cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

cpu_loop.c (13557B)


      1/*
      2 *  qemu user cpu loop
      3 *
      4 *  Copyright (c) 2003-2008 Fabrice Bellard
      5 *
      6 *  This program is free software; you can redistribute it and/or modify
      7 *  it under the terms of the GNU General Public License as published by
      8 *  the Free Software Foundation; either version 2 of the License, or
      9 *  (at your option) any later version.
     10 *
     11 *  This program is distributed in the hope that it will be useful,
     12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 *  GNU General Public License for more details.
     15 *
     16 *  You should have received a copy of the GNU General Public License
     17 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21#include "qemu-common.h"
     22#include "qemu.h"
     23#include "user-internals.h"
     24#include "cpu_loop-common.h"
     25#include "signal-common.h"
     26#include "user-mmap.h"
     27
     28/***********************************************************/
     29/* CPUX86 core interface */
     30
     31uint64_t cpu_get_tsc(CPUX86State *env)
     32{
     33    return cpu_get_host_ticks();
     34}
     35
     36static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
     37              int flags)
     38{
     39    unsigned int e1, e2;
     40    uint32_t *p;
     41    e1 = (addr << 16) | (limit & 0xffff);
     42    e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
     43    e2 |= flags;
     44    p = ptr;
     45    p[0] = tswap32(e1);
     46    p[1] = tswap32(e2);
     47}
     48
     49static uint64_t *idt_table;
     50#ifdef TARGET_X86_64
     51static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
     52                       uint64_t addr, unsigned int sel)
     53{
     54    uint32_t *p, e1, e2;
     55    e1 = (addr & 0xffff) | (sel << 16);
     56    e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
     57    p = ptr;
     58    p[0] = tswap32(e1);
     59    p[1] = tswap32(e2);
     60    p[2] = tswap32(addr >> 32);
     61    p[3] = 0;
     62}
     63/* only dpl matters as we do only user space emulation */
     64static void set_idt(int n, unsigned int dpl)
     65{
     66    set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
     67}
     68#else
     69static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
     70                     uint32_t addr, unsigned int sel)
     71{
     72    uint32_t *p, e1, e2;
     73    e1 = (addr & 0xffff) | (sel << 16);
     74    e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
     75    p = ptr;
     76    p[0] = tswap32(e1);
     77    p[1] = tswap32(e2);
     78}
     79
     80/* only dpl matters as we do only user space emulation */
     81static void set_idt(int n, unsigned int dpl)
     82{
     83    set_gate(idt_table + n, 0, dpl, 0, 0);
     84}
     85#endif
     86
     87static void gen_signal(CPUX86State *env, int sig, int code, abi_ptr addr)
     88{
     89    target_siginfo_t info = {
     90        .si_signo = sig,
     91        .si_code = code,
     92        ._sifields._sigfault._addr = addr
     93    };
     94
     95    queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
     96}
     97
     98#ifdef TARGET_X86_64
     99static bool write_ok_or_segv(CPUX86State *env, abi_ptr addr, size_t len)
    100{
    101    /*
    102     * For all the vsyscalls, NULL means "don't write anything" not
    103     * "write it at address 0".
    104     */
    105    if (addr == 0 || access_ok(env_cpu(env), VERIFY_WRITE, addr, len)) {
    106        return true;
    107    }
    108
    109    env->error_code = PG_ERROR_W_MASK | PG_ERROR_U_MASK;
    110    gen_signal(env, TARGET_SIGSEGV, TARGET_SEGV_MAPERR, addr);
    111    return false;
    112}
    113
    114/*
    115 * Since v3.1, the kernel traps and emulates the vsyscall page.
    116 * Entry points other than the official generate SIGSEGV.
    117 */
    118static void emulate_vsyscall(CPUX86State *env)
    119{
    120    int syscall;
    121    abi_ulong ret;
    122    uint64_t caller;
    123
    124    /*
    125     * Validate the entry point.  We have already validated the page
    126     * during translation to get here; now verify the offset.
