cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

memory.c (108781B)


      1/*
      2 * Physical memory management
      3 *
      4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
      5 *
      6 * Authors:
      7 *  Avi Kivity <avi@redhat.com>
      8 *
      9 * This work is licensed under the terms of the GNU GPL, version 2.  See
     10 * the COPYING file in the top-level directory.
     11 *
     12 * Contributions after 2012-01-13 are licensed under the terms of the
     13 * GNU GPL, version 2 or (at your option) any later version.
     14 */
     15
     16#include "qemu/osdep.h"
     17#include "qemu/log.h"
     18#include "qapi/error.h"
     19#include "exec/memory.h"
     20#include "qapi/visitor.h"
     21#include "qemu/bitops.h"
     22#include "qemu/error-report.h"
     23#include "qemu/main-loop.h"
     24#include "qemu/qemu-print.h"
     25#include "qom/object.h"
     26#include "trace.h"
     27
     28#include "exec/memory-internal.h"
     29#include "exec/ram_addr.h"
     30#include "sysemu/kvm.h"
     31#include "sysemu/runstate.h"
     32#include "sysemu/tcg.h"
     33#include "qemu/accel.h"
     34#include "hw/boards.h"
     35#include "migration/vmstate.h"
     36
     37//#define DEBUG_UNASSIGNED
     38
     39static unsigned memory_region_transaction_depth;
     40static bool memory_region_update_pending;
     41static bool ioeventfd_update_pending;
     42bool global_dirty_log;
     43
     44static QTAILQ_HEAD(, MemoryListener) memory_listeners
     45    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
     46
     47static QTAILQ_HEAD(, AddressSpace) address_spaces
     48    = QTAILQ_HEAD_INITIALIZER(address_spaces);
     49
     50static GHashTable *flat_views;
     51
     52typedef struct AddrRange AddrRange;
     53
     54/*
     55 * Note that signed integers are needed for negative offsetting in aliases
     56 * (large MemoryRegion::alias_offset).
     57 */
     58struct AddrRange {
     59    Int128 start;
     60    Int128 size;
     61};
     62
     63static AddrRange addrrange_make(Int128 start, Int128 size)
     64{
     65    return (AddrRange) { start, size };
     66}
     67
     68static bool addrrange_equal(AddrRange r1, AddrRange r2)
     69{
     70    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
     71}
     72
     73static Int128 addrrange_end(AddrRange r)
     74{
     75    return int128_add(r.start, r.size);
     76}
     77
     78static AddrRange addrrange_shift(AddrRange range, Int128 delta)
     79{
     80    int128_addto(&range.start, delta);
     81    return range;
     82}
     83
     84static bool addrrange_contains(AddrRange range, Int128 addr)
     85{
     86    return int128_ge(addr, range.start)
     87        && int128_lt(addr, addrrange_end(range));
     88}
     89
     90static bool addrrange_intersects(AddrRange r1, AddrRange r2)
     91{
     92    return addrrange_contains(r1, r2.start)
     93        || addrrange_contains(r2, r1.start);
     94}
     95
     96static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
     97{
     98    Int128 start = int128_max(r1.start, r2.start);
     99    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
    100    return addrrange_make(start, int128_sub(end, start));
    101}
    102
    103enum ListenerDirection { Forward, Reverse };
    104
    105#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
    106    do {                                                                \
    107        MemoryListener *_listener;                                      \
    108                                                                        \
    109        switch (_direction) {                                           \
    110        case Forward:                                                   \
    111            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
    112                if (_listener->_callback) {                             \
    113                    _listener->_callback(_listener, ##_args);           \
    114                }                                                       \
    115            }                                                           \
    116            break;                                                      \
    117        case Reverse:                                                   \
    118            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
    119                if (_listener->_callback) {                             \
    120                    _listener->_callback(_listener, ##_args);           \
    121                }                                                       \
    122            }                                                           \
    123            break;                                                      \
    124        default:                                                        \
    125            abort();                                                    \
    126        }                                                               \
    127    } while (0)
    128
    129#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
    130    do {                                                                \
    131        MemoryListener *_listener;                                      \
    132                                                                        \
    133        switch (_direction) {                                           \
    134        case Forward:                                                   \
    135            QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
    136                if (_listener->_callback) {                             \
    137                    _listener->_callback(_listener, _section, ##_args); \
    138                }                                                       \
    139            }                                                           \
    140            break;                                                      \
    141        case Reverse:                                                   \
    142            QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
    143                if (_listener->_callback) {                             \
    144                    _listener->_callback(_listener, _section, ##_args); \
    145                }                                                       \
    146            }                                                           \
    147            break;                                                      \
    148        default:                                                        \
    149            abort();                                                    \
    150        }                                                               \
    151    } while (0)
    152
    153/* No need to ref/unref .mr, the FlatRange keeps it alive.  */
    154#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
    155    do {                                                                \
    156        MemoryRegionSection mrs = section_from_flat_range(fr,           \
    157                address_space_to_flatview(as));                         \
    158        MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
    159    } while(0)
    160
    161struct CoalescedMemoryRange {
    162    AddrRange addr;
    163    QTAILQ_ENTRY(CoalescedMemoryRange) link;
    164};
    165
    166struct MemoryRegionIoeventfd {
    167    AddrRange addr;
    168    bool match_data;
    169    uint64_t data;
    170    EventNotifier *e;
    171};
    172
    173static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
    174                                           MemoryRegionIoeventfd *b)
    175{
    176    if (int128_lt(a->addr.start, b->addr.start)) {
    177        return true;
    178    } else if (int128_gt(a->addr.start, b->addr.start)) {
    179        return false;
    180    } else if (int128_lt(a->addr.size, b->addr.size)) {
    181        return true;
    182    } else if (int128_gt(a->addr.size, b->addr.size)) {
    183        return false;
    184    } else if (a->match_data < b->match_data) {
    185        return true;
    186    } else  if (a->match_data > b->match_data) {
    187        return false;
    188    } else if (a->match_data) {
    189        if (a->data < b->data) {
    190            return true;
    191        } else if (a->data > b->data) {
    192            return false;
    193        }
    194    }
    195    if (a->e < b->e) {
    196        return true;
    197    } else if (a->e > b->e) {
    198        return false;
    199    }
    200    return false;
    201}
    202
    203static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
    204                                          MemoryRegionIoeventfd *b)
    205{
    206    if (int128_eq(a->addr.start, b->addr.start) &&
    207        (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
    208         (int128_eq(a->addr.size, b->addr.size) &&
    209          (a->match_data == b->match_data) &&
    210          ((a->match_data && (a->data == b->data)) || !a->match_data) &&
    211          (a->e == b->e))))
    212        return true;
    213
    214    return false;
    215}
    216
    217/* Range of memory in the global map.  Addresses are absolute. */
    218struct FlatRange {
    219    MemoryRegion *mr;
    220    hwaddr offset_in_region;
    221    AddrRange addr;
    222    uint8_t dirty_log_mask;
    223    bool romd_mode;
    224    bool readonly;
    225    bool nonvolatile;
    226};
    227
    228#define FOR_EACH_FLAT_RANGE(var, view)          \
    229    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
    230
    231static inline MemoryRegionSection
    232section_from_flat_range(FlatRange *fr, FlatView *fv)
    233{
    234    return (MemoryRegionSection) {
    235        .mr = fr->mr,
    236        .fv = fv,
    237        .offset_within_region = fr->offset_in_region,
    238        .size = fr->addr.size,
    239        .offset_within_address_space = int128_get64(fr->addr.start),
    240        .readonly = fr->readonly,
    241        .nonvolatile = fr->nonvolatile,
    242    };
    243}
    244
    245static bool flatrange_equal(FlatRange *a, FlatRange *b)
    246{
    247    return a->mr == b->mr
    248        && addrrange_equal(a->addr, b->addr)
    249        && a->offset_in_region == b->offset_in_region
    250        && a->romd_mode == b->romd_mode
    251        && a->readonly == b->readonly
    252        && a->nonvolatile == b->nonvolatile;
    253}
    254
    255static FlatView *flatview_new(MemoryRegion *mr_root)
    256{
    257    FlatView *view;
    258
    259    view = g_new0(FlatView, 1);
    260    view->ref = 1;
    261    view->root = mr_root;
    262    memory_region_ref(mr_root);
    263    trace_flatview_new(view, mr_root);
    264
    265    return view;
    266}
    267
    268/* Insert a range into a given position.  Caller is responsible for maintaining
    269 * sorting order.
    270 */
    271static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
    272{
    273    if (view->nr == view->nr_allocated) {
    274        view->nr_allocated = MAX(2 * view->nr, 10);
    275        view->ranges = g_realloc(view->ranges,
    276                                    view->nr_allocated * sizeof(*view->ranges));
    277    }
    278    memmove(view->ranges + pos + 1, view->ranges + pos,
    279            (view->nr - pos) * sizeof(FlatRange));
    280    view->ranges[pos] = *range;
    281    memory_region_ref(range->mr);
    282    ++view->nr;
    283}
    284
    285static void flatview_destroy(FlatView *view)
    286{
    287    int i;
    288
    289    trace_flatview_destroy(view, view->root);
    290    if (view->dispatch) {
    291        address_space_dispatch_free(view->dispatch);
    292    }
    293    for (i = 0; i < view->nr; i++) {
    294        memory_region_unref(view->ranges[i].mr);
    295    }
    296    g_free(view->ranges);
    297    memory_region_unref(view->root);
    298    g_free(view);
    299}
    300
    301static bool flatview_ref(FlatView *view)
    302{
    303    return qatomic_fetch_inc_nonzero(&view->ref) > 0;
    304}
    305
    306void flatview_unref(FlatView *view)
    307{
    308    if (qatomic_fetch_dec(&view->ref) == 1) {
    309        trace_flatview_destroy_rcu(view, view->root);
    310        assert(view->root);
    311        call_rcu(view, flatview_destroy, rcu);
    312    }
    313}
    314
    315static bool can_merge(FlatRange *r1, FlatRange *r2)
    316{
    317    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
    318        && r1->mr == r2->mr
    319        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
    320                                r1->addr.size),
    321                     int128_make64(r2->offset_in_region))
    322        && r1->dirty_log_mask == r2->dirty_log_mask
    323        && r1->romd_mode == r2->romd_mode
    324        && r1->readonly == r2->readonly
    325        && r1->nonvolatile == r2->nonvolatile;
    326}
    327
    328/* Attempt to simplify a view by merging adjacent ranges */
    329static void flatview_simplify(FlatView *view)
    330{
    331    unsigned i, j, k;
    332
    333    i = 0;
    334    while (i < view->nr) {
    335        j = i + 1;
    336        while (j < view->nr
    337               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
    338            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
    339            ++j;
    340        }
    341        ++i;
    342        for (k = i; k < j; k++) {
    343            memory_region_unref(view->ranges[k].mr);
    344        }
    345        memmove(&view->ranges[i], &view->ranges[j],
    346                (view->nr - j) * sizeof(view->ranges[j]));
    347        view->nr -= j - i;
    348    }
    349}
    350
    351static bool memory_region_big_endian(MemoryRegion *mr)
    352{
    353#ifdef TARGET_WORDS_BIGENDIAN
    354    return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
    355#else
    356    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
    357#endif
    358}
    359
    360static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
    361{
    362    if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
    363        switch (op & MO_SIZE) {
    364        case MO_8:
    365            break;
    366        case MO_16:
    367            *data = bswap16(*data);
    368            break;
    369        case MO_32:
    370            *data = bswap32(*data);
    371            break;
    372        case MO_64:
    373            *data = bswap64(*data);
    374            break;
    375        default:
    376            g_assert_not_reached();
    377        }
    378    }
    379}
    380
    381static inline void memory_region_shift_read_access(uint64_t *value,
    382                                                   signed shift,
    383                                                   uint64_t mask,
    384                                                   uint64_t tmp)
    385{
    386    if (shift >= 0) {
    387        *value |= (tmp & mask) << shift;
    388    } else {
    389        *value |= (tmp & mask) >> -shift;
    390    }
    391}
    392
    393static inline uint64_t memory_region_shift_write_access(uint64_t *value,
    394                                                        signed shift,
    395                                                        uint64_t mask)
    396{
    397    uint64_t tmp;
    398
    399    if (shift >= 0) {
    400        tmp = (*value >> shift) & mask;
    401    } else {
    402        tmp = (*value << -shift) & mask;
    403    }
    404
    405    return tmp;
    406}
    407
    408static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
    409{
    410    MemoryRegion *root;
    411    hwaddr abs_addr = offset;
    412
    413    abs_addr += mr->addr;
    414    for (root = mr; root->container; ) {
    415        root = root->container;
    416        abs_addr += root->addr;
    417    }
    418
    419    return abs_addr;
    420}
    421
    422static int get_cpu_index(void)
    423{
    424    if (current_cpu) {
    425        return current_cpu->cpu_index;
    426    }
    427    return -1;
    428}
    429
    430static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
    431                                                hwaddr addr,
    432                                                uint64_t *value,
    433                                                unsigned size,
    434                                                signed shift,
    435                                                uint64_t mask,
    436                                                MemTxAttrs attrs)
    437{
    438    uint64_t tmp;
    439
    440    tmp = mr->ops->read(mr->opaque, addr, size);
    441    if (mr->subpage) {
    442        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
    443    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
    444        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
    445        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
    446                                     memory_region_name(mr));
    447    }
    448    memory_region_shift_read_access(value, shift, mask, tmp);
    449    return MEMTX_OK;
    450}
    451
    452static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
    453                                                          hwaddr addr,
    454                                                          uint64_t *value,
    455                                                          unsigned size,
    456                                                          signed shift,
    457                                                          uint64_t mask,
    458                                                          MemTxAttrs attrs)
    459{
    460    uint64_t tmp = 0;
    461    MemTxResult r;
    462
    463    r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
    464    if (mr->subpage) {
    465        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
    466    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
    467        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
    468        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
    469                                     memory_region_name(mr));
    470    }
    471    memory_region_shift_read_access(value, shift, mask, tmp);
    472    return r;
    473}
    474
    475static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
    476                                                hwaddr addr,
    477                                                uint64_t *value,
    478                                                unsigned size,
    479                                                signed shift,
    480                                                uint64_t mask,
    481                                                MemTxAttrs attrs)
    482{
    483    uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
    484
    485    if (mr->subpage) {
    486        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
    487    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
    488        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
    489        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
    490                                      memory_region_name(mr));
    491    }
    492    mr->ops->write(mr->opaque, addr, tmp, size);
    493    return MEMTX_OK;
    494}
    495
    496static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
    497                                                           hwaddr addr,
    498                                                           uint64_t *value,
    499                                                           unsigned size,
    500                                                           signed shift,
    501                                                           uint64_t mask,
    502                                                           MemTxAttrs attrs)
    503{
    504    uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
    505
    506    if (mr->subpage) {
    507        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
    508    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
    509        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
    510        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
    511                                      memory_region_name(mr));
    512    }
    513    return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
    514}
    515
    516static MemTxResult access_with_adjusted_size(hwaddr addr,
    517                                      uint64_t *value,
    518                                      unsigned size,
    519                                      unsigned access_size_min,
    520                                      unsigned access_size_max,
    521                                      MemTxResult (*access_fn)
    522                                                  (MemoryRegion *mr,
    523                                                   hwaddr addr,
    524                                                   uint64_t *value,
    525                                                   unsigned size,
    526                                                   signed shift,
    527                                                   uint64_t mask,
    528                                                   MemTxAttrs attrs),
    529                                      MemoryRegion *mr,
    530                                      MemTxAttrs attrs)
    531{
    532    uint64_t access_mask;
    533    unsigned access_size;
    534    unsigned i;
    535    MemTxResult r = MEMTX_OK;
    536
    537    if (!access_size_min) {
    538        access_size_min = 1;
    539    }
    540    if (!access_size_max) {
    541        access_size_max = 4;
    542    }
    543
    544    /* FIXME: support unaligned access? */
    545    access_size = MAX(MIN(size, access_size_max), access_size_min);
    546    access_mask = MAKE_64BIT_MASK(0, access_size * 8);
    547    if (memory_region_big_endian(mr)) {
    548        for (i = 0; i < size; i += access_size) {
    549            r |= access_fn(mr, addr + i, value, access_size,
    550                        (size - access_size - i) * 8, access_mask, attrs);
    551        }
    552    } else {
    553        for (i = 0; i < size; i += access_size) {
    554            r |= access_fn(mr, addr + i, value, access_size, i * 8,
    555                        access_mask, attrs);
    556        }
    557    }
    558    return r;
    559}
    560
    561static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
    562{
    563    AddressSpace *as;
    564
    565    while (mr->container) {
    566        mr = mr->container;
    567    }
    568    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
    569        if (mr == as->root) {
    570            return as;
    571        }
    572    }
    573    return NULL;
    574}
    575
    576/* Render a memory region into the global view.  Ranges in @view obscure
    577 * ranges in @mr.
