dma-helpers.c (10041B)
1/* 2 * DMA helper functions 3 * 4 * Copyright (c) 2009,2020 Red Hat 5 * 6 * This work is licensed under the terms of the GNU General Public License 7 * (GNU GPL), version 2 or later. 8 */ 9 10#include "qemu/osdep.h" 11#include "sysemu/block-backend.h" 12#include "sysemu/dma.h" 13#include "trace/trace-root.h" 14#include "qemu/thread.h" 15#include "qemu/main-loop.h" 16#include "sysemu/cpu-timers.h" 17#include "qemu/range.h" 18 19/* #define DEBUG_IOMMU */ 20 21MemTxResult dma_memory_set(AddressSpace *as, dma_addr_t addr, 22 uint8_t c, dma_addr_t len) 23{ 24 dma_barrier(as, DMA_DIRECTION_FROM_DEVICE); 25 26#define FILLBUF_SIZE 512 27 uint8_t fillbuf[FILLBUF_SIZE]; 28 int l; 29 MemTxResult error = MEMTX_OK; 30 31 memset(fillbuf, c, FILLBUF_SIZE); 32 while (len > 0) { 33 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 34 error |= address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, 35 fillbuf, l); 36 len -= l; 37 addr += l; 38 } 39 40 return error; 41} 42 43void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint, 44 AddressSpace *as) 45{ 46 qsg->sg = g_malloc(alloc_hint * sizeof(ScatterGatherEntry)); 47 qsg->nsg = 0; 48 qsg->nalloc = alloc_hint; 49 qsg->size = 0; 50 qsg->as = as; 51 qsg->dev = dev; 52 object_ref(OBJECT(dev)); 53} 54 55void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len) 56{ 57 if (qsg->nsg == qsg->nalloc) { 58 qsg->nalloc = 2 * qsg->nalloc + 1; 59 qsg->sg = g_realloc(qsg->sg, qsg->nalloc * sizeof(ScatterGatherEntry)); 60 } 61 qsg->sg[qsg->nsg].base = base; 62 qsg->sg[qsg->nsg].len = len; 63 qsg->size += len; 64 ++qsg->nsg; 65} 66 67void qemu_sglist_destroy(QEMUSGList *qsg) 68{ 69 object_unref(OBJECT(qsg->dev)); 70 g_free(qsg->sg); 71 memset(qsg, 0, sizeof(*qsg)); 72} 73 74typedef struct { 75 BlockAIOCB common; 76 AioContext *ctx; 77 BlockAIOCB *acb; 78 QEMUSGList *sg; 79 uint32_t align; 80 uint64_t offset; 81 DMADirection dir; 82 int sg_cur_index; 83 dma_addr_t sg_cur_byte; 84 QEMUIOVector iov; 85 QEMUBH *bh; 86 DMAIOFunc *io_func; 87 void *io_func_opaque; 88} DMAAIOCB; 89 90static void dma_blk_cb(void *opaque, int ret); 91 92static void reschedule_dma(void *opaque) 93{ 94 DMAAIOCB *dbs = (DMAAIOCB *)opaque; 95 96 assert(!dbs->acb && dbs->bh); 97 qemu_bh_delete(dbs->bh); 98 dbs->bh = NULL; 99 dma_blk_cb(dbs, 0); 100} 101 102static void dma_blk_unmap(DMAAIOCB *dbs) 103{ 104 int i; 105 106 for (i = 0; i < dbs->iov.niov; ++i) { 107 dma_memory_unmap(dbs->sg->as, dbs->iov.iov[i].iov_base, 108 dbs->iov.iov[i].iov_len, dbs->dir, 109 dbs->iov.iov[i].iov_len); 110 } 111 qemu_iovec_reset(&dbs->iov); 112} 113 114static void dma_complete(DMAAIOCB *dbs, int ret) 115{ 116 trace_dma_complete(dbs, ret, dbs->common.cb); 117 118 assert(!dbs->acb && !dbs->bh); 119 dma_blk_unmap(dbs); 120 if (dbs->common.cb) { 121 dbs->common.cb(dbs->common.opaque, ret); 122 } 123 qemu_iovec_destroy(&dbs->iov); 124 qemu_aio_unref(dbs); 125} 126 127static void dma_blk_cb(void *opaque, int ret) 128{ 129 DMAAIOCB *dbs = (DMAAIOCB *)opaque; 130 dma_addr_t cur_addr, cur_len; 131 void *mem; 132 133 trace_dma_blk_cb(dbs, ret); 134 135 dbs->acb = NULL; 136 dbs->offset += dbs->iov.size; 137 138 if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) { 139 dma_complete(dbs, ret); 140 return; 141 } 142 dma_blk_unmap(dbs); 143 144 while (dbs->sg_cur_index < dbs->sg->nsg) { 145 cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte; 146 cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte; 147 mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir); 148 /* 149 * Make reads deterministic in icount mode. Windows sometimes issues 150 * disk read requests with overlapping SGs. It leads 151 * to non-determinism, because resulting buffer contents may be mixed 152 * from several sectors. This code splits all SGs into several 153 * groups. SGs in every group do not overlap. 154 */ 155 if (mem && icount_enabled() && dbs->dir == DMA_DIRECTION_FROM_DEVICE) { 156 int i; 157 for (i = 0 ; i < dbs->iov.niov ; ++i) { 158 if (ranges_overlap((intptr_t)dbs->iov.iov[i].iov_base, 159 dbs->iov.iov[i].iov_len, (intptr_t)mem, 160 cur_len)) { 161 dma_memory_unmap(dbs->sg->as, mem, cur_len, 162 dbs->dir, cur_len); 163 mem = NULL; 164 break; 165 } 166 } 167 } 168 if (!mem) 169 break; 170 qemu_iovec_add(&dbs->iov, mem, cur_len); 171 dbs->sg_cur_byte += cur_len; 172 if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) { 173 dbs->sg_cur_byte = 0; 174 ++dbs->sg_cur_index; 175 } 176 } 177 178 if (dbs->iov.size == 0) { 179 trace_dma_map_wait(dbs); 180 dbs->bh = aio_bh_new(dbs->ctx, reschedule_dma, dbs); 181 cpu_register_map_client(dbs->bh); 182 return; 183 } 184 185 if (!QEMU_IS_ALIGNED(dbs->iov.size, dbs->align)) { 186 qemu_iovec_discard_back(&dbs->iov, 187 QEMU_ALIGN_DOWN(dbs->iov.size, dbs->align)); 188 } 189 190 aio_context_acquire(dbs->ctx); 191 dbs->acb = dbs->io_func(dbs->offset, &dbs->iov, 192 dma_blk_cb, dbs, dbs->io_func_opaque); 193 aio_context_release(dbs->ctx); 194 assert(dbs->acb); 195} 196 197static void dma_aio_cancel(BlockAIOCB *acb) 198{ 199 DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common); 200 201 trace_dma_aio_cancel(dbs); 202 203 assert(!(dbs->acb && dbs->bh)); 204 if (dbs->acb) { 205 /* This will invoke dma_blk_cb. */ 206 blk_aio_cancel_async(dbs->acb); 207 return; 208 } 209 210 if (dbs->bh) { 211 cpu_unregister_map_client(dbs->bh); 212 qemu_bh_delete(dbs->bh); 213 dbs->bh = NULL; 214 } 215 if (dbs->common.cb) { 216 dbs->common.cb(dbs->common.opaque, -ECANCELED); 217 } 218} 219 220static AioContext *dma_get_aio_context(BlockAIOCB *acb) 221{ 222 DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common); 223 224 return dbs->ctx; 225} 226 227static const AIOCBInfo dma_aiocb_info = { 228 .aiocb_size = sizeof(DMAAIOCB), 229 .cancel_async = dma_aio_cancel, 230 .get_aio_context = dma_get_aio_context, 231}; 232 233BlockAIOCB *dma_blk_io(AioContext *ctx, 234 QEMUSGList *sg, uint64_t offset, uint32_t align, 235 DMAIOFunc *io_func, void *io_func_opaque, 236 BlockCompletionFunc *cb, 237 void *opaque, DMADirection dir) 238{ 239 DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, NULL, cb, opaque); 240 241 trace_dma_blk_io(dbs, io_func_opaque, offset, (dir == DMA_DIRECTION_TO_DEVICE)); 242 243 dbs->acb = NULL; 244 dbs->sg = sg; 245 dbs->ctx = ctx; 246 