fpopcode.h (13978B)
1/* 2 NetWinder Floating Point Emulator 3 (c) Rebel.COM, 1998,1999 4 5 Direct questions, comments to Scott Bambrough <scottb@netwinder.org> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, see <http://www.gnu.org/licenses/>. 19*/ 20 21#ifndef FPOPCODE_H 22#define FPOPCODE_H 23 24/* 25ARM Floating Point Instruction Classes 26| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 27|c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT 28|c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|0|1| o f f s e t | CPDT 29| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 30|c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO 31|c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT 32|c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons 33| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 34 35CPDT data transfer instructions 36 LDF, STF, LFM, SFM 37 38CPDO dyadic arithmetic instructions 39 ADF, MUF, SUF, RSF, DVF, RDF, 40 POW, RPW, RMF, FML, FDV, FRD, POL 41 42CPDO monadic arithmetic instructions 43 MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP, 44 SIN, COS, TAN, ASN, ACS, ATN, URD, NRM 45 46CPRT joint arithmetic/data transfer instructions 47 FIX (arithmetic followed by load/store) 48 FLT (load/store followed by arithmetic) 49 CMF, CNF CMFE, CNFE (comparisons) 50 WFS, RFS (write/read floating point status register) 51 WFC, RFC (write/read floating point control register) 52 53cond condition codes 54P pre/post index bit: 0 = postindex, 1 = preindex 55U up/down bit: 0 = stack grows down, 1 = stack grows up 56W write back bit: 1 = update base register (Rn) 57L load/store bit: 0 = store, 1 = load 58Rn base register 59Rd destination/source register 60Fd floating point destination register 61Fn floating point source register 62Fm floating point source register or floating point constant 63 64uv transfer length (TABLE 1) 65wx register count (TABLE 2) 66abcd arithmetic opcode (TABLES 3 & 4) 67ef destination size (rounding precision) (TABLE 5) 68gh rounding mode (TABLE 6) 69j dyadic/monadic bit: 0 = dyadic, 1 = monadic 70i constant bit: 1 = constant (TABLE 6) 71*/ 72 73/* 74TABLE 1 75+-------------------------+---+---+---------+---------+ 76| Precision | u | v | FPSR.EP | length | 77+-------------------------+---+---+---------+---------+ 78| Single | 0 | 0 | x | 1 words | 79| Double | 1 | 1 | x | 2 words | 80| Extended | 1 | 1 | x | 3 words | 81| Packed decimal | 1 | 1 | 0 | 3 words | 82| Expanded packed decimal | 1 | 1 | 1 | 4 words | 83+-------------------------+---+---+---------+---------+ 84Note: x = don't care 85*/ 86 87/* 88TABLE 2 89+---+---+---------------------------------+ 90| w | x | Number of registers to transfer | 91+---+---+---------------------------------+ 92| 0 | 1 | 1 | 93| 1 | 0 | 2 | 94| 1 | 1 | 3 | 95| 0 | 0 | 4 | 96+---+---+---------------------------------+ 97*/ 98 99/* 100TABLE 3: Dyadic Floating Point Opcodes 101+---+---+---+---+----------+-----------------------+-----------------------+ 102| a | b | c | d | Mnemonic | Description | Operation | 103+---+---+---+---+----------+-----------------------+-----------------------+ 104| 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm | 105| 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm | 106| 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm | 107| 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn | 108| 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm | 109| 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn | 110| 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm | 111| 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn | 112| 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) | 113| 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm | 114| 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm | 115| 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn | 116| 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) | 117| 1 | 1 | 0 | 1 | | undefined instruction | trap | 118| 1 | 1 | 1 | 0 | | undefined instruction | trap | 119| 1 | 1 | 1 | 1 | | undefined instruction | trap | 120+---+---+---+---+----------+-----------------------+-----------------------+ 121Note: POW, RPW, POL are deprecated, and are available for backwards 122 compatibility only. 123*/ 124 125/* 126TABLE 4: Monadic Floating Point Opcodes 127+---+---+---+---+----------+-----------------------+-----------------------+ 