    578 */
    579static void render_memory_region(FlatView *view,
    580                                 MemoryRegion *mr,
    581                                 Int128 base,
    582                                 AddrRange clip,
    583                                 bool readonly,
    584                                 bool nonvolatile)
    585{
    586    MemoryRegion *subregion;
    587    unsigned i;
    588    hwaddr offset_in_region;
    589    Int128 remain;
    590    Int128 now;
    591    FlatRange fr;
    592    AddrRange tmp;
    593
    594    if (!mr->enabled) {
    595        return;
    596    }
    597
    598    int128_addto(&base, int128_make64(mr->addr));
    599    readonly |= mr->readonly;
    600    nonvolatile |= mr->nonvolatile;
    601
    602    tmp = addrrange_make(base, mr->size);
    603
    604    if (!addrrange_intersects(tmp, clip)) {
    605        return;
    606    }
    607
    608    clip = addrrange_intersection(tmp, clip);
    609
    610    if (mr->alias) {
    611        int128_subfrom(&base, int128_make64(mr->alias->addr));
    612        int128_subfrom(&base, int128_make64(mr->alias_offset));
    613        render_memory_region(view, mr->alias, base, clip,
    614                             readonly, nonvolatile);
    615        return;
    616    }
    617
    618    /* Render subregions in priority order. */
    619    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
    620        render_memory_region(view, subregion, base, clip,
    621                             readonly, nonvolatile);
    622    }
    623
    624    if (!mr->terminates) {
    625        return;
    626    }
    627
    628    offset_in_region = int128_get64(int128_sub(clip.start, base));
    629    base = clip.start;
    630    remain = clip.size;
    631
    632    fr.mr = mr;
    633    fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
    634    fr.romd_mode = mr->romd_mode;
    635    fr.readonly = readonly;
    636    fr.nonvolatile = nonvolatile;
    637
    638    /* Render the region itself into any gaps left by the current view. */
    639    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
    640        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
    641            continue;
    642        }
    643        if (int128_lt(base, view->ranges[i].addr.start)) {
    644            now = int128_min(remain,
    645                             int128_sub(view->ranges[i].addr.start, base));
    646            fr.offset_in_region = offset_in_region;
    647            fr.addr = addrrange_make(base, now);
    648            flatview_insert(view, i, &fr);
    649            ++i;
    650            int128_addto(&base, now);
    651            offset_in_region += int128_get64(now);
    652            int128_subfrom(&remain, now);
    653        }
    654        now = int128_sub(int128_min(int128_add(base, remain),
    655                                    addrrange_end(view->ranges[i].addr)),
    656                         base);
    657        int128_addto(&base, now);
    658        offset_in_region += int128_get64(now);
    659        int128_subfrom(&remain, now);
    660    }
    661    if (int128_nz(remain)) {
    662        fr.offset_in_region = offset_in_region;
    663        fr.addr = addrrange_make(base, remain);
    664        flatview_insert(view, i, &fr);
    665    }
    666}
    667
    668void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
    669{
    670    FlatRange *fr;
    671
    672    assert(fv);
    673    assert(cb);
    674
    675    FOR_EACH_FLAT_RANGE(fr, fv) {
    676        if (cb(fr->addr.start, fr->addr.size, fr->mr,
    677               fr->offset_in_region, opaque)) {
    678            break;
    679        }
    680    }
    681}
    682
    683static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
    684{
    685    while (mr->enabled) {
    686        if (mr->alias) {
    687            if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
    688                /* The alias is included in its entirety.  Use it as
    689                 * the "real" root, so that we can share more FlatViews.
    690                 */
    691                mr = mr->alias;
    692                continue;
    693            }
    694        } else if (!mr->terminates) {
    695            unsigned int found = 0;
    696            MemoryRegion *child, *next = NULL;
    697            QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
    698                if (child->enabled) {
    699                    if (++found > 1) {
    700                        next = NULL;
    701                        break;
    702                    }
    703                    if (!child->addr && int128_ge(mr->size, child->size)) {
    704                        /* A child is included in its entirety.  If it's the only
    705                         * enabled one, use it in the hope of finding an alias down the
    706                         * way. This will also let us share FlatViews.
    707                         */
    708                        next = child;
    709                    }
    710                }
    711            }
    712            if (found == 0) {
    713                return NULL;
    714            }
    715            if (next) {
    716                mr = next;
    717                continue;
    718            }
    719        }
    720
    721        return mr;
    722    }
    723
    724    return NULL;
    725}
    726
    727/* Render a memory topology into a list of disjoint absolute ranges. */
    728static FlatView *generate_memory_topology(MemoryRegion *mr)
    729{
    730    int i;
    731    FlatView *view;
    732
    733    view = flatview_new(mr);
    734
    735    if (mr) {
    736        render_memory_region(view, mr, int128_zero(),
    737                             addrrange_make(int128_zero(), int128_2_64()),
    738                             false, false);
    739    }
    740    flatview_simplify(view);
    741
    742    view->dispatch = address_space_dispatch_new(view);
    743    for (i = 0; i < view->nr; i++) {
    744        MemoryRegionSection mrs =
    745            section_from_flat_range(&view->ranges[i], view);
    746        flatview_add_to_dispatch(view, &mrs);
    747    }
    748    address_space_dispatch_compact(view->dispatch);
    749    g_hash_table_replace(flat_views, mr, view);
    750
    751    return view;
    752}
    753
    754static void address_space_add_del_ioeventfds(AddressSpace *as,
    755                                             MemoryRegionIoeventfd *fds_new,
    756                                             unsigned fds_new_nb,
    757                                             MemoryRegionIoeventfd *fds_old,
    758                                             unsigned fds_old_nb)
    759{
    760    unsigned iold, inew;
    761    MemoryRegionIoeventfd *fd;
    762    MemoryRegionSection section;
    763
    764    /* Generate a symmetric difference of the old and new fd sets, adding
    765     * and deleting as necessary.
    766     */
    767
    768    iold = inew = 0;
    769    while (iold < fds_old_nb || inew < fds_new_nb) {
    770        if (iold < fds_old_nb
    771            && (inew == fds_new_nb
    772                || memory_region_ioeventfd_before(&fds_old[iold],
    773                                                  &fds_new[inew]))) {
    774            fd = &fds_old[iold];
    775            section = (MemoryRegionSection) {
    776                .fv = address_space_to_flatview(as),
    777                .offset_within_address_space = int128_get64(fd->addr.start),
    778                .size = fd->addr.size,
    779            };
    780            MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
    781                                 fd->match_data, fd->data, fd->e);
    782            ++iold;
    783        } else if (inew < fds_new_nb
    784                   && (iold == fds_old_nb
    785                       || memory_region_ioeventfd_before(&fds_new[inew],
    786                                                         &fds_old[iold]))) {
    787            fd = &fds_new[inew];
    788            section = (MemoryRegionSection) {
    789                .fv = address_space_to_flatview(as),
    790                .offset_within_address_space = int128_get64(fd->addr.start),
    791                .size = fd->addr.size,
    792            };
    793            MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
    794                                 fd->match_data, fd->data, fd->e);
    795            ++inew;
    796        } else {
    797            ++iold;
    798            ++inew;
    799        }
    800    }
    801}
    802
    803FlatView *address_space_get_flatview(AddressSpace *as)
    804{
    805    FlatView *view;
    806
    807    RCU_READ_LOCK_GUARD();
    808    do {
    809        view = address_space_to_flatview(as);
    810        /* If somebody has replaced as->current_map concurrently,
    811         * flatview_ref returns false.
    812         */
    813    } while (!flatview_ref(view));
    814    return view;
    815}
    816
    817static void address_space_update_ioeventfds(AddressSpace *as)
    818{
    819    FlatView *view;
    820    FlatRange *fr;
    821    unsigned ioeventfd_nb = 0;
    822    unsigned ioeventfd_max;
    823    MemoryRegionIoeventfd *ioeventfds;
    824    AddrRange tmp;
    825    unsigned i;
    826
    827    /*
    828     * It is likely that the number of ioeventfds hasn't changed much, so use
    829     * the previous size as the starting value, with some headroom to avoid
    830     * gratuitous reallocations.
    831     */
    832    ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
    833    ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
    834
    835    view = address_space_get_flatview(as);
    836    FOR_EACH_FLAT_RANGE(fr, view) {
    837        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
    838            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
    839                                  int128_sub(fr->addr.start,
    840                                             int128_make64(fr->offset_in_region)));
    841            if (addrrange_intersects(fr->addr, tmp)) {
    842                ++ioeventfd_nb;
    843                if (ioeventfd_nb > ioeventfd_max) {
    844                    ioeventfd_max = MAX(ioeventfd_max * 2, 4);
    845                    ioeventfds = g_realloc(ioeventfds,
    846                            ioeventfd_max * sizeof(*ioeventfds));
    847                }
    848                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
    849                ioeventfds[ioeventfd_nb-1].addr = tmp;
    850            }
    851        }
    852    }
    853
    854    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
    855                                     as->ioeventfds, as->ioeventfd_nb);
    856
    857    g_free(as->ioeventfds);
    858    as->ioeventfds = ioeventfds;
    859    as->ioeventfd_nb = ioeventfd_nb;
    860    flatview_unref(view);
    861}
    862
    863/*
    864 * Notify the memory listeners about the coalesced IO change events of
    865 * range `cmr'.  Only the part that has intersection of the specified
    866 * FlatRange will be sent.