    127     */
    128    switch (env->eip & ~TARGET_PAGE_MASK) {
    129    case 0x000:
    130        syscall = TARGET_NR_gettimeofday;
    131        break;
    132    case 0x400:
    133        syscall = TARGET_NR_time;
    134        break;
    135    case 0x800:
    136        syscall = TARGET_NR_getcpu;
    137        break;
    138    default:
    139        goto sigsegv;
    140    }
    141
    142    /*
    143     * Validate the return address.
    144     * Note that the kernel treats this the same as an invalid entry point.
    145     */
    146    if (get_user_u64(caller, env->regs[R_ESP])) {
    147        goto sigsegv;
    148    }
    149
    150    /*
    151     * Validate the the pointer arguments.
    152     */
    153    switch (syscall) {
    154    case TARGET_NR_gettimeofday:
    155        if (!write_ok_or_segv(env, env->regs[R_EDI],
    156                              sizeof(struct target_timeval)) ||
    157            !write_ok_or_segv(env, env->regs[R_ESI],
    158                              sizeof(struct target_timezone))) {
    159            return;
    160        }
    161        break;
    162    case TARGET_NR_time:
    163        if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(abi_long))) {
    164            return;
    165        }
    166        break;
    167    case TARGET_NR_getcpu:
    168        if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(uint32_t)) ||
    169            !write_ok_or_segv(env, env->regs[R_ESI], sizeof(uint32_t))) {
    170            return;
    171        }
    172        break;
    173    default:
    174        g_assert_not_reached();
    175    }
    176
    177    /*
    178     * Perform the syscall.  None of the vsyscalls should need restarting.
    179     */
    180    ret = do_syscall(env, syscall, env->regs[R_EDI], env->regs[R_ESI],
    181                     env->regs[R_EDX], env->regs[10], env->regs[8],
    182                     env->regs[9], 0, 0);
    183    g_assert(ret != -TARGET_ERESTARTSYS);
    184    g_assert(ret != -TARGET_QEMU_ESIGRETURN);
    185    if (ret == -TARGET_EFAULT) {
    186        goto sigsegv;
    187    }
    188    env->regs[R_EAX] = ret;
    189
    190    /* Emulate a ret instruction to leave the vsyscall page.  */
    191    env->eip = caller;
    192    env->regs[R_ESP] += 8;
    193    return;
    194
    195 sigsegv:
    196    /* Like force_sig(SIGSEGV).  */
    197    gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
    198}
    199#endif
    200
    201void cpu_loop(CPUX86State *env)
    202{
    203    CPUState *cs = env_cpu(env);
    204    int trapnr;
    205    abi_ulong pc;
    206    abi_ulong ret;
    207
    208    for(;;) {
    209        cpu_exec_start(cs);
    210        trapnr = cpu_exec(cs);
    211        cpu_exec_end(cs);
    212        process_queued_cpu_work(cs);
    213
    214        switch(trapnr) {
    215        case 0x80:
    216            /* linux syscall from int $0x80 */
    217            ret = do_syscall(env,
    218                             env->regs[R_EAX],
    219                             env->regs[R_EBX],
    220                             env->regs[R_ECX],
    221                             env->regs[R_EDX],
    222                             env->regs[R_ESI],
    223                             env->regs[R_EDI],
    224                             env->regs[R_EBP],
    225                             0, 0);
    226            if (ret == -TARGET_ERESTARTSYS) {
    227                env->eip -= 2;
    228            } else if (ret != -TARGET_QEMU_ESIGRETURN) {
    229                env->regs[R_EAX] = ret;
    230            }
    231            break;
    232#ifndef TARGET_ABI32
    233        case EXCP_SYSCALL:
    234            /* linux syscall from syscall instruction */
    235            ret = do_syscall(env,
    236                             env->regs[R_EAX],
    237                             env->regs[R_EDI],
    238                             env->regs[R_ESI],
    239                             env->regs[R_EDX],
