cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

vm86.c (16233B)


      1/*
      2 *  vm86 linux syscall support
      3 *
      4 *  Copyright (c) 2003 Fabrice Bellard
      5 *
      6 *  This program is free software; you can redistribute it and/or modify
      7 *  it under the terms of the GNU General Public License as published by
      8 *  the Free Software Foundation; either version 2 of the License, or
      9 *  (at your option) any later version.
     10 *
     11 *  This program is distributed in the hope that it will be useful,
     12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 *  GNU General Public License for more details.
     15 *
     16 *  You should have received a copy of the GNU General Public License
     17 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19#include "qemu/osdep.h"
     20
     21#include "qemu.h"
     22#include "user-internals.h"
     23
     24//#define DEBUG_VM86
     25
     26#ifdef DEBUG_VM86
     27#  define LOG_VM86(...) qemu_log(__VA_ARGS__);
     28#else
     29#  define LOG_VM86(...) do { } while (0)
     30#endif
     31
     32
     33#define set_flags(X,new,mask) \
     34((X) = ((X) & ~(mask)) | ((new) & (mask)))
     35
     36#define SAFE_MASK	(0xDD5)
     37#define RETURN_MASK	(0xDFF)
     38
     39static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
     40{
     41    return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
     42}
     43
     44static inline void vm_putw(CPUX86State *env, uint32_t segptr,
     45                           unsigned int reg16, unsigned int val)
     46{
     47    cpu_stw_data(env, segptr + (reg16 & 0xffff), val);
     48}
     49
     50static inline void vm_putl(CPUX86State *env, uint32_t segptr,
     51                           unsigned int reg16, unsigned int val)
     52{
     53    cpu_stl_data(env, segptr + (reg16 & 0xffff), val);
     54}
     55
     56static inline unsigned int vm_getb(CPUX86State *env,
     57                                   uint32_t segptr, unsigned int reg16)
     58{
     59    return cpu_ldub_data(env, segptr + (reg16 & 0xffff));
     60}
     61
     62static inline unsigned int vm_getw(CPUX86State *env,
     63                                   uint32_t segptr, unsigned int reg16)
     64{
     65    return cpu_lduw_data(env, segptr + (reg16 & 0xffff));
     66}
     67
     68static inline unsigned int vm_getl(CPUX86State *env,
     69                                   uint32_t segptr, unsigned int reg16)
     70{
     71    return cpu_ldl_data(env, segptr + (reg16 & 0xffff));
     72}
     73
     74void save_v86_state(CPUX86State *env)
     75{
     76    CPUState *cs = env_cpu(env);
     77    TaskState *ts = cs->opaque;
     78    struct target_vm86plus_struct * target_v86;
     79
     80    if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
     81        /* FIXME - should return an error */
     82        return;
     83    /* put the VM86 registers in the userspace register structure */
     84    target_v86->regs.eax = tswap32(env->regs[R_EAX]);
     85    target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
     86    target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
     87    target_v86->regs.edx = tswap32(env->regs[R_EDX]);
     88    target_v86->regs.esi = tswap32(env->regs[R_ESI]);
     89    target_v86->regs.edi = tswap32(env->regs[R_EDI]);
     90    target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
     91    target_v86->regs.esp = tswap32(env->regs[R_ESP]);
     92    target_v86->regs.eip = tswap32(env->eip);
     93    target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
     94    target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
     95    target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
     96    target_v86->regs.es = tswap16(env->segs[R_ES].selector);
     97    target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
     98    target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
     99    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
    100    target_v86->regs.eflags = tswap32(env->eflags);
    101    unlock_user_struct(target_v86, ts->target_v86, 1);
    102    LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
    103             env->eflags, env->segs[R_CS].selector, env->eip);
    104
    105    /* restore 32 bit registers */
    106    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
    107    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
    108    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
    109    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
    110    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
    111    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
    112    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
    113    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