    867 */
    868static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
    869                                           CoalescedMemoryRange *cmr, bool add)
    870{
    871    AddrRange tmp;
    872
    873    tmp = addrrange_shift(cmr->addr,
    874                          int128_sub(fr->addr.start,
    875                                     int128_make64(fr->offset_in_region)));
    876    if (!addrrange_intersects(tmp, fr->addr)) {
    877        return;
    878    }
    879    tmp = addrrange_intersection(tmp, fr->addr);
    880
    881    if (add) {
    882        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
    883                                      int128_get64(tmp.start),
    884                                      int128_get64(tmp.size));
    885    } else {
    886        MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
    887                                      int128_get64(tmp.start),
    888                                      int128_get64(tmp.size));
    889    }
    890}
    891
    892static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
    893{
    894    CoalescedMemoryRange *cmr;
    895
    896    QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
    897        flat_range_coalesced_io_notify(fr, as, cmr, false);
    898    }
    899}
    900
    901static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
    902{
    903    MemoryRegion *mr = fr->mr;
    904    CoalescedMemoryRange *cmr;
    905
    906    if (QTAILQ_EMPTY(&mr->coalesced)) {
    907        return;
    908    }
    909
    910    QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
    911        flat_range_coalesced_io_notify(fr, as, cmr, true);
    912    }
    913}
    914
    915static void address_space_update_topology_pass(AddressSpace *as,
    916                                               const FlatView *old_view,
    917                                               const FlatView *new_view,
    918                                               bool adding)
    919{
    920    unsigned iold, inew;
    921    FlatRange *frold, *frnew;
    922
    923    /* Generate a symmetric difference of the old and new memory maps.
    924     * Kill ranges in the old map, and instantiate ranges in the new map.
    925     */
    926    iold = inew = 0;
    927    while (iold < old_view->nr || inew < new_view->nr) {
    928        if (iold < old_view->nr) {
    929            frold = &old_view->ranges[iold];
    930        } else {
    931            frold = NULL;
    932        }
    933        if (inew < new_view->nr) {
    934            frnew = &new_view->ranges[inew];
    935        } else {
    936            frnew = NULL;
    937        }
    938
    939        if (frold
    940            && (!frnew
    941                || int128_lt(frold->addr.start, frnew->addr.start)
    942                || (int128_eq(frold->addr.start, frnew->addr.start)
    943                    && !flatrange_equal(frold, frnew)))) {
    944            /* In old but not in new, or in both but attributes changed. */
    945
    946            if (!adding) {
    947                flat_range_coalesced_io_del(frold, as);
    948                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
    949            }
    950
    951            ++iold;
    952        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
    953            /* In both and unchanged (except logging may have changed) */
    954
    955            if (adding) {
    956                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
    957                if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
    958                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
    959                                                  frold->dirty_log_mask,
    960                                                  frnew->dirty_log_mask);
    961                }
    962                if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
    963                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
    964                                                  frold->dirty_log_mask,
    965                                                  frnew->dirty_log_mask);
    966                }
    967            }
    968
    969            ++iold;
    970            ++inew;
    971        } else {
    972            /* In new */
    973
    974            if (adding) {
    975                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
    976                flat_range_coalesced_io_add(frnew, as);
    977            }
    978
    979            ++inew;
    980        }
    981    }
    982}
    983
    984static void flatviews_init(void)
    985{
    986    static FlatView *empty_view;
    987
    988    if (flat_views) {
    989        return;
    990    }
    991
    992    flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
    993                                       (GDestroyNotify) flatview_unref);
    994    if (!empty_view) {
    995        empty_view = generate_memory_topology(NULL);
    996        /* We keep it alive forever in the global variable.  */
    997        flatview_ref(empty_view);
    998    } else {
    999        g_hash_table_replace(flat_views, NULL, empty_view);
   1000        flatview_ref(empty_view);
   1001    }
   1002}
   1003
   1004static void flatviews_reset(void)
   1005{
   1006    AddressSpace *as;
   1007
   1008    if (flat_views) {
   1009        g_hash_table_unref(flat_views);
   1010        flat_views = NULL;
   1011    }
   1012    flatviews_init();
   1013
   1014    /* Render unique FVs */
   1015    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
   1016        MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
   1017
   1018        if (g_hash_table_lookup(flat_views, physmr)) {
   1019            continue;
   1020        }
   1021
   1022        generate_memory_topology(physmr);
   1023    }
   1024}
   1025
   1026static void address_space_set_flatview(AddressSpace *as)
   1027{
   1028    FlatView *old_view = address_space_to_flatview(as);
   1029    MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
   1030    FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
   1031
   1032    assert(new_view);
   1033
   1034    if (old_view == new_view) {
   1035        return;
   1036    }
   1037
   1038    if (old_view) {
   1039        flatview_ref(old_view);
   1040    }
   1041
   1042    flatview_ref(new_view);
   1043
   1044    if (!QTAILQ_EMPTY(&as->listeners)) {
   1045        FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
   1046
   1047        if (!old_view2) {
   1048            old_view2 = &tmpview;
   1049        }
   1050        address_space_update_topology_pass(as, old_view2, new_view, false);
   1051        address_space_update_topology_pass(as, old_view2, new_view, true);
   1052    }
   1053
   1054    /* Writes are protected by the BQL.  */
   1055    qatomic_rcu_set(&as->current_map, new_view);
   1056    if (old_view) {
   1057        flatview_unref(old_view);
   1058    }
   1059
   1060    /* Note that all the old MemoryRegions are still alive up to this
   1061     * point.  This relieves most MemoryListeners from the need to
   1062     * ref/unref the MemoryRegions they get---unless they use them
   1063     * outside the iothread mutex, in which case precise reference
   1064     * counting is necessary.
   1065     */
   1066    if (old_view) {
   1067        flatview_unref(old_view);
   1068    }
   1069}
   1070
   1071static void address_space_update_topology(AddressSpace *as)
   1072{
   1073    MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
   1074
   1075    flatviews_init();
   1076    if (!g_hash_table_lookup(flat_views, physmr)) {
   1077        generate_memory_topology(physmr);
   1078    }
   1079    address_space_set_flatview(as);
   1080}
   1081
   1082void memory_region_transaction_begin(void)
   1083{
   1084    qemu_flush_coalesced_mmio_buffer();
   1085    ++memory_region_transaction_depth;
   1086}
   1087
   1088void memory_region_transaction_commit(void)
   1089{
   1090    AddressSpace *as;
   1091
   1092    assert(memory_region_transaction_depth);
   1093    assert(qemu_mutex_iothread_locked());
   1094
   1095    --memory_region_transaction_depth;
   1096    if (!memory_region_transaction_depth) {
   1097        if (memory_region_update_pending) {
   1098            flatviews_reset();
   1099
   1100            MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
   1101
   1102            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
   1103                address_space_set_flatview(as);
   1104                address_space_update_ioeventfds(as);
   1105            }
   1106            memory_region_update_pending = false;
   1107            ioeventfd_update_pending = false;
   1108            MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
   1109        } else if (ioeventfd_update_pending) {
   1110            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
   1111                address_space_update_ioeventfds(as);
   1112            }
   1113            ioeventfd_update_pending = false;
   1114        }
   1115   }
   1116}
   1117
   1118static void memory_region_destructor_none(MemoryRegion *mr)
   1119{
   1120}
   1121
   1122static void memory_region_destructor_ram(MemoryRegion *mr)
   1123{
   1124    qemu_ram_free(mr->ram_block);
   1125}
   1126
   1127static bool memory_region_need_escape(char c)
   1128{
   1129    return c == '/' || c == '[' || c == '\\' || c == ']';
   1130}
   1131
   1132static char *memory_region_escape_name(const char *name)
   1133{
   1134    const char *p;
   1135    char *escaped, *q;
   1136    uint8_t c;
   1137    size_t bytes = 0;
   1138
   1139    for (p = name; *p; p++) {
   1140        bytes += memory_region_need_escape(*p) ? 4 : 1;
   1141    }
   1142    if (bytes == p - name) {
   1143       return g_memdup(name, bytes + 1);
   1144    }
   1145
   1146    escaped = g_malloc(bytes + 1);
   1147    for (p = name, q = escaped; *p; p++) {
   1148        c = *p;
   1149        if (unlikely(memory_region_need_escape(c))) {
   1150            *q++ = '\\';
   1151            *q++ = 'x';
   1152            *q++ = "0123456789abcdef"[c >> 4];
   1153            c = "0123456789abcdef"[c & 15];
   1154        }
   1155        *q++ = c;
   1156    }
   1157    *q = 0;
   1158    return escaped;
   1159}
   1160
   1161static void memory_region_do_init(MemoryRegion *mr,
   1162                                  Object *owner,
   1163                                  const char *name,
   1164                                  uint64_t size)
   1165{
   1166    mr->size = int128_make64(size);
   1167    if (size == UINT64_MAX) {
   1168        mr->size = int128_2_64();
   1169    }
   1170    mr->name = g_strdup(name);
   1171    mr->owner = owner;
   1172    mr->ram_block = NULL;
   1173
   1174    if (name) {
   1175        char *escaped_name = memory_region_escape_name(name);
   1176        char *name_array = g_strdup_printf("%s[*]", escaped_name);
   1177
   1178        if (!owner) {
   1179            owner = container_get(qdev_get_machine(), "/unattached");
   1180        }
   1181
   1182        object_property_add_child(owner, name_array, OBJECT(mr));
   1183        object_unref(OBJECT(mr));
   1184        g_free(name_array);
   1185        g_free(escaped_name);
   1186    }
   1187}
   1188
   1189void memory_region_init(MemoryRegion *mr,
   1190                        Object *owner,
   1191                        const char *name,
   1192                        uint64_t size)
   1193{
   1194    object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
   1195    memory_region_do_init(mr, owner, name, size);
   1196}
   1197
   1198static void memory_region_get_container(Object *obj, Visitor *v,
   1199                                        const char *name, void *opaque,
   1200                                        Error **errp)
   1201{
   1202    MemoryRegion *mr = MEMORY_REGION(obj);
   1203    char *path = (char *)"";
   1204
   1205    if (mr->container) {
   1206        path = object_get_canonical_path(OBJECT(mr->container));
   1207    }
   1208    visit_type_str(v, name, &path, errp);
   1209    if (mr->container) {
   1210        g_free(path);
   1211    }
   1212}
   1213
   1214static Object *memory_region_resolve_container(Object *obj, void *opaque,
   1215                                               const char *part)
   1216{
   1217    MemoryRegion *mr = MEMORY_REGION(obj);
   1218
   1219    return OBJECT(mr->container);
   1220}
   1221
   1222static void memory_region_get_priority(Object *obj, Visitor *v,
   1223                                       const char *name, void *opaque,
   1224                                       Error **errp)
   1225{
   1226    MemoryRegion *mr = MEMORY_REGION(obj);
   1227    int32_t value = mr->priority;
   1228
   1229    visit_type_int32(v, name, &value, errp);
   1230}
   1231
   1232static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
   1233                                   void *opaque, Error **errp)
   1234{
   1235    MemoryRegion *mr = MEMORY_REGION(obj);
   1236    uint64_t value = memory_region_size(mr);
   1237
   1238    visit_type_uint64(v, name, &value, errp);
   1239}
   1240
   1241static void memory_region_initfn(Object *obj)
   1242{
   1243    MemoryRegion *mr = MEMORY_REGION(obj);
   1244    ObjectProperty *op;
   1245
   1246    mr->ops = &unassigned_mem_ops;
   1247    mr->enabled = true;
   1248    mr->romd_mode = true;
   1249    mr->destructor = memory_region_destructor_none;
   1250    QTAILQ_INIT(&mr->subregions);
   1251    QTAILQ_INIT(&mr->coalesced);
   1252
   1253    op = object_property_add(OBJECT(mr), "container",
   1254                             "link<" TYPE_MEMORY_REGION ">",
   1255                             memory_region_get_container,
   1256                             NULL, /* memory_region_set_container */
   1257                             NULL, NULL);
   1258    op->resolve = memory_region_resolve_container;
   1259
   1260    object_property_add_uint64_ptr(OBJECT(mr), "addr",
   1261                                   &mr->addr, OBJ_PROP_FLAG_READ);
   1262    object_property_add(OBJECT(mr), "priority", "uint32",
   1263                        memory_region_get_priority,
   1264                        NULL, /* memory_region_set_priority */
   1265                        NULL, NULL);
   1266    object_property_add(OBJECT(mr), "size", "uint64",
   1267                        memory_region_get_size,
   1268                        NULL, /* memory_region_set_size, */
   1269                        NULL, NULL);
   1270}
   1271
   1272static void iommu_memory_region_initfn(Object *obj)
   1273{
   1274    MemoryRegion *mr = MEMORY_REGION(obj);
   1275
   1276    mr->is_iommu = true;
   1277}
   1278
   1279static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
   1280                                    unsigned size)
   1281{
   1282#ifdef DEBUG_UNASSIGNED
   1283    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
   1284#endif
   1285    return 0;
   1286}
   1287
   1288static void unassigned_mem_write(void *opaque, hwaddr addr,
   1289                                 uint64_t val, unsigned size)
   1290{
   1291#ifdef DEBUG_UNASSIGNED
   1292    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
   1293#endif
   1294}
   1295
   1296static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
   1297                                   unsigned size, bool is_write,
   1298                                   MemTxAttrs attrs)
   1299{
   1300    return false;
   1301}
   1302
   1303const MemoryRegionOps unassigned_mem_ops = {
   1304    .valid.accepts = unassigned_mem_accepts,
   1305    .endianness = DEVICE_NATIVE_ENDIAN,
   1306};
   1307
   1308static uint64_t memory_region_ram_device_read(void *opaque,
   1309                                              hwaddr addr, unsigned size)
   1310{
   1311    MemoryRegion *mr = opaque;
   1312    uint64_t data = (uint64_t)~0;
   1313
   1314    switch (size) {
   1315    case 1:
   1316        data = *(uint8_t *)(mr->ram_block->host + addr);
   1317        break;
   1318    case 2:
   1319        data = *(uint16_t *)(mr->ram_block->host + addr);
   1320        break;
   1321    case 4:
   1322        data = *(uint32_t *)(mr->ram_block->host + addr);
   1323        break;
   1324    case 8:
   1325        data = *(uint64_t *)(mr->ram_block->host + addr);
   1326        break;
   1327    }
   1328
   1329    trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
   1330
   1331    return data;
   1332}
   1333
   1334static void memory_region_ram_device_write(void *opaque, hwaddr addr,
   1335                                           uint64_t data, unsigned size)
   1336{
   1337    MemoryRegion *mr = opaque;
   1338
   1339    trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
   1340
   1341    switch (size) {
   1342    case 1:
