cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

physmem.c (116981B)


      1/*
      2 * RAM allocation and memory access
      3 *
      4 *  Copyright (c) 2003 Fabrice Bellard
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21#include "qemu-common.h"
     22#include "qapi/error.h"
     23
     24#include "qemu/cutils.h"
     25#include "qemu/cacheflush.h"
     26
     27#ifdef CONFIG_TCG
     28#include "hw/core/tcg-cpu-ops.h"
     29#endif /* CONFIG_TCG */
     30
     31#include "exec/exec-all.h"
     32#include "exec/target_page.h"
     33#include "hw/qdev-core.h"
     34#include "hw/qdev-properties.h"
     35#include "hw/boards.h"
     36#include "hw/xen/xen.h"
     37#include "sysemu/kvm.h"
     38#include "sysemu/tcg.h"
     39#include "sysemu/qtest.h"
     40#include "qemu/timer.h"
     41#include "qemu/config-file.h"
     42#include "qemu/error-report.h"
     43#include "qemu/qemu-print.h"
     44#include "exec/memory.h"
     45#include "exec/ioport.h"
     46#include "sysemu/dma.h"
     47#include "sysemu/hostmem.h"
     48#include "sysemu/hw_accel.h"
     49#include "sysemu/xen-mapcache.h"
     50#include "trace/trace-root.h"
     51
     52#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
     53#include <linux/falloc.h>
     54#endif
     55
     56#include "qemu/rcu_queue.h"
     57#include "qemu/main-loop.h"
     58#include "exec/translate-all.h"
     59#include "sysemu/replay.h"
     60
     61#include "exec/memory-internal.h"
     62#include "exec/ram_addr.h"
     63#include "exec/log.h"
     64
     65#include "qemu/pmem.h"
     66
     67#include "migration/vmstate.h"
     68
     69#include "qemu/range.h"
     70#ifndef _WIN32
     71#include "qemu/mmap-alloc.h"
     72#endif
     73
     74#include "monitor/monitor.h"
     75
     76#ifdef CONFIG_LIBDAXCTL
     77#include <daxctl/libdaxctl.h>
     78#endif
     79
     80//#define DEBUG_SUBPAGE
     81
     82/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
     83 * are protected by the ramlist lock.
     84 */
     85RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
     86
     87static MemoryRegion *system_memory;
     88static MemoryRegion *system_io;
     89
     90AddressSpace address_space_io;
     91AddressSpace address_space_memory;
     92
     93static MemoryRegion io_mem_unassigned;
     94
     95typedef struct PhysPageEntry PhysPageEntry;
     96
     97struct PhysPageEntry {
     98    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
     99    uint32_t skip : 6;
    100     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
    101    uint32_t ptr : 26;
    102};
    103
    104#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
    105
    106/* Size of the L2 (and L3, etc) page tables.  */
    107#define ADDR_SPACE_BITS 64
    108
    109#define P_L2_BITS 9
    110#define P_L2_SIZE (1 << P_L2_BITS)
    111
    112#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
    113
    114typedef PhysPageEntry Node[P_L2_SIZE];
    115
    116typedef struct PhysPageMap {
    117    struct rcu_head rcu;
    118
    119    unsigned sections_nb;
    120    unsigned sections_nb_alloc;
    121    unsigned nodes_nb;
    122    unsigned nodes_nb_alloc;
    123    Node *nodes;
    124    MemoryRegionSection *sections;
    125} PhysPageMap;
    126
    127struct AddressSpaceDispatch {
    128    MemoryRegionSection *mru_section;
    129    /* This is a multi-level map on the physical address space.
    130     * The bottom level has pointers to MemoryRegionSections.