    114    env->eflags = ts->vm86_saved_regs.eflags;
    115    env->eip = ts->vm86_saved_regs.eip;
    116
    117    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
    118    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
    119    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
    120    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
    121    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
    122    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
    123}
    124
    125/* return from vm86 mode to 32 bit. The vm86() syscall will return
    126   'retval' */
    127static inline void return_to_32bit(CPUX86State *env, int retval)
    128{
    129    LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
    130    save_v86_state(env);
    131    env->regs[R_EAX] = retval;
    132}
    133
    134static inline int set_IF(CPUX86State *env)
    135{
    136    CPUState *cs = env_cpu(env);
    137    TaskState *ts = cs->opaque;
    138
    139    ts->v86flags |= VIF_MASK;
    140    if (ts->v86flags & VIP_MASK) {
    141        return_to_32bit(env, TARGET_VM86_STI);
    142        return 1;
    143    }
    144    return 0;
    145}
    146
    147static inline void clear_IF(CPUX86State *env)
    148{
    149    CPUState *cs = env_cpu(env);
    150    TaskState *ts = cs->opaque;
    151
    152    ts->v86flags &= ~VIF_MASK;
    153}
    154
    155static inline void clear_TF(CPUX86State *env)
    156{
    157    env->eflags &= ~TF_MASK;
    158}
    159
    160static inline void clear_AC(CPUX86State *env)
    161{
    162    env->eflags &= ~AC_MASK;
    163}
    164
    165static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
    166{
    167    CPUState *cs = env_cpu(env);
    168    TaskState *ts = cs->opaque;
    169
    170    set_flags(ts->v86flags, eflags, ts->v86mask);
    171    set_flags(env->eflags, eflags, SAFE_MASK);
    172    if (eflags & IF_MASK)
    173        return set_IF(env);
    174    else
    175        clear_IF(env);
    176    return 0;
    177}
    178
    179static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
    180{
    181    CPUState *cs = env_cpu(env);
    182    TaskState *ts = cs->opaque;
    183
    184    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
    185    set_flags(env->eflags, flags, SAFE_MASK);
    186    if (flags & IF_MASK)
    187        return set_IF(env);
    188    else
    189        clear_IF(env);
    190    return 0;
    191}
    192
    193static inline unsigned int get_vflags(CPUX86State *env)
    194{
    195    CPUState *cs = env_cpu(env);
    196    TaskState *ts = cs->opaque;
    197    unsigned int flags;
    198
    199    flags = env->eflags & RETURN_MASK;
    200    if (ts->v86flags & VIF_MASK)
    201        flags |= IF_MASK;
    202    flags |= IOPL_MASK;
    203    return flags | (ts->v86flags & ts->v86mask);
    204}
    205
    206#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
    207
    208/* handle VM86 interrupt (NOTE: the CPU core currently does not
    209   support TSS interrupt revectoring, so this code is always executed) */
    210static void do_int(CPUX86State *env, int intno)
    211{
    212    CPUState *cs = env_cpu(env);
    213    TaskState *ts = cs->opaque;
    214    uint32_t int_addr, segoffs, ssp;
    215    unsigned int sp;
    216
    217    if (env->segs[R_CS].selector == TARGET_BIOSSEG)
    218        goto cannot_handle;
    219    if (is_revectored(intno, &ts->vm86plus.int_revectored))
    220        goto cannot_handle;
    221    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
    222                                       &ts->vm86plus.int21_revectored))
    223        goto cannot_handle;
    224    int_addr = (intno << 2);
    225    segoffs = cpu_ldl_data(env, int_addr);
    226    if ((segoffs >> 16) == TARGET_BIOSSEG)
    227        goto cannot_handle;
    228    LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
    229             intno, segoffs >> 16, segoffs & 0xffff);
    230    /* save old state */
    231    ssp = env->segs[R_SS].selector << 4;
    232    sp = env->regs[R_ESP] & 0xffff;
    233    vm_putw(env, ssp, sp - 2, get_vflags(env));
    234    vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector);
    235    vm_putw(env, ssp, sp - 6, env->eip);
    236    ADD16(env->regs[R_ESP], -6);
    237    /* goto interrupt handler */
    238    env->eip = segoffs & 0xffff;
    239    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
    240    clear_TF(env);
    241    clear_IF(env);
    242    clear_AC(env);
    243    return;
    244 cannot_handle:
    245    LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
    246    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
    247}
    248
    249void handle_vm86_trap(CPUX86State *env, int trapno)
    250{
    251    if (trapno == 1 || trapno == 3) {
    252        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