   1343        *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
   1344        break;
   1345    case 2:
   1346        *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
   1347        break;
   1348    case 4:
   1349        *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
   1350        break;
   1351    case 8:
   1352        *(uint64_t *)(mr->ram_block->host + addr) = data;
   1353        break;
   1354    }
   1355}
   1356
   1357static const MemoryRegionOps ram_device_mem_ops = {
   1358    .read = memory_region_ram_device_read,
   1359    .write = memory_region_ram_device_write,
   1360    .endianness = DEVICE_HOST_ENDIAN,
   1361    .valid = {
   1362        .min_access_size = 1,
   1363        .max_access_size = 8,
   1364        .unaligned = true,
   1365    },
   1366    .impl = {
   1367        .min_access_size = 1,
   1368        .max_access_size = 8,
   1369        .unaligned = true,
   1370    },
   1371};
   1372
   1373bool memory_region_access_valid(MemoryRegion *mr,
   1374                                hwaddr addr,
   1375                                unsigned size,
   1376                                bool is_write,
   1377                                MemTxAttrs attrs)
   1378{
   1379    if (mr->ops->valid.accepts
   1380        && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
   1381        qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
   1382                                       "0x%" HWADDR_PRIX ", size %u, "
   1383                                       "region '%s', reason: rejected\n",
   1384                      addr, size, memory_region_name(mr));
   1385        return false;
   1386    }
   1387
   1388    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
   1389        qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
   1390                                       "0x%" HWADDR_PRIX ", size %u, "
   1391                                       "region '%s', reason: unaligned\n",
   1392                      addr, size, memory_region_name(mr));
   1393        return false;
   1394    }
   1395
   1396    /* Treat zero as compatibility all valid */
   1397    if (!mr->ops->valid.max_access_size) {
   1398        return true;
   1399    }
   1400
   1401    if (size > mr->ops->valid.max_access_size
   1402        || size < mr->ops->valid.min_access_size) {
   1403        qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
   1404                                       "0x%" HWADDR_PRIX ", size %u, "
   1405                                       "region '%s', reason: invalid size "
   1406                                       "(min:%u max:%u)\n",
   1407                      addr, size, memory_region_name(mr),
   1408                      mr->ops->valid.min_access_size,
   1409                      mr->ops->valid.max_access_size);
   1410        return false;
   1411    }
   1412    return true;
   1413}
   1414
   1415static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
   1416                                                hwaddr addr,
   1417                                                uint64_t *pval,
   1418                                                unsigned size,
   1419                                                MemTxAttrs attrs)
   1420{
   1421    *pval = 0;
   1422
   1423    if (mr->ops->read) {
   1424        return access_with_adjusted_size(addr, pval, size,
   1425                                         mr->ops->impl.min_access_size,
   1426                                         mr->ops->impl.max_access_size,
   1427                                         memory_region_read_accessor,
   1428                                         mr, attrs);
   1429    } else {
   1430        return access_with_adjusted_size(addr, pval, size,
   1431                                         mr->ops->impl.min_access_size,
   1432                                         mr->ops->impl.max_access_size,
   1433                                         memory_region_read_with_attrs_accessor,
   1434                                         mr, attrs);
   1435    }
   1436}
   1437
   1438MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
   1439                                        hwaddr addr,
   1440                                        uint64_t *pval,
   1441                                        MemOp op,
   1442                                        MemTxAttrs attrs)
   1443{
   1444    unsigned size = memop_size(op);
   1445    MemTxResult r;
   1446
   1447    if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
   1448        *pval = unassigned_mem_read(mr, addr, size);
   1449        return MEMTX_DECODE_ERROR;
   1450    }
   1451
   1452    r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
   1453    adjust_endianness(mr, pval, op);
   1454    return r;
   1455}
   1456
   1457/* Return true if an eventfd was signalled */
   1458static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
   1459                                                    hwaddr addr,
   1460                                                    uint64_t data,
   1461                                                    unsigned size,
   1462                                                    MemTxAttrs attrs)
   1463{
   1464    MemoryRegionIoeventfd ioeventfd = {
   1465        .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
   1466        .data = data,
   1467    };
   1468    unsigned i;
   1469
   1470    for (i = 0; i < mr->ioeventfd_nb; i++) {
   1471        ioeventfd.match_data = mr->ioeventfds[i].match_data;
   1472        ioeventfd.e = mr->ioeventfds[i].e;
   1473
   1474        if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
   1475            event_notifier_set(ioeventfd.e);
   1476            return true;
   1477        }
   1478    }
   1479
   1480    return false;
   1481}
   1482
   1483MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
   1484                                         hwaddr addr,
   1485                                         uint64_t data,
   1486                                         MemOp op,
   1487                                         MemTxAttrs attrs)
   1488{
   1489    unsigned size = memop_size(op);
   1490
   1491    if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
   1492        unassigned_mem_write(mr, addr, data, size);
   1493        return MEMTX_DECODE_ERROR;
   1494    }
   1495
   1496    adjust_endianness(mr, &data, op);
   1497
   1498    if ((!kvm_eventfds_enabled()) &&
   1499        memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
   1500        return MEMTX_OK;
   1501    }
   1502
   1503    if (mr->ops->write) {
   1504        return access_with_adjusted_size(addr, &data, size,
   1505                                         mr->ops->impl.min_access_size,
   1506                                         mr->ops->impl.max_access_size,
   1507                                         memory_region_write_accessor, mr,
   1508                                         attrs);
   1509    } else {
   1510        return
   1511            access_with_adjusted_size(addr, &data, size,
   1512                                      mr->ops->impl.min_access_size,
   1513                                      mr->ops->impl.max_access_size,
   1514                                      memory_region_write_with_attrs_accessor,
   1515                                      mr, attrs);
   1516    }
   1517}
   1518
   1519void memory_region_init_io(MemoryRegion *mr,
   1520                           Object *owner,
   1521                           const MemoryRegionOps *ops,
   1522                           void *opaque,
   1523                           const char *name,
   1524                           uint64_t size)
   1525{
   1526    memory_region_init(mr, owner, name, size);
   1527    mr->ops = ops ? ops : &unassigned_mem_ops;
   1528    mr->opaque = opaque;
   1529    mr->terminates = true;
   1530}
   1531
   1532void memory_region_init_ram_nomigrate(MemoryRegion *mr,
   1533                                      Object *owner,
   1534                                      const char *name,
   1535                                      uint64_t size,
   1536                                      Error **errp)
   1537{
   1538    memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
   1539}
   1540
   1541void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
   1542                                            Object *owner,
   1543                                            const char *name,
   1544                                            uint64_t size,
   1545                                            uint32_t ram_flags,
   1546                                            Error **errp)
   1547{
   1548    Error *err = NULL;
   1549    memory_region_init(mr, owner, name, size);
   1550    mr->ram = true;
   1551    mr->terminates = true;
   1552    mr->destructor = memory_region_destructor_ram;
   1553    mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
   1554    if (err) {
   1555        mr->size = int128_zero();
   1556        object_unparent(OBJECT(mr));
   1557        error_propagate(errp, err);
   1558    }
   1559}
   1560
   1561void memory_region_init_resizeable_ram(MemoryRegion *mr,
   1562                                       Object *owner,
   1563                                       const char *name,
   1564                                       uint64_t size,
   1565                                       uint64_t max_size,
   1566                                       void (*resized)(const char*,
   1567                                                       uint64_t length,
   1568                                                       void *host),
   1569                                       Error **errp)
   1570{
   1571    Error *err = NULL;
   1572    memory_region_init(mr, owner, name, size);
   1573    mr->ram = true;
   1574    mr->terminates = true;
   1575    mr->destructor = memory_region_destructor_ram;
   1576    mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
   1577                                              mr, &err);
   1578    if (err) {
   1579        mr->size = int128_zero();
   1580        object_unparent(OBJECT(mr));
   1581        error_propagate(errp, err);
   1582    }
   1583}
   1584
   1585#ifdef CONFIG_POSIX
   1586void memory_region_init_ram_from_file(MemoryRegion *mr,
   1587                                      Object *owner,
   1588                                      const char *name,
   1589                                      uint64_t size,
   1590                                      uint64_t align,
   1591                                      uint32_t ram_flags,
   1592                                      const char *path,
   1593                                      bool readonly,
   1594                                      Error **errp)
   1595{
   1596    Error *err = NULL;
   1597    memory_region_init(mr, owner, name, size);
   1598    mr->ram = true;
   1599    mr->readonly = readonly;
   1600    mr->terminates = true;
   1601    mr->destructor = memory_region_destructor_ram;
   1602    mr->align = align;
   1603    mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
   1604                                             readonly, &err);
   1605    if (err) {
   1606        mr->size = int128_zero();
   1607        object_unparent(OBJECT(mr));
   1608        error_propagate(errp, err);
   1609    }
   1610}
   1611
   1612void memory_region_init_ram_from_fd(MemoryRegion *mr,
   1613                                    Object *owner,
   1614                                    const char *name,
   1615                                    uint64_t size,
   1616                                    uint32_t ram_flags,
   1617                                    int fd,
   1618                                    ram_addr_t offset,
   1619                                    Error **errp)
   1620{
   1621    Error *err = NULL;
   1622    memory_region_init(mr, owner, name, size);
   1623    mr->ram = true;
   1624    mr->terminates = true;
   1625    mr->destructor = memory_region_destructor_ram;
   1626    mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
   1627                                           false, &err);
   1628    if (err) {
   1629        mr->size = int128_zero();
   1630        object_unparent(OBJECT(mr));
   1631        error_propagate(errp, err);
   1632    }
   1633}
   1634#endif
   1635
   1636void memory_region_init_ram_ptr(MemoryRegion *mr,
   1637                                Object *owner,
   1638                                const char *name,
   1639                                uint64_t size,
   1640                                void *ptr)
   1641{
   1642    memory_region_init(mr, owner, name, size);
   1643    mr->ram = true;
   1644    mr->terminates = true;
   1645    mr->destructor = memory_region_destructor_ram;
   1646
   1647    /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
   1648    assert(ptr != NULL);
   1649    mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
   1650}
   1651
   1652void memory_region_init_ram_device_ptr(MemoryRegion *mr,
   1653                                       Object *owner,
   1654                                       const char *name,
   1655                                       uint64_t size,
   1656                                       void *ptr)
   1657{
   1658    memory_region_init(mr, owner, name, size);
   1659    mr->ram = true;
   1660    mr->terminates = true;
   1661    mr->ram_device = true;
   1662    mr->ops = &ram_device_mem_ops;
   1663    mr->opaque = mr;
   1664    mr->destructor = memory_region_destructor_ram;
   1665
   1666    /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
   1667    assert(ptr != NULL);
   1668    mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
   1669}
   1670
   1671void memory_region_init_alias(MemoryRegion *mr,
   1672                              Object *owner,
   1673                              const char *name,
   1674                              MemoryRegion *orig,
   1675                              hwaddr offset,
   1676                              uint64_t size)
   1677{
   1678    memory_region_init(mr, owner, name, size);
   1679    mr->alias = orig;
   1680    mr->alias_offset = offset;
   1681}
   1682
   1683void memory_region_init_rom_nomigrate(MemoryRegion *mr,
   1684                                      Object *owner,
   1685                                      const char *name,
   1686                                      uint64_t size,
   1687                                      Error **errp)
   1688{
   1689    memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
   1690    mr->readonly = true;
   1691}
   1692
   1693void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
   1694                                             Object *owner,
   1695                                             const MemoryRegionOps *ops,
   1696                                             void *opaque,
   1697                                             const char *name,
   1698                                             uint64_t size,
   1699                                             Error **errp)
   1700{
   1701    Error *err = NULL;
   1702    assert(ops);
   1703    memory_region_init(mr, owner, name, size);
   1704    mr->ops = ops;
   1705    mr->opaque = opaque;
   1706    mr->terminates = true;
   1707    mr->rom_device = true;
   1708    mr->destructor = memory_region_destructor_ram;
   1709    mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
   1710    if (err) {
   1711        mr->size = int128_zero();
   1712        object_unparent(OBJECT(mr));
   1713        error_propagate(errp, err);
   1714    }
   1715}
   1716
   1717void memory_region_init_iommu(void *_iommu_mr,
   1718                              size_t instance_size,
   1719                              const char *mrtypename,
   1720                              Object *owner,
   1721                              const char *name,
   1722                              uint64_t size)
   1723{
   1724    struct IOMMUMemoryRegion *iommu_mr;
   1725    struct MemoryRegion *mr;
   1726
   1727    object_initialize(_iommu_mr, instance_size, mrtypename);
   1728    mr = MEMORY_REGION(_iommu_mr);
   1729    memory_region_do_init(mr, owner, name, size);
   1730    iommu_mr = IOMMU_MEMORY_REGION(mr);
   1731    mr->terminates = true;  /* then re-forwards */
   1732    QLIST_INIT(&iommu_mr->iommu_notify);
   1733    iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
   1734}
   1735
   1736static void memory_region_finalize(Object *obj)
   1737{
   1738    MemoryRegion *mr = MEMORY_REGION(obj);
   1739
   1740    assert(!mr->container);
   1741
   1742    /* We know the region is not visible in any address space (it
   1743     * does not have a container and cannot be a root either because
   1744     * it has no references, so we can blindly clear mr->enabled.