    131     */
    132    PhysPageEntry phys_map;
    133    PhysPageMap map;
    134};
    135
    136#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
    137typedef struct subpage_t {
    138    MemoryRegion iomem;
    139    FlatView *fv;
    140    hwaddr base;
    141    uint16_t sub_section[];
    142} subpage_t;
    143
    144#define PHYS_SECTION_UNASSIGNED 0
    145
    146static void io_mem_init(void);
    147static void memory_map_init(void);
    148static void tcg_log_global_after_sync(MemoryListener *listener);
    149static void tcg_commit(MemoryListener *listener);
    150
    151/**
    152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
    153 * @cpu: the CPU whose AddressSpace this is
    154 * @as: the AddressSpace itself
    155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
    156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
    157 */
    158struct CPUAddressSpace {
    159    CPUState *cpu;
    160    AddressSpace *as;
    161    struct AddressSpaceDispatch *memory_dispatch;
    162    MemoryListener tcg_as_listener;
    163};
    164
    165struct DirtyBitmapSnapshot {
    166    ram_addr_t start;
    167    ram_addr_t end;
    168    unsigned long dirty[];
    169};
    170
    171static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
    172{
    173    static unsigned alloc_hint = 16;
    174    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
    175        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
    176        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
    177        alloc_hint = map->nodes_nb_alloc;
    178    }
    179}
    180
    181static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
    182{
    183    unsigned i;
    184    uint32_t ret;
    185    PhysPageEntry e;
    186    PhysPageEntry *p;
    187
    188    ret = map->nodes_nb++;
    189    p = map->nodes[ret];
    190    assert(ret != PHYS_MAP_NODE_NIL);
    191    assert(ret != map->nodes_nb_alloc);
    192
    193    e.skip = leaf ? 0 : 1;
    194    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
    195    for (i = 0; i < P_L2_SIZE; ++i) {
    196        memcpy(&p[i], &e, sizeof(e));
    197    }
    198    return ret;
    199}
    200
    201static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
    202                                hwaddr *index, uint64_t *nb, uint16_t leaf,
    203                                int level)
    204{
    205    PhysPageEntry *p;
    206    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
    207
    208    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
    209        lp->ptr = phys_map_node_alloc(map, level == 0);
    210    }
    211    p = map->nodes[lp->ptr];
    212    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
    213
    214    while (*nb && lp < &p[P_L2_SIZE]) {
    215        if ((*index & (step - 1)) == 0 && *nb >= step) {
    216            lp->skip = 0;
    217            lp->ptr = leaf;
    218            *index += step;
    219            *nb -= step;
    220        } else {
    221            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
    222        }
    223        ++lp;
    224    }
    225}
    226
    227static void phys_page_set(AddressSpaceDispatch *d,
    228                          hwaddr index, uint64_t nb,
    229                          uint16_t leaf)
    230{
    231    /* Wildly overreserve - it doesn't matter much. */
    232    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
    233
    234    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
    235}
    236
    237/* Compact a non leaf page entry. Simply detect that the entry has a single child,
    238 * and update our entry so we can skip it and go directly to the destination.
    239 */
    240static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
    241{
    242    unsigned valid_ptr = P_L2_SIZE;
    243    int valid = 0;
    244    PhysPageEntry *p;
    245    int i;
    246
    247    if (lp->ptr == PHYS_MAP_NODE_NIL) {
    248        return;
    249    }
    250
    251    p = nodes[lp->ptr];
    252    for (i = 0; i < P_L2_SIZE; i++) {
    253        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
    254            continue;
    255        }
    256
    257        valid_ptr = i;
    258        valid++;
    259        if (p[i].skip) {
    260            phys_page_compact(&p[i], nodes);
    261        }
    262    }
    263
    264    /* We can only compress if there's only one child. */
    265    if (valid != 1) {
    266        return;
    267    }
    268
    269    assert(valid_ptr < P_L2_SIZE);
    270
    271    /* Don't compress if it won't fit in the # of bits we have. */
    272    if (P_L2_LEVELS >= (1 << 6) &&
    273        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
    274        return;
    275    }
    276
    277    lp->ptr = p[valid_ptr].ptr;
    278    if (!p[valid_ptr].skip) {
    279        /* If our only child is a leaf, make this a leaf. */
    280        /* By design, we should have made this node a leaf to begin with so we
    281         * should never reach here.
    282         * But since it's so simple to handle this, let's do it just in case we
    283         * change this rule.
    284         */
    285        lp->skip = 0;
    286    } else {
    287        lp->skip += p[valid_ptr].skip;
    288    }
    289}
    290
    291void address_space_dispatch_compact(AddressSpaceDispatch *d)
    292{
    293    if (d->phys_map.skip) {
    294        phys_page_compact(&d->phys_map, d->map.nodes);
    295    }
    296}
    297
    298static inline bool section_covers_addr(const MemoryRegionSection *section,
    299                                       hwaddr addr)
    300{
    301    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
    302     * the section must cover the entire address space.
    303     */
    304    return int128_gethi(section->size) ||
    305           range_covers_byte(section->offset_within_address_space,
    306                             int128_getlo(section->size), addr);
    307}
    308
    309static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
    310{
    311    PhysPageEntry lp = d->phys_map, *p;
    312    Node *nodes = d->map.nodes;
    313    MemoryRegionSection *sections = d->map.sections;
    314    hwaddr index = addr >> TARGET_PAGE_BITS;
    315    int i;
    316
    317    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
    318        if (lp.ptr == PHYS_MAP_NODE_NIL) {
    319            return &sections[PHYS_SECTION_UNASSIGNED];
    320        }
    321        p = nodes[lp.ptr];
    322        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
    323    }
    324
    325    if (section_covers_addr(&sections[lp.ptr], addr)) {
    326        return &sections[lp.ptr];
    327    } else {
    328        return &sections[PHYS_SECTION_UNASSIGNED];
    329    }
    330}
    331
    332/* Called from RCU critical section */
    333static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
    334                                                        hwaddr addr,
    335                                                        bool resolve_subpage)
    336{
    337    MemoryRegionSection *section = qatomic_read(&d->mru_section);
    338    subpage_t *subpage;
    339
    340    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
    341        !section_covers_addr(section, addr)) {
    342        section = phys_page_find(d, addr);
    343        qatomic_set(&d->mru_section, section);
    344    }
    345    if (resolve_subpage && section->mr->subpage) {
    346        subpage = container_of(section->mr, subpage_t, iomem);
    347        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
    348    }
    349    return section;
    350}
    351
    352/* Called from RCU critical section */
    353static MemoryRegionSection *
    354address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
    355                                 hwaddr *plen, bool resolve_subpage)
    356{
    357    MemoryRegionSection *section;
    358    MemoryRegion *mr;
    359    Int128 diff;
    360
    361    section = address_space_lookup_region(d, addr, resolve_subpage);
    362    /* Compute offset within MemoryRegionSection */
    363    addr -= section->offset_within_address_space;
    364
    365    /* Compute offset within MemoryRegion */
    366    *xlat = addr + section->offset_within_region;
    367
    368    mr = section->mr;
    369
    370    /* MMIO registers can be expected to perform full-width accesses based only
    371     * on their address, without considering adjacent registers that could
    372     * decode to completely different MemoryRegions.  When such registers
    373     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
    374     * regions overlap wildly.  For this reason we cannot clamp the accesses
    375     * here.