    253    } else {
    254        do_int(env, trapno);
    255    }
    256}
    257
    258#define CHECK_IF_IN_TRAP() \
    259      if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
    260          (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
    261                newflags |= TF_MASK
    262
    263#define VM86_FAULT_RETURN \
    264        if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
    265            (ts->v86flags & (IF_MASK | VIF_MASK))) \
    266            return_to_32bit(env, TARGET_VM86_PICRETURN); \
    267        return
    268
    269void handle_vm86_fault(CPUX86State *env)
    270{
    271    CPUState *cs = env_cpu(env);
    272    TaskState *ts = cs->opaque;
    273    uint32_t csp, ssp;
    274    unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
    275    int data32, pref_done;
    276
    277    csp = env->segs[R_CS].selector << 4;
    278    ip = env->eip & 0xffff;
    279
    280    ssp = env->segs[R_SS].selector << 4;
    281    sp = env->regs[R_ESP] & 0xffff;
    282
    283    LOG_VM86("VM86 exception %04x:%08x\n",
    284             env->segs[R_CS].selector, env->eip);
    285
    286    data32 = 0;
    287    pref_done = 0;
    288    do {
    289        opcode = vm_getb(env, csp, ip);
    290        ADD16(ip, 1);
    291        switch (opcode) {
    292        case 0x66:      /* 32-bit data */     data32=1; break;
    293        case 0x67:      /* 32-bit address */  break;
    294        case 0x2e:      /* CS */              break;
    295        case 0x3e:      /* DS */              break;
    296        case 0x26:      /* ES */              break;
    297        case 0x36:      /* SS */              break;
    298        case 0x65:      /* GS */              break;
    299        case 0x64:      /* FS */              break;
    300        case 0xf2:      /* repnz */	      break;
    301        case 0xf3:      /* rep */             break;
    302        default: pref_done = 1;
    303        }
    304    } while (!pref_done);
    305
    306    /* VM86 mode */
    307    switch(opcode) {
    308    case 0x9c: /* pushf */
    309        if (data32) {
    310            vm_putl(env, ssp, sp - 4, get_vflags(env));
    311            ADD16(env->regs[R_ESP], -4);
    312        } else {
    313            vm_putw(env, ssp, sp - 2, get_vflags(env));
    314            ADD16(env->regs[R_ESP], -2);
    315        }
    316        env->eip = ip;
    317        VM86_FAULT_RETURN;
    318
    319    case 0x9d: /* popf */
    320        if (data32) {
    321            newflags = vm_getl(env, ssp, sp);
    322            ADD16(env->regs[R_ESP], 4);
    323        } else {
    324            newflags = vm_getw(env, ssp, sp);
    325            ADD16(env->regs[R_ESP], 2);
    326        }
    327        env->eip = ip;
    328        CHECK_IF_IN_TRAP();
    329        if (data32) {
    330            if (set_vflags_long(newflags, env))
    331                return;
    332        } else {
    333            if (set_vflags_short(newflags, env))
    334                return;
    335        }
    336        VM86_FAULT_RETURN;
    337
    338    case 0xcd: /* int */
    339        intno = vm_getb(env, csp, ip);
    340        ADD16(ip, 1);
    341        env->eip = ip;
    342        if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
    343            if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
    344                  (intno &7)) & 1) {
    345                return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
    346                return;
    347            }
    348        }
    349        do_int(env, intno);
    350        break;
    351
    352    case 0xcf: /* iret */
    353        if (data32) {
    354            newip = vm_getl(env, ssp, sp) & 0xffff;
    355            newcs = vm_getl(env, ssp, sp + 4) & 0xffff;
    356            newflags = vm_getl(env, ssp, sp + 8);
    357            ADD16(env->regs[R_ESP], 12);
    358        } else {
    359            newip = vm_getw(env, ssp, sp);
    360            newcs = vm_getw(env, ssp, sp + 2);
    361            newflags = vm_getw(env, ssp, sp + 4);
    362            ADD16(env->regs[R_ESP], 6);
    363        }
    364        env->eip = newip;
    365        cpu_x86_load_seg(env, R_CS, newcs);
    366        CHECK_IF_IN_TRAP();
    367        if (data32) {
    368            if (set_vflags_long(newflags, env))
    369                return;
    370        } else {
    371            if (set_vflags_short(newflags, env))
    372                return;
    373        }
    374        VM86_FAULT_RETURN;
    375
    376    case 0xfa: /* cli */
    377        env->eip = ip;
    378        clear_IF(env);
    379        VM86_FAULT_RETURN;
    380
    381    case 0xfb: /* sti */
    382        env->eip = ip;
    383        if (set_IF(env))
    384            return;