   1745     * memory_region_set_enabled instead could trigger a transaction
   1746     * and cause an infinite loop.
   1747     */
   1748    mr->enabled = false;
   1749    memory_region_transaction_begin();
   1750    while (!QTAILQ_EMPTY(&mr->subregions)) {
   1751        MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
   1752        memory_region_del_subregion(mr, subregion);
   1753    }
   1754    memory_region_transaction_commit();
   1755
   1756    mr->destructor(mr);
   1757    memory_region_clear_coalescing(mr);
   1758    g_free((char *)mr->name);
   1759    g_free(mr->ioeventfds);
   1760}
   1761
   1762Object *memory_region_owner(MemoryRegion *mr)
   1763{
   1764    Object *obj = OBJECT(mr);
   1765    return obj->parent;
   1766}
   1767
   1768void memory_region_ref(MemoryRegion *mr)
   1769{
   1770    /* MMIO callbacks most likely will access data that belongs
   1771     * to the owner, hence the need to ref/unref the owner whenever
   1772     * the memory region is in use.
   1773     *
   1774     * The memory region is a child of its owner.  As long as the
   1775     * owner doesn't call unparent itself on the memory region,
   1776     * ref-ing the owner will also keep the memory region alive.
   1777     * Memory regions without an owner are supposed to never go away;
   1778     * we do not ref/unref them because it slows down DMA sensibly.
   1779     */
   1780    if (mr && mr->owner) {
   1781        object_ref(mr->owner);
   1782    }
   1783}
   1784
   1785void memory_region_unref(MemoryRegion *mr)
   1786{
   1787    if (mr && mr->owner) {
   1788        object_unref(mr->owner);
   1789    }
   1790}
   1791
   1792uint64_t memory_region_size(MemoryRegion *mr)
   1793{
   1794    if (int128_eq(mr->size, int128_2_64())) {
   1795        return UINT64_MAX;
   1796    }
   1797    return int128_get64(mr->size);
   1798}
   1799
   1800const char *memory_region_name(const MemoryRegion *mr)
   1801{
   1802    if (!mr->name) {
   1803        ((MemoryRegion *)mr)->name =
   1804            g_strdup(object_get_canonical_path_component(OBJECT(mr)));
   1805    }
   1806    return mr->name;
   1807}
   1808
   1809bool memory_region_is_ram_device(MemoryRegion *mr)
   1810{
   1811    return mr->ram_device;
   1812}
   1813
   1814bool memory_region_is_protected(MemoryRegion *mr)
   1815{
   1816    return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
   1817}
   1818
   1819uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
   1820{
   1821    uint8_t mask = mr->dirty_log_mask;
   1822    RAMBlock *rb = mr->ram_block;
   1823
   1824    if (global_dirty_log && ((rb && qemu_ram_is_migratable(rb)) ||
   1825                             memory_region_is_iommu(mr))) {
   1826        mask |= (1 << DIRTY_MEMORY_MIGRATION);
   1827    }
   1828
   1829    if (tcg_enabled() && rb) {
   1830        /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
   1831        mask |= (1 << DIRTY_MEMORY_CODE);
   1832    }
   1833    return mask;
   1834}
   1835
   1836bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
   1837{
   1838    return memory_region_get_dirty_log_mask(mr) & (1 << client);
   1839}
   1840
   1841static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
   1842                                                   Error **errp)
   1843{
   1844    IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
   1845    IOMMUNotifier *iommu_notifier;
   1846    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
   1847    int ret = 0;
   1848
   1849    IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
   1850        flags |= iommu_notifier->notifier_flags;
   1851    }
   1852
   1853    if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
   1854        ret = imrc->notify_flag_changed(iommu_mr,
   1855                                        iommu_mr->iommu_notify_flags,
   1856                                        flags, errp);
   1857    }
   1858
   1859    if (!ret) {
   1860        iommu_mr->iommu_notify_flags = flags;
   1861    }
   1862    return ret;
   1863}
   1864
   1865int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
   1866                                           uint64_t page_size_mask,
   1867                                           Error **errp)
   1868{
   1869    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
   1870    int ret = 0;
   1871
   1872    if (imrc->iommu_set_page_size_mask) {
   1873        ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
   1874    }
   1875    return ret;
   1876}
   1877
   1878int memory_region_register_iommu_notifier(MemoryRegion *mr,
   1879                                          IOMMUNotifier *n, Error **errp)
   1880{
   1881    IOMMUMemoryRegion *iommu_mr;
   1882    int ret;
   1883
   1884    if (mr->alias) {
   1885        return memory_region_register_iommu_notifier(mr->alias, n, errp);
   1886    }
   1887
   1888    /* We need to register for at least one bitfield */
   1889    iommu_mr = IOMMU_MEMORY_REGION(mr);
   1890    assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
   1891    assert(n->start <= n->end);
   1892    assert(n->iommu_idx >= 0 &&
   1893           n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
   1894
   1895    QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
   1896    ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
   1897    if (ret) {
   1898        QLIST_REMOVE(n, node);
   1899    }
   1900    return ret;
   1901}
   1902
   1903uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
   1904{
   1905    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
   1906
   1907    if (imrc->get_min_page_size) {
   1908        return imrc->get_min_page_size(iommu_mr);
   1909    }
   1910    return TARGET_PAGE_SIZE;
   1911}
   1912
   1913void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
   1914{
   1915    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
   1916    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
   1917    hwaddr addr, granularity;
   1918    IOMMUTLBEntry iotlb;
   1919
   1920    /* If the IOMMU has its own replay callback, override */
   1921    if (imrc->replay) {
   1922        imrc->replay(iommu_mr, n);
   1923        return;
   1924    }
   1925
   1926    granularity = memory_region_iommu_get_min_page_size(iommu_mr);
   1927
   1928    for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
   1929        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
   1930        if (iotlb.perm != IOMMU_NONE) {
   1931            n->notify(n, &iotlb);
   1932        }
   1933
   1934        /* if (2^64 - MR size) < granularity, it's possible to get an
   1935         * infinite loop here.  This should catch such a wraparound */
   1936        if ((addr + granularity) < addr) {
   1937            break;
   1938        }
   1939    }
   1940}
   1941
   1942void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
   1943                                             IOMMUNotifier *n)
   1944{
   1945    IOMMUMemoryRegion *iommu_mr;
   1946
   1947    if (mr->alias) {
   1948        memory_region_unregister_iommu_notifier(mr->alias, n);
   1949        return;
   1950    }
   1951    QLIST_REMOVE(n, node);
   1952    iommu_mr = IOMMU_MEMORY_REGION(mr);
   1953    memory_region_update_iommu_notify_flags(iommu_mr, NULL);
   1954}
   1955
   1956void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
   1957                                    IOMMUTLBEvent *event)
   1958{
   1959    IOMMUTLBEntry *entry = &event->entry;
   1960    hwaddr entry_end = entry->iova + entry->addr_mask;
   1961    IOMMUTLBEntry tmp = *entry;
   1962
   1963    if (event->type == IOMMU_NOTIFIER_UNMAP) {
   1964        assert(entry->perm == IOMMU_NONE);
   1965    }
   1966
   1967    /*
   1968     * Skip the notification if the notification does not overlap
   1969     * with registered range.
   1970     */
   1971    if (notifier->start > entry_end || notifier->end < entry->iova) {
   1972        return;
   1973    }
   1974
   1975    if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
   1976        /* Crop (iova, addr_mask) to range */
   1977        tmp.iova = MAX(tmp.iova, notifier->start);
   1978        tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
   1979    } else {
   1980        assert(entry->iova >= notifier->start && entry_end <= notifier->end);
   1981    }
   1982
   1983    if (event->type & notifier->notifier_flags) {
   1984        notifier->notify(notifier, &tmp);
   1985    }
   1986}
   1987
   1988void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
   1989                                int iommu_idx,
   1990                                IOMMUTLBEvent event)
   1991{
   1992    IOMMUNotifier *iommu_notifier;
   1993
   1994    assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
   1995
   1996    IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
   1997        if (iommu_notifier->iommu_idx == iommu_idx) {
   1998            memory_region_notify_iommu_one(iommu_notifier, &event);
   1999        }
   2000    }
   2001}
   2002
   2003int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
   2004                                 enum IOMMUMemoryRegionAttr attr,
   2005                                 void *data)
   2006{
   2007    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
   2008
   2009    if (!imrc->get_attr) {
   2010        return -EINVAL;
   2011    }
   2012
   2013    return imrc->get_attr(iommu_mr, attr, data);
   2014}
   2015
   2016int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
   2017                                       MemTxAttrs attrs)
   2018{
   2019    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
   2020
   2021    if (!imrc->attrs_to_index) {
   2022        return 0;
   2023    }
   2024
   2025    return imrc->attrs_to_index(iommu_mr, attrs);
   2026}
   2027
   2028int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
   2029{
   2030    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
   2031
   2032    if (!imrc->num_indexes) {
   2033        return 1;
   2034    }
   2035
   2036    return imrc->num_indexes(iommu_mr);
   2037}
   2038
   2039RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
   2040{
   2041    if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
   2042        return NULL;
   2043    }
   2044    return mr->rdm;
   2045}
   2046
   2047void memory_region_set_ram_discard_manager(MemoryRegion *mr,
   2048                                           RamDiscardManager *rdm)
   2049{
   2050    g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
   2051    g_assert(!rdm || !mr->rdm);
   2052    mr->rdm = rdm;
   2053}
   2054
   2055uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
   2056                                                 const MemoryRegion *mr)
   2057{
   2058    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
   2059
   2060    g_assert(rdmc->get_min_granularity);
   2061    return rdmc->get_min_granularity(rdm, mr);
   2062}
   2063
   2064bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
   2065                                      const MemoryRegionSection *section)
   2066{
   2067    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
   2068
   2069    g_assert(rdmc->is_populated);
   2070    return rdmc->is_populated(rdm, section);
   2071}
   2072
   2073int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
   2074                                         MemoryRegionSection *section,
   2075                                         ReplayRamPopulate replay_fn,
   2076                                         void *opaque)
   2077{
   2078    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
   2079
   2080    g_assert(rdmc->replay_populated);
   2081    return rdmc->replay_populated(rdm, section, replay_fn, opaque);
   2082}
   2083
   2084void ram_discard_manager_register_listener(RamDiscardManager *rdm,
   2085                                           RamDiscardListener *rdl,
   2086                                           MemoryRegionSection *section)
   2087{
   2088    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
   2089
   2090    g_assert(rdmc->register_listener);
   2091    rdmc->register_listener(rdm, rdl, section);
   2092}
   2093
   2094void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
   2095                                             RamDiscardListener *rdl)
   2096{
   2097    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
   2098
   2099    g_assert(rdmc->unregister_listener);
   2100    rdmc->unregister_listener(rdm, rdl);
   2101}
   2102
   2103void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
   2104{
   2105    uint8_t mask = 1 << client;
   2106    uint8_t old_logging;
   2107
   2108    assert(client == DIRTY_MEMORY_VGA);
   2109    old_logging = mr->vga_logging_count;
   2110    mr->vga_logging_count += log ? 1 : -1;
   2111    if (!!old_logging == !!mr->vga_logging_count) {
   2112        return;
   2113    }
   2114
   2115    memory_region_transaction_begin();
   2116    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
   2117    memory_region_update_pending |= mr->enabled;
   2118    memory_region_transaction_commit();
   2119}
   2120
   2121void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
   2122                             hwaddr size)
   2123{
   2124    assert(mr->ram_block);
   2125    cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
   2126                                        size,
   2127                                        memory_region_get_dirty_log_mask(mr));
   2128}
   2129
   2130/*
   2131 * If memory region `mr' is NULL, do global sync.  Otherwise, sync
   2132 * dirty bitmap for the specified memory region.
   2133 */
   2134static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
   2135{
   2136    MemoryListener *listener;
   2137    AddressSpace *as;
   2138    FlatView *view;
   2139    FlatRange *fr;
   2140
   2141    /* If the same address space has multiple log_sync listeners, we
   2142     * visit that address space's FlatView multiple times.  But because
   2143     * log_sync listeners are rare, it's still cheaper than walking each
   2144     * address space once.
   2145     */
   2146    QTAILQ_FOREACH(listener, &memory_listeners, link) {
   2147        if (listener->log_sync) {
   2148            as = listener->address_space;
   2149            view = address_space_get_flatview(as);
   2150            FOR_EACH_FLAT_RANGE(fr, view) {
   2151                if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
   2152                    MemoryRegionSection mrs = section_from_flat_range(fr, view);
   2153                    listener->log_sync(listener, &mrs);
   2154                }
   2155            }
   2156            flatview_unref(view);
   2157            trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
   2158        } else if (listener->log_sync_global) {
   2159            /*
   2160             * No matter whether MR is specified, what we can do here
   2161             * is to do a global sync, because we are not capable to
   2162             * sync in a finer granularity.