128| a | b | c | d | Mnemonic | Description | Operation | 129+---+---+---+---+----------+-----------------------+-----------------------+ 130| 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm | 131| 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm | 132| 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) | 133| 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) | 134| 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) | 135| 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) | 136| 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) | 137| 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm | 138| 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) | 139| 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) | 140| 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) | 141| 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) | 142| 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) | 143| 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) | 144| 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) | 145| 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) | 146+---+---+---+---+----------+-----------------------+-----------------------+ 147Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are 148 available for backwards compatibility only. 149*/ 150 151/* 152TABLE 5 153+-------------------------+---+---+ 154| Rounding Precision | e | f | 155+-------------------------+---+---+ 156| IEEE Single precision | 0 | 0 | 157| IEEE Double precision | 0 | 1 | 158| IEEE Extended precision | 1 | 0 | 159| undefined (trap) | 1 | 1 | 160+-------------------------+---+---+ 161*/ 162 163/* 164TABLE 5 165+---------------------------------+---+---+ 166| Rounding Mode | g | h | 167+---------------------------------+---+---+ 168| Round to nearest (default) | 0 | 0 | 169| Round toward plus infinity | 0 | 1 | 170| Round toward negative infinity | 1 | 0 | 171| Round toward zero | 1 | 1 | 172+---------------------------------+---+---+ 173*/ 174 175/* 176=== 177=== Definitions for load and store instructions 178=== 179*/ 180 181/* bit masks */ 182#define BIT_PREINDEX 0x01000000 183#define BIT_UP 0x00800000 184#define BIT_WRITE_BACK 0x00200000 185#define BIT_LOAD 0x00100000 186 187/* masks for load/store */ 188#define MASK_CPDT 0x0c000000 /* data processing opcode */ 189#define MASK_OFFSET 0x000000ff 190#define MASK_TRANSFER_LENGTH 0x00408000 191#define MASK_REGISTER_COUNT MASK_TRANSFER_LENGTH 192#define MASK_COPROCESSOR 0x00000f00 193 194/* Tests for transfer length */ 195#define TRANSFER_SINGLE 0x00000000 196#define TRANSFER_DOUBLE 0x00008000 197#define TRANSFER_EXTENDED 0x00400000 198#define TRANSFER_PACKED MASK_TRANSFER_LENGTH 199 200/* Get the coprocessor number from the opcode. */ 201#define getCoprocessorNumber(opcode) ((opcode & MASK_COPROCESSOR) >> 8) 202 203/* Get the offset from the opcode. */ 204#define getOffset(opcode) (opcode & MASK_OFFSET) 205 206/* Tests for specific data transfer load/store opcodes. */ 207#define TEST_OPCODE(opcode,mask) (((opcode) & (mask)) == (mask)) 208 209#define LOAD_OP(opcode) TEST_OPCODE((opcode),MASK_CPDT | BIT_LOAD) 210#define STORE_OP(opcode) ((opcode & (MASK_CPDT | BIT_LOAD)) == MASK_CPDT) 211 212#define LDF_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 1)) 213#define LFM_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 2)) 214#define STF_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 1)) 215#define SFM_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 2)) 216 217#define PREINDEXED(opcode) ((opcode & BIT_PREINDEX) != 0) 218#define POSTINDEXED(opcode) ((opcode & BIT_PREINDEX) == 0) 219#define BIT_UP_SET(opcode) ((opcode & BIT_UP) != 0) 220#define BIT_UP_CLEAR(opcode) ((opcode & BIT_DOWN) == 0) 221#define WRITE_BACK(opcode) ((opcode & BIT_WRITE_BACK) != 0) 222#define LOAD(opcode) ((opcode & BIT_LOAD) != 0) 223#define STORE(opcode) ((opcode & BIT_LOAD) == 0) 224 225/* 226=== 227=== Definitions for arithmetic instructions 228=== 229*/ 230/* bit masks */ 231#define BIT_MONADIC 0x00008000 232#define BIT_CONSTANT 0x00000008 233 234#define CONSTANT_FM(opcode) ((opcode & BIT_CONSTANT) != 0) 235#define MONADIC_INSTRUCTION(opcode) ((opcode & BIT_MONADIC) != 0) 236 237/* instruction identification masks */ 238#define MASK_CPDO 0x0e000000 /* arithmetic opcode */ 239#define MASK_ARITHMETIC_OPCODE 0x00f08000 240#define MASK_DESTINATION_SIZE 0x00080080 241 242/* dyadic