cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

api.c (10864B)


      1/*
      2 * QEMU Plugin API
      3 *
      4 * This provides the API that is available to the plugins to interact
      5 * with QEMU. We have to be careful not to expose internal details of
      6 * how QEMU works so we abstract out things like translation and
      7 * instructions to anonymous data types:
      8 *
      9 *  qemu_plugin_tb
     10 *  qemu_plugin_insn
     11 *
     12 * Which can then be passed back into the API to do additional things.
     13 * As such all the public functions in here are exported in
     14 * qemu-plugin.h.
     15 *
     16 * The general life-cycle of a plugin is:
     17 *
     18 *  - plugin is loaded, public qemu_plugin_install called
     19 *    - the install func registers callbacks for events
     20 *    - usually an atexit_cb is registered to dump info at the end
     21 *  - when a registered event occurs the plugin is called
     22 *     - some events pass additional info
     23 *     - during translation the plugin can decide to instrument any
     24 *       instruction
     25 *  - when QEMU exits all the registered atexit callbacks are called
     26 *
     27 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
     28 * Copyright (C) 2019, Linaro
     29 *
     30 * License: GNU GPL, version 2 or later.
     31 *   See the COPYING file in the top-level directory.
     32 *
     33 * SPDX-License-Identifier: GPL-2.0-or-later
     34 *
     35 */
     36
     37#include "qemu/osdep.h"
     38#include "qemu/plugin.h"
     39#include "tcg/tcg.h"
     40#include "exec/exec-all.h"
     41#include "exec/ram_addr.h"
     42#include "disas/disas.h"
     43#include "plugin.h"
     44#ifndef CONFIG_USER_ONLY
     45#include "qemu/plugin-memory.h"
     46#include "hw/boards.h"
     47#endif
     48
     49/* Uninstall and Reset handlers */
     50
     51void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
     52{
     53    plugin_reset_uninstall(id, cb, false);
     54}
     55
     56void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
     57{
     58    plugin_reset_uninstall(id, cb, true);
     59}
     60
     61/*
     62 * Plugin Register Functions
     63 *
     64 * This allows the plugin to register callbacks for various events
     65 * during the translation.
     66 */
     67
     68void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
     69                                       qemu_plugin_vcpu_simple_cb_t cb)
     70{
     71    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
     72}
     73
     74void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
     75                                       qemu_plugin_vcpu_simple_cb_t cb)
     76{
     77    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
     78}
     79
     80void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
     81                                          qemu_plugin_vcpu_udata_cb_t cb,
     82                                          enum qemu_plugin_cb_flags flags,
     83                                          void *udata)
     84{
     85    if (!tb->mem_only) {
     86        plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
     87                                      cb, flags, udata);
     88    }
     89}
     90
     91void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
     92                                              enum qemu_plugin_op op,
     93                                              void *ptr, uint64_t imm)
     94{
     95    if (!tb->mem_only) {
     96        plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
     97    }
     98}
     99
    100void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
    101                                            qemu_plugin_vcpu_udata_cb_t cb,
    102                                            enum qemu_plugin_cb_flags flags,
    103                                            void *udata)
    104{
    105    if (!insn->mem_only) {
    106        plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
    107                                      cb, flags, udata);
    108    }
    109}
    110
    111void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
    112                                                enum qemu_plugin_op op,
    113                                                void *ptr, uint64_t imm)
    114{
    115    if (!insn->mem_only) {
    116        plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
    117                                  0, op, ptr, imm);
    118    }
    119}
    120
    121
    122/*
    123 * We always plant memory instrumentation because they don't finalise until
    124 * after the operation has complete.
    125 */
    126void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
    127                                      qemu_plugin_vcpu_mem_cb_t cb,
    128                                      enum qemu_plugin_cb_flags flags,
    129                                      enum qemu_plugin_mem_rw rw,
    130                                      void *udata)
    131{
    132    plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
    133                                    cb, flags, rw, udata);
    134}
    135
    136void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
    137                                          enum qemu_plugin_mem_rw rw,
    138                                          enum qemu_plugin_op op, void *ptr,
    139                                          uint64_t imm)
    140{
    141    plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
    142                              rw, op, ptr, imm);
    143}
    144
    145void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
    146                                           qemu_plugin_vcpu_tb_trans_cb_t cb)
    147{
    148    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
    149}
    150
    151void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
    152                                          qemu_plugin_vcpu_syscall_cb_t cb)
    153{
    154    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
    155}
    156
    157void
    158qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
    159                                         qemu_plugin_vcpu_syscall_ret_cb_t cb)
    160{
    161    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
    162}
    163
    164/*
    165 * Plugin Queries
    166 *
    167 * These are queries that the plugin can make to gauge information
    168 * from our opaque data types. We do not want to leak internal details
    169 * here just information useful to the plugin.
    170 */
    171
    172/*
    173 * Translation block information:
    174 *
    175 * A plugin can query the virtual address of the start of the block
    176 * and the number of instructions in it. It can also get access to
    177 * each translated instruction.