   2163             */
   2164            listener->log_sync_global(listener);
   2165            trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
   2166        }
   2167    }
   2168}
   2169
   2170void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
   2171                                      hwaddr len)
   2172{
   2173    MemoryRegionSection mrs;
   2174    MemoryListener *listener;
   2175    AddressSpace *as;
   2176    FlatView *view;
   2177    FlatRange *fr;
   2178    hwaddr sec_start, sec_end, sec_size;
   2179
   2180    QTAILQ_FOREACH(listener, &memory_listeners, link) {
   2181        if (!listener->log_clear) {
   2182            continue;
   2183        }
   2184        as = listener->address_space;
   2185        view = address_space_get_flatview(as);
   2186        FOR_EACH_FLAT_RANGE(fr, view) {
   2187            if (!fr->dirty_log_mask || fr->mr != mr) {
   2188                /*
   2189                 * Clear dirty bitmap operation only applies to those
   2190                 * regions whose dirty logging is at least enabled
   2191                 */
   2192                continue;
   2193            }
   2194
   2195            mrs = section_from_flat_range(fr, view);
   2196
   2197            sec_start = MAX(mrs.offset_within_region, start);
   2198            sec_end = mrs.offset_within_region + int128_get64(mrs.size);
   2199            sec_end = MIN(sec_end, start + len);
   2200
   2201            if (sec_start >= sec_end) {
   2202                /*
   2203                 * If this memory region section has no intersection
   2204                 * with the requested range, skip.
   2205                 */
   2206                continue;
   2207            }
   2208
   2209            /* Valid case; shrink the section if needed */
   2210            mrs.offset_within_address_space +=
   2211                sec_start - mrs.offset_within_region;
   2212            mrs.offset_within_region = sec_start;
   2213            sec_size = sec_end - sec_start;
   2214            mrs.size = int128_make64(sec_size);
   2215            listener->log_clear(listener, &mrs);
   2216        }
   2217        flatview_unref(view);
   2218    }
   2219}
   2220
   2221DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
   2222                                                            hwaddr addr,
   2223                                                            hwaddr size,
   2224                                                            unsigned client)
   2225{
   2226    DirtyBitmapSnapshot *snapshot;
   2227    assert(mr->ram_block);
   2228    memory_region_sync_dirty_bitmap(mr);
   2229    snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
   2230    memory_global_after_dirty_log_sync();
   2231    return snapshot;
   2232}
   2233
   2234bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
   2235                                      hwaddr addr, hwaddr size)
   2236{
   2237    assert(mr->ram_block);
   2238    return cpu_physical_memory_snapshot_get_dirty(snap,
   2239                memory_region_get_ram_addr(mr) + addr, size);
   2240}
   2241
   2242void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
   2243{
   2244    if (mr->readonly != readonly) {
   2245        memory_region_transaction_begin();
   2246        mr->readonly = readonly;
   2247        memory_region_update_pending |= mr->enabled;
   2248        memory_region_transaction_commit();
   2249    }
   2250}
   2251
   2252void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
   2253{
   2254    if (mr->nonvolatile != nonvolatile) {
   2255        memory_region_transaction_begin();
   2256        mr->nonvolatile = nonvolatile;
   2257        memory_region_update_pending |= mr->enabled;
   2258        memory_region_transaction_commit();
   2259    }
   2260}
   2261
   2262void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
   2263{
   2264    if (mr->romd_mode != romd_mode) {
   2265        memory_region_transaction_begin();
   2266        mr->romd_mode = romd_mode;
   2267        memory_region_update_pending |= mr->enabled;
   2268        memory_region_transaction_commit();
   2269    }
   2270}
   2271
   2272void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
   2273                               hwaddr size, unsigned client)
   2274{
   2275    assert(mr->ram_block);
   2276    cpu_physical_memory_test_and_clear_dirty(
   2277        memory_region_get_ram_addr(mr) + addr, size, client);
   2278}
   2279
   2280int memory_region_get_fd(MemoryRegion *mr)
   2281{
   2282    int fd;
   2283
   2284    RCU_READ_LOCK_GUARD();
   2285    while (mr->alias) {
   2286        mr = mr->alias;
   2287    }
   2288    fd = mr->ram_block->fd;
   2289
   2290    return fd;
   2291}
   2292
   2293void *memory_region_get_ram_ptr(MemoryRegion *mr)
   2294{
   2295    void *ptr;
   2296    uint64_t offset = 0;
   2297
   2298    RCU_READ_LOCK_GUARD();
   2299    while (mr->alias) {
   2300        offset += mr->alias_offset;
   2301        mr = mr->alias;
   2302    }
   2303    assert(mr->ram_block);
   2304    ptr = qemu_map_ram_ptr(mr->ram_block, offset);
   2305
   2306    return ptr;
   2307}
   2308
   2309MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
   2310{
   2311    RAMBlock *block;
   2312
   2313    block = qemu_ram_block_from_host(ptr, false, offset);
   2314    if (!block) {
   2315        return NULL;
   2316    }
   2317
   2318    return block->mr;
   2319}
   2320
   2321ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
   2322{
   2323    return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
   2324}
   2325
   2326void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
   2327{
   2328    assert(mr->ram_block);
   2329
   2330    qemu_ram_resize(mr->ram_block, newsize, errp);
   2331}
   2332
   2333void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
   2334{
   2335    if (mr->ram_block) {
   2336        qemu_ram_msync(mr->ram_block, addr, size);
   2337    }
   2338}
   2339
   2340void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
   2341{
   2342    /*
   2343     * Might be extended case needed to cover
   2344     * different types of memory regions
   2345     */
   2346    if (mr->dirty_log_mask) {
   2347        memory_region_msync(mr, addr, size);
   2348    }
   2349}
   2350
   2351/*
   2352 * Call proper memory listeners about the change on the newly
   2353 * added/removed CoalescedMemoryRange.
   2354 */
   2355static void memory_region_update_coalesced_range(MemoryRegion *mr,
   2356                                                 CoalescedMemoryRange *cmr,
   2357                                                 bool add)
   2358{
   2359    AddressSpace *as;
   2360    FlatView *view;
   2361    FlatRange *fr;
   2362
   2363    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
   2364        view = address_space_get_flatview(as);
   2365        FOR_EACH_FLAT_RANGE(fr, view) {
   2366            if (fr->mr == mr) {
   2367                flat_range_coalesced_io_notify(fr, as, cmr, add);
   2368            }
   2369        }
   2370        flatview_unref(view);
   2371    }
   2372}
   2373
   2374void memory_region_set_coalescing(MemoryRegion *mr)
   2375{
   2376    memory_region_clear_coalescing(mr);
   2377    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
   2378}
   2379
   2380void memory_region_add_coalescing(MemoryRegion *mr,
   2381                                  hwaddr offset,
   2382                                  uint64_t size)
   2383{
   2384    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
   2385
   2386    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
   2387    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
   2388    memory_region_update_coalesced_range(mr, cmr, true);
   2389    memory_region_set_flush_coalesced(mr);
   2390}
   2391
   2392void memory_region_clear_coalescing(MemoryRegion *mr)
   2393{
   2394    CoalescedMemoryRange *cmr;
   2395
   2396    if (QTAILQ_EMPTY(&mr->coalesced)) {
   2397        return;
   2398    }
   2399
   2400    qemu_flush_coalesced_mmio_buffer();
   2401    mr->flush_coalesced_mmio = false;
   2402
   2403    while (!QTAILQ_EMPTY(&mr->coalesced)) {
   2404        cmr = QTAILQ_FIRST(&mr->coalesced);
   2405        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
   2406        memory_region_update_coalesced_range(mr, cmr, false);
   2407        g_free(cmr);
   2408    }
   2409}
   2410
   2411void memory_region_set_flush_coalesced(MemoryRegion *mr)
   2412{
   2413    mr->flush_coalesced_mmio = true;
   2414}
   2415
   2416void memory_region_clear_flush_coalesced(MemoryRegion *mr)
   2417{
   2418    qemu_flush_coalesced_mmio_buffer();
   2419    if (QTAILQ_EMPTY(&mr->coalesced)) {
   2420        mr->flush_coalesced_mmio = false;
   2421    }
   2422}
   2423
   2424static bool userspace_eventfd_warning;
   2425
   2426void memory_region_add_eventfd(MemoryRegion *mr,
   2427                               hwaddr addr,
   2428                               unsigned size,
   2429                               bool match_data,
   2430                               uint64_t data,
   2431                               EventNotifier *e)
   2432{
   2433    MemoryRegionIoeventfd mrfd = {
   2434        .addr.start = int128_make64(addr),
   2435        .addr.size = int128_make64(size),
   2436        .match_data = match_data,
   2437        .data = data,
   2438        .e = e,
   2439    };
   2440    unsigned i;
   2441
   2442    if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
   2443                            userspace_eventfd_warning))) {
   2444        userspace_eventfd_warning = true;
   2445        error_report("Using eventfd without MMIO binding in KVM. "
   2446                     "Suboptimal performance expected");
   2447    }
   2448
   2449    if (size) {
   2450        adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
   2451    }
   2452    memory_region_transaction_begin();
   2453    for (i = 0; i < mr->ioeventfd_nb; ++i) {
   2454        if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
   2455            break;
   2456        }
   2457    }
   2458    ++mr->ioeventfd_nb;
   2459    mr->ioeventfds = g_realloc(mr->ioeventfds,
   2460                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
   2461    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
   2462            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
   2463    mr->ioeventfds[i] = mrfd;
   2464    ioeventfd_update_pending |= mr->enabled;
   2465    memory_region_transaction_commit();
   2466}
   2467
   2468void memory_region_del_eventfd(MemoryRegion *mr,
   2469                               hwaddr addr,
   2470                               unsigned size,
   2471                               bool match_data,
   2472                               uint64_t data,
   2473                               EventNotifier *e)
   2474{
   2475    MemoryRegionIoeventfd mrfd = {
   2476        .addr.start = int128_make64(addr),
   2477        .addr.size = int128_make64(size),
   2478        .match_data = match_data,
   2479        .data = data,
   2480        .e = e,
   2481    };
   2482    unsigned i;
   2483
   2484    if (size) {
   2485        adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
   2486    }
   2487    memory_region_transaction_begin();
   2488    for (i = 0; i < mr->ioeventfd_nb; ++i) {
   2489        if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
   2490            break;
   2491        }
   2492    }
   2493    assert(i != mr->ioeventfd_nb);
   2494    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
   2495            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
   2496    --mr->ioeventfd_nb;
   2497    mr->ioeventfds = g_realloc(mr->ioeventfds,
   2498                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
   2499    ioeventfd_update_pending |= mr->enabled;
   2500    memory_region_transaction_commit();
   2501}
   2502
   2503static void memory_region_update_container_subregions(MemoryRegion *subregion)
   2504{
   2505    MemoryRegion *mr = subregion->container;
   2506    MemoryRegion *other;
   2507
   2508    memory_region_transaction_begin();
   2509
   2510    memory_region_ref(subregion);
   2511    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
   2512        if (subregion->priority >= other->priority) {
   2513            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
   2514            goto done;
   2515        }
   2516    }
   2517    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
   2518done:
   2519    memory_region_update_pending |= mr->enabled && subregion->enabled;
   2520    memory_region_transaction_commit();
   2521}
   2522
   2523static void memory_region_add_subregion_common(MemoryRegion *mr,
   2524                                               hwaddr offset,
   2525                                               MemoryRegion *subregion)
   2526{
   2527    assert(!subregion->container);
   2528    subregion->container = mr;
   2529    subregion->addr = offset;
   2530    memory_region_update_container_subregions(subregion);
   2531}
   2532
   2533void memory_region_add_subregion(MemoryRegion *mr,
   2534                                 hwaddr offset,
   2535                                 MemoryRegion *subregion)
   2536{
   2537    subregion->priority = 0;
   2538    memory_region_add_subregion_common(mr, offset, subregion);
   2539}
   2540
   2541void memory_region_add_subregion_overlap(MemoryRegion *mr,
   2542                                         hwaddr offset,
   2543                                         MemoryRegion *subregion,
   2544                                         int priority)
   2545{
   2546    subregion->priority = priority;
   2547    memory_region_add_subregion_common(mr, offset, subregion);
   2548}
   2549
   2550void memory_region_del_subregion(MemoryRegion *mr,
   2551                                 MemoryRegion *subregion)
   2552{
   2553    memory_region_transaction_begin();
   2554    assert(subregion->container == mr);
   2555    subregion->container = NULL;
   2556    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
   2557    memory_region_unref(subregion);
   2558    memory_region_update_pending |= mr->enabled && subregion->enabled;
   2559    memory_region_transaction_commit();
   2560}
   2561
   2562void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
   2563{
   2564    if (enabled == mr->enabled) {
   2565        return;
   2566    }
   2567    memory_region_transaction_begin();
   2568    mr->enabled = enabled;
   2569    memory_region_update_pending = true;
   2570    memory_region_transaction_commit();
   2571}
   2572
   2573void memory_region_set_size(MemoryRegion *mr, uint64_t size)
   2574{
   2575    Int128 s = int128_make64(size);
   2576
   2577    if (size == UINT64_MAX) {
   2578        s = int128_2_64();
   2579    }
   2580    if (int128_eq(s, mr->size)) {
   2581        return;
   2582    }
   2583    memory_region_transaction_begin();
   2584    mr->size = s;
   2585    memory_region_update_pending = true;
   2586    memory_region_transaction_commit();
   2587}
   2588
   2589static void memory_region_readd_subregion(MemoryRegion *mr)
   2590{
   2591    MemoryRegion *container = mr->container;
   2592
   2593    if (container) {
   2594        memory_region_transaction_begin();
   2595        memory_region_ref(mr);
   2596        memory_region_del_subregion(container, mr);
   2597        mr->container = container;
   2598        memory_region_update_container_subregions(mr);
   2599        memory_region_unref(mr);
   2600        memory_region_transaction_commit();
   2601    }
   2602}
   2603
   2604void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
   2605{
   2606    if (addr != mr->addr) {
   2607        mr->addr = addr;
   2608        memory_region_readd_subregion(mr);
   2609    }
   2610}
   2611
   2612void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
   2613{
   2614    assert(mr->alias);
   2615
   2616    if (offset == mr->alias_offset) {
   2617        return;
   2618    }
   2619
   2620    memory_region_transaction_begin();
   2621    mr->alias_offset = offset;
   2622    memory_region_update_pending |= mr->enabled;
   2623    memory_region_transaction_commit();
   2624}
   2625
   2626uint64_t memory_region_get_alignment(const MemoryRegion *mr)
   2627{
   2628    return mr->align;
   2629}
   2630
   2631static int cmp_flatrange_addr(const void *addr_, const void *fr_)
   2632{
   2633    const AddrRange *addr = addr_;
   2634    const FlatRange *fr = fr_;
   2635
   2636    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
   2637        return -1;
   2638    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
   2639        return 1;
   2640    }
   2641    return 0;
   2642}
   2643
   2644static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
   2645{
   2646    return bsearch(&addr, view->ranges, view->nr,
   2647                   sizeof(FlatRange), cmp_flatrange_addr);
   2648}
   2649
   2650bool memory_region_is_mapped(MemoryRegion *mr)
   2651{
   2652    return mr->container ? true : false;
   2653}
   2654
   2655/* Same as memory_region_find, but it does not add a reference to the
   2656 * returned region.  It must be called from an RCU critical section.