    240                             env->regs[10],
    241                             env->regs[8],
    242                             env->regs[9],
    243                             0, 0);
    244            if (ret == -TARGET_ERESTARTSYS) {
    245                env->eip -= 2;
    246            } else if (ret != -TARGET_QEMU_ESIGRETURN) {
    247                env->regs[R_EAX] = ret;
    248            }
    249            break;
    250#endif
    251#ifdef TARGET_X86_64
    252        case EXCP_VSYSCALL:
    253            emulate_vsyscall(env);
    254            break;
    255#endif
    256        case EXCP0B_NOSEG:
    257        case EXCP0C_STACK:
    258            gen_signal(env, TARGET_SIGBUS, TARGET_SI_KERNEL, 0);
    259            break;
    260        case EXCP0D_GPF:
    261            /* XXX: potential problem if ABI32 */
    262#ifndef TARGET_X86_64
    263            if (env->eflags & VM_MASK) {
    264                handle_vm86_fault(env);
    265                break;
    266            }
    267#endif
    268            gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
    269            break;
    270        case EXCP0E_PAGE:
    271            gen_signal(env, TARGET_SIGSEGV,
    272                       (env->error_code & 1 ?
    273                        TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR),
    274                       env->cr[2]);
    275            break;
    276        case EXCP00_DIVZ:
    277#ifndef TARGET_X86_64
    278            if (env->eflags & VM_MASK) {
    279                handle_vm86_trap(env, trapnr);
    280                break;
    281            }
    282#endif
    283            gen_signal(env, TARGET_SIGFPE, TARGET_FPE_INTDIV, env->eip);
    284            break;
    285        case EXCP01_DB:
    286        case EXCP03_INT3:
    287#ifndef TARGET_X86_64
    288            if (env->eflags & VM_MASK) {
    289                handle_vm86_trap(env, trapnr);
    290                break;
    291            }
    292#endif
    293            if (trapnr == EXCP01_DB) {
    294                gen_signal(env, TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
    295            } else {
    296                gen_signal(env, TARGET_SIGTRAP, TARGET_SI_KERNEL, 0);
    297            }
    298            break;
    299        case EXCP04_INTO:
    300        case EXCP05_BOUND:
    301#ifndef TARGET_X86_64
    302            if (env->eflags & VM_MASK) {
    303                handle_vm86_trap(env, trapnr);
    304                break;
    305            }
    306#endif
    307            gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
    308            break;
    309        case EXCP06_ILLOP:
    310            gen_signal(env, TARGET_SIGILL, TARGET_ILL_ILLOPN, env->eip);
    311            break;
    312        case EXCP_INTERRUPT:
    313            /* just indicate that signals should be handled asap */
    314            break;
    315        case EXCP_DEBUG:
    316            gen_signal(env, TARGET_SIGTRAP, TARGET_TRAP_BRKPT, 0);
    317            break;
    318        case EXCP_ATOMIC:
    319            cpu_exec_step_atomic(cs);
    320            break;
    321        default:
    322            pc = env->segs[R_CS].base + env->eip;
    323            EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
    324                      (long)pc, trapnr);
    325            abort();
    326        }
    327        process_pending_signals(env);
    328    }
    329}
    330
    331void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
    332{
    333    env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
    334    env->hflags |= HF_PE_MASK | HF_CPL_MASK;
    335    if (env->features[FEAT_1_EDX] & CPUID_SSE) {
    336        env->cr[4] |= CR4_OSFXSR_MASK;
    337        env->hflags |= HF_OSFXSR_MASK;
    338    }
    339#ifndef TARGET_ABI32
    340    /* enable 64 bit mode if possible */
    341    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
    342        fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