    178 */
    179
    180size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
    181{
    182    return tb->n;
    183}
    184
    185uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
    186{
    187    return tb->vaddr;
    188}
    189
    190struct qemu_plugin_insn *
    191qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
    192{
    193    struct qemu_plugin_insn *insn;
    194    if (unlikely(idx >= tb->n)) {
    195        return NULL;
    196    }
    197    insn = g_ptr_array_index(tb->insns, idx);
    198    insn->mem_only = tb->mem_only;
    199    return insn;
    200}
    201
    202/*
    203 * Instruction information
    204 *
    205 * These queries allow the plugin to retrieve information about each
    206 * instruction being translated.
    207 */
    208
    209const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
    210{
    211    return insn->data->data;
    212}
    213
    214size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
    215{
    216    return insn->data->len;
    217}
    218
    219uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
    220{
    221    return insn->vaddr;
    222}
    223
    224void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
    225{
    226    return insn->haddr;
    227}
    228
    229char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
    230{
    231    CPUState *cpu = current_cpu;
    232    return plugin_disas(cpu, insn->vaddr, insn->data->len);
    233}
    234
    235const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
    236{
    237    const char *sym = lookup_symbol(insn->vaddr);
    238    return sym[0] != 0 ? sym : NULL;
    239}
    240
    241/*
    242 * The memory queries allow the plugin to query information about a
    243 * memory access.
    244 */
    245
    246unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
    247{
    248    MemOp op = get_memop(info);
    249    return op & MO_SIZE;
    250}
    251
    252bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
    253{
    254    MemOp op = get_memop(info);
    255    return op & MO_SIGN;
    256}
    257
    258bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
    259{
    260    MemOp op = get_memop(info);
    261    return (op & MO_BSWAP) == MO_BE;
    262}
    263
    264bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
    265{
    266    return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
    267}
    268
    269/*
    270 * Virtual Memory queries
    271 */
    272
    273#ifdef CONFIG_SOFTMMU
    274static __thread struct qemu_plugin_hwaddr hwaddr_info;
    275#endif
    276
    277struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
    278                                                  uint64_t vaddr)
    279{
    280#ifdef CONFIG_SOFTMMU
    281    CPUState *cpu = current_cpu;
    282    unsigned int mmu_idx = get_mmuidx(info);
    283    enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
    284    hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
    285
    286    if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
    287                           hwaddr_info.is_store, &hwaddr_info)) {
    288        error_report("invalid use of qemu_plugin_get_hwaddr");
    289        return NULL;
    290    }
    291
    292    return &hwaddr_info;
    293#else
    294    return NULL;
    295#endif
    296}
    297
    298bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
    299{
    300#ifdef CONFIG_SOFTMMU
    301    return haddr->is_io;
    302#else
    303    return false;
    304#endif
    305}
    306
    307uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
    308{
    309#ifdef CONFIG_SOFTMMU
    310    if (haddr) {
    311        if (!haddr->is_io) {
    312            RAMBlock *block;
    313            ram_addr_t offset;
    314            void *hostaddr = haddr->v.ram.hostaddr;
    315
    316            block = qemu_ram_block_from_host(hostaddr, false, &offset);
    317            if (!block) {
    318                error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr);
    319                abort();
    320            }
    321
    322            return block->offset + offset + block->mr->addr;
    323        } else {
    324            MemoryRegionSection *mrs = haddr->v.io.section;
    325            return mrs->offset_within_address_space + haddr->v.io.offset;
    326        }
    327    }
    328#endif
    329    return 0;
    330}
    331
    332const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
    333{
    334#ifdef CONFIG_SOFTMMU
    335    if (h && h->is_io) {
    336        MemoryRegionSection *mrs = h->v.io.section;
    337        if (!mrs->mr->name) {
    338            unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
    339            g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
    340            return g_intern_string(temp);
    341        } else {
    342            return g_intern_string(mrs->mr->name);
    343        }
    344    } else {
    345        return g_intern_static_string("RAM");
    346    }
    347#else
    348    return g_intern_static_string("Invalid");
    349#endif
    350}
    351
    352/*
    353 * Queries to the number and potential maximum number of vCPUs there
    354 * will be. This helps the plugin dimension per-vcpu arrays.
    355 */
    356
    357#ifndef CONFIG_USER_ONLY
    358static MachineState * get_ms(void)
    359{
    360    return MACHINE(qdev_get_machine());
    361}
    362#endif
    363
    364int qemu_plugin_n_vcpus(void)
    365{
    366#ifdef CONFIG_USER_ONLY
    367    return -1;
    368#else
    369    return get_ms()->smp.cpus;
    370#endif
    371}
    372
    373int qemu_plugin_n_max_vcpus(void)
    374{
    375#ifdef CONFIG_USER_ONLY
    376    return -1;
    377#else
    378    return get_ms()->smp.max_cpus;
    379#endif
    380}
    381
    382/*
    383 * Plugin output
    384 */
    385void qemu_plugin_outs(const char *string)
    386{
    387    qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
    388}
    389
    390bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
    391{
    392    return name && value && qapi_bool_parse(name, value, ret, NULL);
    393}