   2657 */
   2658static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
   2659                                                  hwaddr addr, uint64_t size)
   2660{
   2661    MemoryRegionSection ret = { .mr = NULL };
   2662    MemoryRegion *root;
   2663    AddressSpace *as;
   2664    AddrRange range;
   2665    FlatView *view;
   2666    FlatRange *fr;
   2667
   2668    addr += mr->addr;
   2669    for (root = mr; root->container; ) {
   2670        root = root->container;
   2671        addr += root->addr;
   2672    }
   2673
   2674    as = memory_region_to_address_space(root);
   2675    if (!as) {
   2676        return ret;
   2677    }
   2678    range = addrrange_make(int128_make64(addr), int128_make64(size));
   2679
   2680    view = address_space_to_flatview(as);
   2681    fr = flatview_lookup(view, range);
   2682    if (!fr) {
   2683        return ret;
   2684    }
   2685
   2686    while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
   2687        --fr;
   2688    }
   2689
   2690    ret.mr = fr->mr;
   2691    ret.fv = view;
   2692    range = addrrange_intersection(range, fr->addr);
   2693    ret.offset_within_region = fr->offset_in_region;
   2694    ret.offset_within_region += int128_get64(int128_sub(range.start,
   2695                                                        fr->addr.start));
   2696    ret.size = range.size;
   2697    ret.offset_within_address_space = int128_get64(range.start);
   2698    ret.readonly = fr->readonly;
   2699    ret.nonvolatile = fr->nonvolatile;
   2700    return ret;
   2701}
   2702
   2703MemoryRegionSection memory_region_find(MemoryRegion *mr,
   2704                                       hwaddr addr, uint64_t size)
   2705{
   2706    MemoryRegionSection ret;
   2707    RCU_READ_LOCK_GUARD();
   2708    ret = memory_region_find_rcu(mr, addr, size);
   2709    if (ret.mr) {
   2710        memory_region_ref(ret.mr);
   2711    }
   2712    return ret;
   2713}
   2714
   2715MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
   2716{
   2717    MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
   2718
   2719    *tmp = *s;
   2720    if (tmp->mr) {
   2721        memory_region_ref(tmp->mr);
   2722    }
   2723    if (tmp->fv) {
   2724        bool ret  = flatview_ref(tmp->fv);
   2725
   2726        g_assert(ret);
   2727    }
   2728    return tmp;
   2729}
   2730
   2731void memory_region_section_free_copy(MemoryRegionSection *s)
   2732{
   2733    if (s->fv) {
   2734        flatview_unref(s->fv);
   2735    }
   2736    if (s->mr) {
   2737        memory_region_unref(s->mr);
   2738    }
   2739    g_free(s);
   2740}
   2741
   2742bool memory_region_present(MemoryRegion *container, hwaddr addr)
   2743{
   2744    MemoryRegion *mr;
   2745
   2746    RCU_READ_LOCK_GUARD();
   2747    mr = memory_region_find_rcu(container, addr, 1).mr;
   2748    return mr && mr != container;
   2749}
   2750
   2751void memory_global_dirty_log_sync(void)
   2752{
   2753    memory_region_sync_dirty_bitmap(NULL);
   2754}
   2755
   2756void memory_global_after_dirty_log_sync(void)
   2757{
   2758    MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
   2759}
   2760
   2761static VMChangeStateEntry *vmstate_change;
   2762
   2763void memory_global_dirty_log_start(void)
   2764{
   2765    if (vmstate_change) {
   2766        qemu_del_vm_change_state_handler(vmstate_change);
   2767        vmstate_change = NULL;
   2768    }
   2769
   2770    global_dirty_log = true;
   2771
   2772    MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
   2773
   2774    /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
   2775    memory_region_transaction_begin();
   2776    memory_region_update_pending = true;
   2777    memory_region_transaction_commit();
   2778}
   2779
   2780static void memory_global_dirty_log_do_stop(void)
   2781{
   2782    global_dirty_log = false;
   2783
   2784    /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
   2785    memory_region_transaction_begin();
   2786    memory_region_update_pending = true;
   2787    memory_region_transaction_commit();
   2788
   2789    MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
   2790}
   2791
   2792static void memory_vm_change_state_handler(void *opaque, bool running,
   2793                                           RunState state)
   2794{
   2795    if (running) {
   2796        memory_global_dirty_log_do_stop();
   2797
   2798        if (vmstate_change) {
   2799            qemu_del_vm_change_state_handler(vmstate_change);
   2800            vmstate_change = NULL;
   2801        }
   2802    }
   2803}
   2804
   2805void memory_global_dirty_log_stop(void)
   2806{
   2807    if (!runstate_is_running()) {
   2808        if (vmstate_change) {
   2809            return;
   2810        }
   2811        vmstate_change = qemu_add_vm_change_state_handler(
   2812                                memory_vm_change_state_handler, NULL);
   2813        return;
   2814    }
   2815
   2816    memory_global_dirty_log_do_stop();
   2817}
   2818
   2819static void listener_add_address_space(MemoryListener *listener,
   2820                                       AddressSpace *as)
   2821{
   2822    FlatView *view;
   2823    FlatRange *fr;
   2824
   2825    if (listener->begin) {
   2826        listener->begin(listener);
   2827    }
   2828    if (global_dirty_log) {
   2829        if (listener->log_global_start) {
   2830            listener->log_global_start(listener);
   2831        }
   2832    }
   2833
   2834    view = address_space_get_flatview(as);
   2835    FOR_EACH_FLAT_RANGE(fr, view) {
   2836        MemoryRegionSection section = section_from_flat_range(fr, view);
   2837
   2838        if (listener->region_add) {
   2839            listener->region_add(listener, &section);
   2840        }
   2841        if (fr->dirty_log_mask && listener->log_start) {
   2842            listener->log_start(listener, &section, 0, fr->dirty_log_mask);
   2843        }
   2844    }
   2845    if (listener->commit) {
   2846        listener->commit(listener);
   2847    }
   2848    flatview_unref(view);
   2849}
   2850
   2851static void listener_del_address_space(MemoryListener *listener,
   2852                                       AddressSpace *as)
   2853{
   2854    FlatView *view;
   2855    FlatRange *fr;
   2856
   2857    if (listener->begin) {
   2858        listener->begin(listener);
   2859    }
   2860    view = address_space_get_flatview(as);
   2861    FOR_EACH_FLAT_RANGE(fr, view) {
   2862        MemoryRegionSection section = section_from_flat_range(fr, view);
   2863
   2864        if (fr->dirty_log_mask && listener->log_stop) {
   2865            listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
   2866        }
   2867        if (listener->region_del) {
   2868            listener->region_del(listener, &section);
   2869        }
   2870    }
   2871    if (listener->commit) {
   2872        listener->commit(listener);
   2873    }
   2874    flatview_unref(view);
   2875}
   2876
   2877void memory_listener_register(MemoryListener *listener, AddressSpace *as)
   2878{
   2879    MemoryListener *other = NULL;
   2880
   2881    /* Only one of them can be defined for a listener */
   2882    assert(!(listener->log_sync && listener->log_sync_global));
   2883
   2884    listener->address_space = as;
   2885    if (QTAILQ_EMPTY(&memory_listeners)
   2886        || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
   2887        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
   2888    } else {
   2889        QTAILQ_FOREACH(other, &memory_listeners, link) {
   2890            if (listener->priority < other->priority) {
   2891                break;
   2892            }
   2893        }
   2894        QTAILQ_INSERT_BEFORE(other, listener, link);
   2895    }
   2896
   2897    if (QTAILQ_EMPTY(&as->listeners)
   2898        || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
   2899        QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
   2900    } else {
   2901        QTAILQ_FOREACH(other, &as->listeners, link_as) {
   2902            if (listener->priority < other->priority) {
   2903                break;
   2904            }
   2905        }
   2906        QTAILQ_INSERT_BEFORE(other, listener, link_as);
   2907    }
   2908
   2909    listener_add_address_space(listener, as);
   2910}
   2911
   2912void memory_listener_unregister(MemoryListener *listener)
   2913{
   2914    if (!listener->address_space) {
   2915        return;
   2916    }
   2917
   2918    listener_del_address_space(listener, listener->address_space);
   2919    QTAILQ_REMOVE(&memory_listeners, listener, link);
   2920    QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
   2921    listener->address_space = NULL;
   2922}
   2923
   2924void address_space_remove_listeners(AddressSpace *as)
   2925{
   2926    while (!QTAILQ_EMPTY(&as->listeners)) {
   2927        memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
   2928    }
   2929}
   2930
   2931void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
   2932{
   2933    memory_region_ref(root);
   2934    as->root = root;
   2935    as->current_map = NULL;
   2936    as->ioeventfd_nb = 0;
   2937    as->ioeventfds = NULL;
   2938    QTAILQ_INIT(&as->listeners);
   2939    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
   2940    as->name = g_strdup(name ? name : "anonymous");
   2941    address_space_update_topology(as);
   2942    address_space_update_ioeventfds(as);
   2943}
   2944
   2945static void do_address_space_destroy(AddressSpace *as)
   2946{
   2947    assert(QTAILQ_EMPTY(&as->listeners));
   2948
   2949    flatview_unref(as->current_map);
   2950    g_free(as->name);
   2951    g_free(as->ioeventfds);
   2952    memory_region_unref(as->root);
   2953}
   2954
   2955void address_space_destroy(AddressSpace *as)
   2956{
   2957    MemoryRegion *root = as->root;
   2958
   2959    /* Flush out anything from MemoryListeners listening in on this */
   2960    memory_region_transaction_begin();
   2961    as->root = NULL;
   2962    memory_region_transaction_commit();
   2963    QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
   2964
   2965    /* At this point, as->dispatch and as->current_map are dummy
   2966     * entries that the guest should never use.  Wait for the old
   2967     * values to expire before freeing the data.
   2968     */
   2969    as->root = root;
   2970    call_rcu(as, do_address_space_destroy, rcu);
   2971}
   2972
   2973static const char *memory_region_type(MemoryRegion *mr)
   2974{
   2975    if (mr->alias) {
   2976        return memory_region_type(mr->alias);
   2977    }
   2978    if (memory_region_is_ram_device(mr)) {
   2979        return "ramd";
   2980    } else if (memory_region_is_romd(mr)) {
   2981        return "romd";
   2982    } else if (memory_region_is_rom(mr)) {
   2983        return "rom";
   2984    } else if (memory_region_is_ram(mr)) {
   2985        return "ram";
   2986    } else {
   2987        return "i/o";
   2988    }
   2989}
   2990
   2991typedef struct MemoryRegionList MemoryRegionList;
   2992
   2993struct MemoryRegionList {
   2994    const MemoryRegion *mr;
   2995    QTAILQ_ENTRY(MemoryRegionList) mrqueue;
   2996};
   2997
   2998typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
   2999
   3000#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
   3001                           int128_sub((size), int128_one())) : 0)
   3002#define MTREE_INDENT "  "
   3003
   3004static void mtree_expand_owner(const char *label, Object *obj)
   3005{
   3006    DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
   3007
   3008    qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
   3009    if (dev && dev->id) {
   3010        qemu_printf(" id=%s", dev->id);
   3011    } else {
   3012        char *canonical_path = object_get_canonical_path(obj);
   3013        if (canonical_path) {
   3014            qemu_printf(" path=%s", canonical_path);
   3015            g_free(canonical_path);
   3016        } else {
   3017            qemu_printf(" type=%s", object_get_typename(obj));
   3018        }
   3019    }
   3020    qemu_printf("}");
   3021}
   3022
   3023static void mtree_print_mr_owner(const MemoryRegion *mr)
   3024{
   3025    Object *owner = mr->owner;
   3026    Object *parent = memory_region_owner((MemoryRegion *)mr);
   3027
   3028    if (!owner && !parent) {
   3029        qemu_printf(" orphan");
   3030        return;
   3031    }
   3032    if (owner) {
   3033        mtree_expand_owner("owner", owner);
   3034    }
   3035    if (parent && parent != owner) {
   3036        mtree_expand_owner("parent", parent);
   3037    }
   3038}
   3039
   3040static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
   3041                           hwaddr base,
   3042                           MemoryRegionListHead *alias_print_queue,
   3043                           bool owner, bool display_disabled)
   3044{
   3045    MemoryRegionList *new_ml, *ml, *next_ml;
   3046    MemoryRegionListHead submr_print_queue;
   3047    const MemoryRegion *submr;
   3048    unsigned int i;
   3049    hwaddr cur_start, cur_end;
   3050
   3051    if (!mr) {
   3052        return;
   3053    }
   3054
   3055    cur_start = base + mr->addr;
   3056    cur_end = cur_start + MR_SIZE(mr->size);
   3057
   3058    /*
   3059     * Try to detect overflow of memory region. This should never
   3060     * happen normally. When it happens, we dump something to warn the
   3061     * user who is observing this.