    343        exit(EXIT_FAILURE);
    344    }
    345    env->cr[4] |= CR4_PAE_MASK;
    346    env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
    347    env->hflags |= HF_LMA_MASK;
    348#endif
    349
    350    /* flags setup : we activate the IRQs by default as in user mode */
    351    env->eflags |= IF_MASK;
    352
    353    /* linux register setup */
    354#ifndef TARGET_ABI32
    355    env->regs[R_EAX] = regs->rax;
    356    env->regs[R_EBX] = regs->rbx;
    357    env->regs[R_ECX] = regs->rcx;
    358    env->regs[R_EDX] = regs->rdx;
    359    env->regs[R_ESI] = regs->rsi;
    360    env->regs[R_EDI] = regs->rdi;
    361    env->regs[R_EBP] = regs->rbp;
    362    env->regs[R_ESP] = regs->rsp;
    363    env->eip = regs->rip;
    364#else
    365    env->regs[R_EAX] = regs->eax;
    366    env->regs[R_EBX] = regs->ebx;
    367    env->regs[R_ECX] = regs->ecx;
    368    env->regs[R_EDX] = regs->edx;
    369    env->regs[R_ESI] = regs->esi;
    370    env->regs[R_EDI] = regs->edi;
    371    env->regs[R_EBP] = regs->ebp;
    372    env->regs[R_ESP] = regs->esp;
    373    env->eip = regs->eip;
    374#endif
    375
    376    /* linux interrupt setup */
    377#ifndef TARGET_ABI32
    378    env->idt.limit = 511;
    379#else
    380    env->idt.limit = 255;
    381#endif
    382    env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
    383                                PROT_READ|PROT_WRITE,
    384                                MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
    385    idt_table = g2h_untagged(env->idt.base);
    386    set_idt(0, 0);
    387    set_idt(1, 0);
    388    set_idt(2, 0);
    389    set_idt(3, 3);
    390    set_idt(4, 3);
    391    set_idt(5, 0);
    392    set_idt(6, 0);
    393    set_idt(7, 0);
    394    set_idt(8, 0);
    395    set_idt(9, 0);
    396    set_idt(10, 0);
    397    set_idt(11, 0);
    398    set_idt(12, 0);
    399    set_idt(13, 0);
    400    set_idt(14, 0);
    401    set_idt(15, 0);
    402    set_idt(16, 0);
    403    set_idt(17, 0);
    404    set_idt(18, 0);
    405    set_idt(19, 0);
    406    set_idt(0x80, 3);
    407
    408    /* linux segment setup */
    409    {
    410        uint64_t *gdt_table;
    411        env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
    412                                    PROT_READ|PROT_WRITE,
    413                                    MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
    414        env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
    415        gdt_table = g2h_untagged(env->gdt.base);
    416#ifdef TARGET_ABI32
    417        write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
    418                 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
    419                 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
    420#else
    421        /* 64 bit code segment */
    422        write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
    423                 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
    424                 DESC_L_MASK |
    425                 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
    426#endif
    427        write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
    428                 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
    429                 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
    430    }
    431    cpu_x86_load_seg(env, R_CS, __USER_CS);
    432    cpu_x86_load_seg(env, R_SS, __USER_DS);
    433#ifdef TARGET_ABI32
    434    cpu_x86_load_seg(env, R_DS, __USER_DS);
    435    cpu_x86_load_seg(env, R_ES, __USER_DS);
    436    cpu_x86_load_seg(env, R_FS, __USER_DS);
    437    cpu_x86_load_seg(env, R_GS, __USER_DS);
    438    /* This hack makes Wine work... */
    439    env->segs[R_FS].selector = 0;
    440#else
    441    cpu_x86_load_seg(env, R_DS, 0);
    442    cpu_x86_load_seg(env, R_ES, 0);
    443    cpu_x86_load_seg(env, R_FS, 0);
    444    cpu_x86_load_seg(env, R_GS, 0);
    445#endif
    446}