
   1158 * 32:30 RB                       Only for some chips
   1159 * 35:33 PIPE                     Only for some chips
   1160 * 55:36 -                        Reserved for future use, must be zero
   1161 */
   1162#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
   1163
   1164#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
   1165
   1166/* Reserve 0 for GFX8 and older */
   1167#define AMD_FMT_MOD_TILE_VER_GFX9 1
   1168#define AMD_FMT_MOD_TILE_VER_GFX10 2
   1169#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
   1170
   1171/*
   1172 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
   1173 * version.
   1174 */
   1175#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
   1176
   1177/*
   1178 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
   1179 * GFX9 as canonical version.
   1180 */
   1181#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
   1182#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
   1183#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
   1184#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
   1185
   1186#define AMD_FMT_MOD_DCC_BLOCK_64B 0
   1187#define AMD_FMT_MOD_DCC_BLOCK_128B 1
   1188#define AMD_FMT_MOD_DCC_BLOCK_256B 2
   1189
   1190#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
   1191#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
   1192#define AMD_FMT_MOD_TILE_SHIFT 8
   1193#define AMD_FMT_MOD_TILE_MASK 0x1F
   1194
   1195/* Whether DCC compression is enabled. */
   1196#define AMD_FMT_MOD_DCC_SHIFT 13
   1197#define AMD_FMT_MOD_DCC_MASK 0x1
   1198
   1199/*
   1200 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
   1201 * one which is not-aligned.
   1202 */
   1203#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
   1204#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
   1205
   1206/* Only set if DCC_RETILE = false */
   1207#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
   1208#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
   1209
   1210#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
   1211#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
   1212#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
   1213#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
   1214#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
   1215#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
   1216
   1217/*
   1218 * DCC supports embedding some clear colors directly in the DCC surface.
   1219 * However, on older GPUs the rendering HW ignores the embedded clear color
   1220 * and prefers the driver provided color. This necessitates doing a fastclear
   1221 * eliminate operation before a process transfers control.
   1222 *
   1223 * If this bit is set that means the fastclear eliminate is not needed for these
   1224 * embeddable colors.
   1225 */
   1226#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
   1227#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
   1228
   1229/*
   1230 * The below fields are for accounting for per GPU differences. These are only
   1231 * relevant for GFX9 and later and if the tile field is *_X/_T.
   1232 *
   1233 * PIPE_XOR_BITS = always needed
   1234 * BANK_XOR_BITS = only for TILE_VER_GFX9
   1235 * PACKERS = only for TILE_VER_GFX10_RBPLUS
   1236 * RB = only for TILE_VER_GFX9 & DCC
   1237 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
   1238 */
   1239#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
   1240#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
   1241#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
   1242#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
   1243#define AMD_FMT_MOD_PACKERS_SHIFT 27
   1244#define AMD_FMT_MOD_PACKERS_MASK 0x7
   1245#define AMD_FMT_MOD_RB_SHIFT 30
   1246#define AMD_FMT_MOD_RB_MASK 0x7
   1247#define AMD_FMT_MOD_PIPE_SHIFT 33
   1248#define AMD_FMT_MOD_PIPE_MASK 0x7
   1249
   1250#define AMD_FMT_MOD_SET(field, value) \
   1251	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
   1252#define AMD_FMT_MOD_GET(field, value) \
   1253	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
   1254#define AMD_FMT_MOD_CLEAR(field) \
   1255	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
   1256
   1257#if defined(__cplusplus)
   1258}
   1259#endif
   1260
   1261#endif /* DRM_FOURCC_H */