   3062     */
   3063    if (cur_start < base || cur_end < cur_start) {
   3064        qemu_printf("[DETECTED OVERFLOW!] ");
   3065    }
   3066
   3067    if (mr->alias) {
   3068        MemoryRegionList *ml;
   3069        bool found = false;
   3070
   3071        /* check if the alias is already in the queue */
   3072        QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
   3073            if (ml->mr == mr->alias) {
   3074                found = true;
   3075            }
   3076        }
   3077
   3078        if (!found) {
   3079            ml = g_new(MemoryRegionList, 1);
   3080            ml->mr = mr->alias;
   3081            QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
   3082        }
   3083        if (mr->enabled || display_disabled) {
   3084            for (i = 0; i < level; i++) {
   3085                qemu_printf(MTREE_INDENT);
   3086            }
   3087            qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
   3088                        " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
   3089                        "-" TARGET_FMT_plx "%s",
   3090                        cur_start, cur_end,
   3091                        mr->priority,
   3092                        mr->nonvolatile ? "nv-" : "",
   3093                        memory_region_type((MemoryRegion *)mr),
   3094                        memory_region_name(mr),
   3095                        memory_region_name(mr->alias),
   3096                        mr->alias_offset,
   3097                        mr->alias_offset + MR_SIZE(mr->size),
   3098                        mr->enabled ? "" : " [disabled]");
   3099            if (owner) {
   3100                mtree_print_mr_owner(mr);
   3101            }
   3102            qemu_printf("\n");
   3103        }
   3104    } else {
   3105        if (mr->enabled || display_disabled) {
   3106            for (i = 0; i < level; i++) {
   3107                qemu_printf(MTREE_INDENT);
   3108            }
   3109            qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
   3110                        " (prio %d, %s%s): %s%s",
   3111                        cur_start, cur_end,
   3112                        mr->priority,
   3113                        mr->nonvolatile ? "nv-" : "",
   3114                        memory_region_type((MemoryRegion *)mr),
   3115                        memory_region_name(mr),
   3116                        mr->enabled ? "" : " [disabled]");
   3117            if (owner) {
   3118                mtree_print_mr_owner(mr);
   3119            }
   3120            qemu_printf("\n");
   3121        }
   3122    }
   3123
   3124    QTAILQ_INIT(&submr_print_queue);
   3125
   3126    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
   3127        new_ml = g_new(MemoryRegionList, 1);
   3128        new_ml->mr = submr;
   3129        QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
   3130            if (new_ml->mr->addr < ml->mr->addr ||
   3131                (new_ml->mr->addr == ml->mr->addr &&
   3132                 new_ml->mr->priority > ml->mr->priority)) {
   3133                QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
   3134                new_ml = NULL;
   3135                break;
   3136            }
   3137        }
   3138        if (new_ml) {
   3139            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
   3140        }
   3141    }
   3142
   3143    QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
   3144        mtree_print_mr(ml->mr, level + 1, cur_start,
   3145                       alias_print_queue, owner, display_disabled);
   3146    }
   3147
   3148    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
   3149        g_free(ml);
   3150    }
   3151}
   3152
   3153struct FlatViewInfo {
   3154    int counter;
   3155    bool dispatch_tree;
   3156    bool owner;
   3157    AccelClass *ac;
   3158};
   3159
   3160static void mtree_print_flatview(gpointer key, gpointer value,
   3161                                 gpointer user_data)
   3162{
   3163    FlatView *view = key;
   3164    GArray *fv_address_spaces = value;
   3165    struct FlatViewInfo *fvi = user_data;
   3166    FlatRange *range = &view->ranges[0];
   3167    MemoryRegion *mr;
   3168    int n = view->nr;
   3169    int i;
   3170    AddressSpace *as;
   3171
   3172    qemu_printf("FlatView #%d\n", fvi->counter);
   3173    ++fvi->counter;
   3174
   3175    for (i = 0; i < fv_address_spaces->len; ++i) {
   3176        as = g_array_index(fv_address_spaces, AddressSpace*, i);
   3177        qemu_printf(" AS \"%s\", root: %s",
   3178                    as->name, memory_region_name(as->root));
   3179        if (as->root->alias) {
   3180            qemu_printf(", alias %s", memory_region_name(as->root->alias));
   3181        }
   3182        qemu_printf("\n");
   3183    }
   3184
   3185    qemu_printf(" Root memory region: %s\n",
   3186      view->root ? memory_region_name(view->root) : "(none)");
   3187
   3188    if (n <= 0) {
   3189        qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
   3190        return;
   3191    }
   3192
   3193    while (n--) {
   3194        mr = range->mr;
   3195        if (range->offset_in_region) {
   3196            qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
   3197                        " (prio %d, %s%s): %s @" TARGET_FMT_plx,
   3198                        int128_get64(range->addr.start),
   3199                        int128_get64(range->addr.start)
   3200                        + MR_SIZE(range->addr.size),
   3201                        mr->priority,
   3202                        range->nonvolatile ? "nv-" : "",
   3203                        range->readonly ? "rom" : memory_region_type(mr),
   3204                        memory_region_name(mr),
   3205                        range->offset_in_region);
   3206        } else {
   3207            qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
   3208                        " (prio %d, %s%s): %s",
   3209                        int128_get64(range->addr.start),
   3210                        int128_get64(range->addr.start)
   3211                        + MR_SIZE(range->addr.size),
   3212                        mr->priority,
   3213                        range->nonvolatile ? "nv-" : "",
   3214                        range->readonly ? "rom" : memory_region_type(mr),
   3215                        memory_region_name(mr));
   3216        }
   3217        if (fvi->owner) {
   3218            mtree_print_mr_owner(mr);
   3219        }
   3220
   3221        if (fvi->ac) {
   3222            for (i = 0; i < fv_address_spaces->len; ++i) {
   3223                as = g_array_index(fv_address_spaces, AddressSpace*, i);
   3224                if (fvi->ac->has_memory(current_machine, as,
   3225                                        int128_get64(range->addr.start),
   3226                                        MR_SIZE(range->addr.size) + 1)) {
   3227                    qemu_printf(" %s", fvi->ac->name);
   3228                }
   3229            }
   3230        }
   3231        qemu_printf("\n");
   3232        range++;
   3233    }
   3234
   3235#if !defined(CONFIG_USER_ONLY)
   3236    if (fvi->dispatch_tree && view->root) {
   3237        mtree_print_dispatch(view->dispatch, view->root);
   3238    }
   3239#endif
   3240
   3241    qemu_printf("\n");
   3242}
   3243
   3244static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
   3245                                      gpointer user_data)
   3246{
   3247    FlatView *view = key;
   3248    GArray *fv_address_spaces = value;
   3249
   3250    g_array_unref(fv_address_spaces);
   3251    flatview_unref(view);
   3252
   3253    return true;
   3254}
   3255
   3256void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
   3257{
   3258    MemoryRegionListHead ml_head;
   3259    MemoryRegionList *ml, *ml2;
   3260    AddressSpace *as;
   3261
   3262    if (flatview) {
   3263        FlatView *view;
   3264        struct FlatViewInfo fvi = {
   3265            .counter = 0,
   3266            .dispatch_tree = dispatch_tree,
   3267            .owner = owner,
   3268        };
   3269        GArray *fv_address_spaces;
   3270        GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
   3271        AccelClass *ac = ACCEL_GET_CLASS(current_accel());
   3272
   3273        if (ac->has_memory) {
   3274            fvi.ac = ac;
   3275        }
   3276
   3277        /* Gather all FVs in one table */
   3278        QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
   3279            view = address_space_get_flatview(as);
   3280
   3281            fv_address_spaces = g_hash_table_lookup(views, view);
   3282            if (!fv_address_spaces) {
   3283                fv_address_spaces = g_array_new(false, false, sizeof(as));
   3284                g_hash_table_insert(views, view, fv_address_spaces);
   3285            }
   3286
   3287            g_array_append_val(fv_address_spaces, as);
   3288        }
   3289
   3290        /* Print */
   3291        g_hash_table_foreach(views, mtree_print_flatview, &fvi);
   3292
   3293        /* Free */
   3294        g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
   3295        g_hash_table_unref(views);
   3296
   3297        return;
   3298    }
   3299
   3300    QTAILQ_INIT(&ml_head);
   3301
   3302    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
   3303        qemu_printf("address-space: %s\n", as->name);
   3304        mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
   3305        qemu_printf("\n");
   3306    }
   3307
   3308    /* print aliased regions */
   3309    QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
   3310        qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
   3311        mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
   3312        qemu_printf("\n");
   3313    }
   3314
   3315    QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
   3316        g_free(ml);
   3317    }
   3318}
   3319
   3320void memory_region_init_ram(MemoryRegion *mr,
   3321                            Object *owner,
   3322                            const char *name,
   3323                            uint64_t size,
   3324                            Error **errp)
   3325{
   3326    DeviceState *owner_dev;
   3327    Error *err = NULL;
   3328
   3329    memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
   3330    if (err) {
   3331        error_propagate(errp, err);
   3332        return;
   3333    }
   3334    /* This will assert if owner is neither NULL nor a DeviceState.
   3335     * We only want the owner here for the purposes of defining a
   3336     * unique name for migration. TODO: Ideally we should implement
   3337     * a naming scheme for Objects which are not DeviceStates, in
   3338     * which case we can relax this restriction.
   3339     */
   3340    owner_dev = DEVICE(owner);
   3341    vmstate_register_ram(mr, owner_dev);
   3342}
   3343
   3344void memory_region_init_rom(MemoryRegion *mr,
   3345                            Object *owner,
   3346                            const char *name,
   3347                            uint64_t size,
   3348                            Error **errp)
   3349{
   3350    DeviceState *owner_dev;
   3351    Error *err = NULL;
   3352
   3353    memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
   3354    if (err) {
   3355        error_propagate(errp, err);
   3356        return;
   3357    }
   3358    /* This will assert if owner is neither NULL nor a DeviceState.
   3359     * We only want the owner here for the purposes of defining a
   3360     * unique name for migration. TODO: Ideally we should implement
   3361     * a naming scheme for Objects which are not DeviceStates, in
   3362     * which case we can relax this restriction.
   3363     */
   3364    owner_dev = DEVICE(owner);
   3365    vmstate_register_ram(mr, owner_dev);
   3366}
   3367
   3368void memory_region_init_rom_device(MemoryRegion *mr,
   3369                                   Object *owner,
   3370                                   const MemoryRegionOps *ops,
   3371                                   void *opaque,
   3372                                   const char *name,
   3373                                   uint64_t size,
   3374                                   Error **errp)
   3375{
   3376    DeviceState *owner_dev;
   3377    Error *err = NULL;
   3378
   3379    memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
   3380                                            name, size, &err);
   3381    if (err) {
   3382        error_propagate(errp, err);
   3383        return;
   3384    }
   3385    /* This will assert if owner is neither NULL nor a DeviceState.
   3386     * We only want the owner here for the purposes of defining a
   3387     * unique name for migration. TODO: Ideally we should implement
   3388     * a naming scheme for Objects which are not DeviceStates, in
   3389     * which case we can relax this restriction.
   3390     */
   3391    owner_dev = DEVICE(owner);
   3392    vmstate_register_ram(mr, owner_dev);
   3393}
   3394
   3395/*
   3396 * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
   3397 * the fuzz_dma_read_cb callback
   3398 */
   3399#ifdef CONFIG_FUZZ
   3400void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
   3401                      size_t len,
   3402                      MemoryRegion *mr)
   3403{
   3404}
   3405#endif
   3406
   3407static const TypeInfo memory_region_info = {
   3408    .parent             = TYPE_OBJECT,
   3409    .name               = TYPE_MEMORY_REGION,
   3410    .class_size         = sizeof(MemoryRegionClass),
   3411    .instance_size      = sizeof(MemoryRegion),
   3412    .instance_init      = memory_region_initfn,
   3413    .instance_finalize  = memory_region_finalize,
   3414};
   3415
   3416static const TypeInfo iommu_memory_region_info = {
   3417    .parent             = TYPE_MEMORY_REGION,
   3418    .name               = TYPE_IOMMU_MEMORY_REGION,
   3419    .class_size         = sizeof(IOMMUMemoryRegionClass),
   3420    .instance_size      = sizeof(IOMMUMemoryRegion),
   3421    .instance_init      = iommu_memory_region_initfn,
   3422    .abstract           = true,
   3423};
   3424
   3425static const TypeInfo ram_discard_manager_info = {
   3426    .parent             = TYPE_INTERFACE,
   3427    .name               = TYPE_RAM_DISCARD_MANAGER,
   3428    .class_size         = sizeof(RamDiscardManagerClass),
   3429};
   3430
   3431static void memory_register_types(void)
   3432{
   3433    type_register_static(&memory_region_info);
   3434    type_register_static(&iommu_memory_region_info);
   3435    type_register_static(&ram_discard_manager_info);
   3436}
   3437
   3438type_init(memory_register_types)