arithmetic opcodes. */ 243#define ADF_CODE 0x00000000 244#define MUF_CODE 0x00100000 245#define SUF_CODE 0x00200000 246#define RSF_CODE 0x00300000 247#define DVF_CODE 0x00400000 248#define RDF_CODE 0x00500000 249#define POW_CODE 0x00600000 250#define RPW_CODE 0x00700000 251#define RMF_CODE 0x00800000 252#define FML_CODE 0x00900000 253#define FDV_CODE 0x00a00000 254#define FRD_CODE 0x00b00000 255#define POL_CODE 0x00c00000 256/* 0x00d00000 is an invalid dyadic arithmetic opcode */ 257/* 0x00e00000 is an invalid dyadic arithmetic opcode */ 258/* 0x00f00000 is an invalid dyadic arithmetic opcode */ 259 260/* monadic arithmetic opcodes. */ 261#define MVF_CODE 0x00008000 262#define MNF_CODE 0x00108000 263#define ABS_CODE 0x00208000 264#define RND_CODE 0x00308000 265#define SQT_CODE 0x00408000 266#define LOG_CODE 0x00508000 267#define LGN_CODE 0x00608000 268#define EXP_CODE 0x00708000 269#define SIN_CODE 0x00808000 270#define COS_CODE 0x00908000 271#define TAN_CODE 0x00a08000 272#define ASN_CODE 0x00b08000 273#define ACS_CODE 0x00c08000 274#define ATN_CODE 0x00d08000 275#define URD_CODE 0x00e08000 276#define NRM_CODE 0x00f08000 277 278/* 279=== 280=== Definitions for register transfer and comparison instructions 281=== 282*/ 283 284#define MASK_CPRT 0x0e000010 /* register transfer opcode */ 285#define MASK_CPRT_CODE 0x00f00000 286#define FLT_CODE 0x00000000 287#define FIX_CODE 0x00100000 288#define WFS_CODE 0x00200000 289#define RFS_CODE 0x00300000 290#define WFC_CODE 0x00400000 291#define RFC_CODE 0x00500000 292#define CMF_CODE 0x00900000 293#define CNF_CODE 0x00b00000 294#define CMFE_CODE 0x00d00000 295#define CNFE_CODE 0x00f00000 296 297/* 298=== 299=== Common definitions 300=== 301*/ 302 303/* register masks */ 304#define MASK_Rd 0x0000f000 305#define MASK_Rn 0x000f0000 306#define MASK_Fd 0x00007000 307#define MASK_Fm 0x00000007 308#define MASK_Fn 0x00070000 309 310/* condition code masks */ 311#define CC_MASK 0xf0000000 312#define CC_NEGATIVE 0x80000000 313#define CC_ZERO 0x40000000 314#define CC_CARRY 0x20000000 315#define CC_OVERFLOW 0x10000000 316#define CC_EQ 0x00000000 317#define CC_NE 0x10000000 318#define CC_CS 0x20000000 319#define CC_HS CC_CS 320#define CC_CC 0x30000000 321#define CC_LO CC_CC 322#define CC_MI 0x40000000 323#define CC_PL 0x50000000 324#define CC_VS 0x60000000 325#define CC_VC 0x70000000 326#define CC_HI 0x80000000 327#define CC_LS 0x90000000 328#define CC_GE 0xa0000000 329#define CC_LT 0xb0000000 330#define CC_GT 0xc0000000 331#define CC_LE 0xd0000000 332#define CC_AL 0xe0000000 333#define CC_NV 0xf0000000 334 335/* rounding masks/values */ 336#define MASK_ROUNDING_MODE 0x00000060 337#define ROUND_TO_NEAREST 0x00000000 338#define ROUND_TO_PLUS_INFINITY 0x00000020 339#define ROUND_TO_MINUS_INFINITY 0x00000040 340#define ROUND_TO_ZERO 0x00000060 341 342#define MASK_ROUNDING_PRECISION 0x00080080 343#define ROUND_SINGLE 0x00000000 344#define ROUND_DOUBLE 0x00000080 345#define ROUND_EXTENDED 0x00080000 346 347/* Get the condition code from the opcode. */ 348#define getCondition(opcode) (opcode >> 28) 349 350/* Get the source register from the opcode. */ 351#define getRn(opcode) ((opcode & MASK_Rn) >> 16) 352 353/* Get the destination floating point register from the opcode. */ 354#define getFd(opcode) ((opcode & MASK_Fd) >> 12) 355 356/* Get the first source floating point register from the opcode. */ 357#define getFn(opcode) ((opcode & MASK_Fn) >> 16) 358 359/* Get the second source floating point register from the opcode. */ 360#define getFm(opcode) (opcode & MASK_Fm) 361 362/* Get the destination register from the opcode. */ 363#define getRd(opcode) ((opcode & MASK_Rd) >> 12) 364 365/* Get the rounding mode from the opcode. */ 366#define getRoundingMode(opcode) ((opcode & MASK_ROUNDING_MODE) >> 5) 367 368extern const floatx80 floatx80Constant[]; 369extern const float64 float64Constant[]; 370extern const float32 float32Constant[]; 371 372static inline floatx80 getExtendedConstant(const unsigned int nIndex) 373{ 374 return floatx80Constant[nIndex]; 375} 376 377static inline float64 getDoubleConstant(const unsigned int nIndex) 378{ 379 return float64Constant[nIndex]; 380} 381 382static inline float32 getSingleConstant(const unsigned int nIndex) 383{ 384 return float32Constant[nIndex]; 385} 386 387unsigned int getRegisterCount(const unsigned int opcode); 388unsigned int getDestinationSize(const unsigned int opcode); 389 390#endif