dbs->offset = offset; 247 dbs->align = align; 248 dbs->sg_cur_index = 0; 249 dbs->sg_cur_byte = 0; 250 dbs->dir = dir; 251 dbs->io_func = io_func; 252 dbs->io_func_opaque = io_func_opaque; 253 dbs->bh = NULL; 254 qemu_iovec_init(&dbs->iov, sg->nsg); 255 dma_blk_cb(dbs, 0); 256 return &dbs->common; 257} 258 259 260static 261BlockAIOCB *dma_blk_read_io_func(int64_t offset, QEMUIOVector *iov, 262 BlockCompletionFunc *cb, void *cb_opaque, 263 void *opaque) 264{ 265 BlockBackend *blk = opaque; 266 return blk_aio_preadv(blk, offset, iov, 0, cb, cb_opaque); 267} 268 269BlockAIOCB *dma_blk_read(BlockBackend *blk, 270 QEMUSGList *sg, uint64_t offset, uint32_t align, 271 void (*cb)(void *opaque, int ret), void *opaque) 272{ 273 return dma_blk_io(blk_get_aio_context(blk), sg, offset, align, 274 dma_blk_read_io_func, blk, cb, opaque, 275 DMA_DIRECTION_FROM_DEVICE); 276} 277 278static 279BlockAIOCB *dma_blk_write_io_func(int64_t offset, QEMUIOVector *iov, 280 BlockCompletionFunc *cb, void *cb_opaque, 281 void *opaque) 282{ 283 BlockBackend *blk = opaque; 284 return blk_aio_pwritev(blk, offset, iov, 0, cb, cb_opaque); 285} 286 287BlockAIOCB *dma_blk_write(BlockBackend *blk, 288 QEMUSGList *sg, uint64_t offset, uint32_t align, 289 void (*cb)(void *opaque, int ret), void *opaque) 290{ 291 return dma_blk_io(blk_get_aio_context(blk), sg, offset, align, 292 dma_blk_write_io_func, blk, cb, opaque, 293 DMA_DIRECTION_TO_DEVICE); 294} 295 296 297static uint64_t dma_buf_rw(uint8_t *ptr, int32_t len, QEMUSGList *sg, 298 DMADirection dir) 299{ 300 uint64_t resid; 301 int sg_cur_index; 302 303 resid = sg->size; 304 sg_cur_index = 0; 305 len = MIN(len, resid); 306 while (len > 0) { 307 ScatterGatherEntry entry = sg->sg[sg_cur_index++]; 308 int32_t xfer = MIN(len, entry.len); 309 dma_memory_rw(sg->as, entry.base, ptr, xfer, dir); 310 ptr += xfer; 311 len -= xfer; 312 resid -= xfer; 313 } 314 315 return resid; 316} 317 318uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg) 319{ 320 return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_FROM_DEVICE); 321} 322 323uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg) 324{ 325 return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_TO_DEVICE); 326} 327 328void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie, 329 QEMUSGList *sg, enum BlockAcctType type) 330{ 331 block_acct_start(blk_get_stats(blk), cookie, sg->size, type); 332} 333 334uint64_t dma_aligned_pow2_mask(uint64_t start, uint64_t end, int max_addr_bits) 335{ 336 uint64_t max_mask = UINT64_MAX, addr_mask = end - start; 337 uint64_t alignment_mask, size_mask; 338 339 if (max_addr_bits != 64) { 340 max_mask = (1ULL << max_addr_bits) - 1; 341 } 342 343 alignment_mask = start ? (start & -start) - 1 : max_mask; 344 alignment_mask = MIN(alignment_mask, max_mask); 345 size_mask = MIN(addr_mask, max_mask); 346 347 if (alignment_mask <= size_mask) { 348 /* Increase the alignment of start */ 349 return alignment_mask; 350 } else { 351 /* Find the largest page mask from size */ 352 if (addr_mask == UINT64_MAX) { 353 return UINT64_MAX; 354 } 355 return (1ULL << (63 - clz64(addr_mask + 1))) - 1; 356 } 357} 358