    385        VM86_FAULT_RETURN;
    386
    387    default:
    388        /* real VM86 GPF exception */
    389        return_to_32bit(env, TARGET_VM86_UNKNOWN);
    390        break;
    391    }
    392}
    393
    394int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
    395{
    396    CPUState *cs = env_cpu(env);
    397    TaskState *ts = cs->opaque;
    398    struct target_vm86plus_struct * target_v86;
    399    int ret;
    400
    401    switch (subfunction) {
    402    case TARGET_VM86_REQUEST_IRQ:
    403    case TARGET_VM86_FREE_IRQ:
    404    case TARGET_VM86_GET_IRQ_BITS:
    405    case TARGET_VM86_GET_AND_RESET_IRQ:
    406        qemu_log_mask(LOG_UNIMP, "qemu: unsupported vm86 subfunction (%ld)\n",
    407                      subfunction);
    408        ret = -TARGET_EINVAL;
    409        goto out;
    410    case TARGET_VM86_PLUS_INSTALL_CHECK:
    411        /* NOTE: on old vm86 stuff this will return the error
    412           from verify_area(), because the subfunction is
    413           interpreted as (invalid) address to vm86_struct.
    414           So the installation check works.
    415            */
    416        ret = 0;
    417        goto out;
    418    }
    419
    420    /* save current CPU regs */
    421    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
    422    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
    423    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
    424    ts->vm86_saved_regs.edx = env->regs[R_EDX];
    425    ts->vm86_saved_regs.esi = env->regs[R_ESI];
    426    ts->vm86_saved_regs.edi = env->regs[R_EDI];
    427    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
    428    ts->vm86_saved_regs.esp = env->regs[R_ESP];
    429    ts->vm86_saved_regs.eflags = env->eflags;
    430    ts->vm86_saved_regs.eip  = env->eip;
    431    ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
    432    ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
    433    ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
    434    ts->vm86_saved_regs.es = env->segs[R_ES].selector;
    435    ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
    436    ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
    437
    438    ts->target_v86 = vm86_addr;
    439    if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
    440        return -TARGET_EFAULT;
    441    /* build vm86 CPU state */
    442    ts->v86flags = tswap32(target_v86->regs.eflags);
    443    env->eflags = (env->eflags & ~SAFE_MASK) |
    444        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
    445
    446    ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
    447    switch (ts->vm86plus.cpu_type) {
    448    case TARGET_CPU_286:
    449        ts->v86mask = 0;
    450        break;
    451    case TARGET_CPU_386:
    452        ts->v86mask = NT_MASK | IOPL_MASK;
    453        break;
    454    case TARGET_CPU_486:
    455        ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
    456        break;
    457    default:
    458        ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
    459        break;
    460    }
    461
    462    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
    463    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
    464    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
    465    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
    466    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
    467    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
    468    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
    469    env->eip = tswap32(target_v86->regs.eip);
    470    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
    471    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
    472    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
    473    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
    474    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
    475    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
    476    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
    477                                            the end of the syscall */
    478    memcpy(&ts->vm86plus.int_revectored,
    479           &target_v86->int_revectored, 32);
    480    memcpy(&ts->vm86plus.int21_revectored,
    481           &target_v86->int21_revectored, 32);
    482    ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
    483    memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
    484           target_v86->vm86plus.vm86dbg_intxxtab, 32);
    485    unlock_user_struct(target_v86, vm86_addr, 0);
    486
    487    LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
    488             env->segs[R_CS].selector, env->eip);
    489    /* now the virtual CPU is ready for vm86 execution ! */
    490 out:
    491    return ret;
    492}