    376     *
    377     * If the length is small (as is the case for address_space_ldl/stl),
    378     * everything works fine.  If the incoming length is large, however,
    379     * the caller really has to do the clamping through memory_access_size.
    380     */
    381    if (memory_region_is_ram(mr)) {
    382        diff = int128_sub(section->size, int128_make64(addr));
    383        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    384    }
    385    return section;
    386}
    387
    388/**
    389 * address_space_translate_iommu - translate an address through an IOMMU
    390 * memory region and then through the target address space.
    391 *
    392 * @iommu_mr: the IOMMU memory region that we start the translation from
    393 * @addr: the address to be translated through the MMU
    394 * @xlat: the translated address offset within the destination memory region.
    395 *        It cannot be %NULL.
    396 * @plen_out: valid read/write length of the translated address. It
    397 *            cannot be %NULL.
    398 * @page_mask_out: page mask for the translated address. This
    399 *            should only be meaningful for IOMMU translated
    400 *            addresses, since there may be huge pages that this bit
    401 *            would tell. It can be %NULL if we don't care about it.
    402 * @is_write: whether the translation operation is for write
    403 * @is_mmio: whether this can be MMIO, set true if it can
    404 * @target_as: the address space targeted by the IOMMU
    405 * @attrs: transaction attributes
    406 *
    407 * This function is called from RCU critical section.  It is the common
    408 * part of flatview_do_translate and address_space_translate_cached.
    409 */
    410static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
    411                                                         hwaddr *xlat,
    412                                                         hwaddr *plen_out,
    413                                                         hwaddr *page_mask_out,
    414                                                         bool is_write,
    415                                                         bool is_mmio,
    416                                                         AddressSpace **target_as,
    417                                                         MemTxAttrs attrs)
    418{
    419    MemoryRegionSection *section;
    420    hwaddr page_mask = (hwaddr)-1;
    421
    422    do {
    423        hwaddr addr = *xlat;
    424        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
    425        int iommu_idx = 0;
    426        IOMMUTLBEntry iotlb;
    427
    428        if (imrc->attrs_to_index) {
    429            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
    430        }
    431
    432        iotlb = imrc->translate(iommu_mr, addr, is_write ?
    433                                IOMMU_WO : IOMMU_RO, iommu_idx);
    434
    435        if (!(iotlb.perm & (1 << is_write))) {
    436            goto unassigned;
    437        }
    438
    439        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
    440                | (addr & iotlb.addr_mask));
    441        page_mask &= iotlb.addr_mask;
    442        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
    443        *target_as = iotlb.target_as;
    444
    445        section = address_space_translate_internal(
    446                address_space_to_dispatch(iotlb.target_as), addr, xlat,
    447                plen_out, is_mmio);
    448
    449        iommu_mr = memory_region_get_iommu(section->mr);
    450    } while (unlikely(iommu_mr));
    451
    452    if (page_mask_out) {
    453        *page_mask_out = page_mask;
    454    }
    455    return *section;
    456
    457unassigned:
    458    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
    459}
    460
    461/**
    462 * flatview_do_translate - translate an address in FlatView
    463 *
    464 * @fv: the flat view that we want to translate on
    465 * @addr: the address to be translated in above address space
    466 * @xlat: the translated address offset within memory region. It
    467 *        cannot be @NULL.
    468 * @plen_out: valid read/write length of the translated address. It
    469 *            can be @NULL when we don't care about it.
    470 * @page_mask_out: page mask for the translated address. This
    471 *            should only be meaningful for IOMMU translated
    472 *            addresses, since there may be huge pages that this bit
    473 *            would tell. It can be @NULL if we don't care about it.
    474 * @is_write: whether the translation operation is for write
    475 * @is_mmio: whether this can be MMIO, set true if it can
    476 * @target_as: the address space targeted by the IOMMU
    477 * @attrs: memory transaction attributes
    478 *
    479 * This function is called from RCU critical section
    480 */
    481static MemoryRegionSection flatview_do_translate(FlatView *fv,
    482                                                 hwaddr addr,
    483                                                 hwaddr *xlat,
    484                                                 hwaddr *plen_out,
    485                                                 hwaddr *page_mask_out,
    486                                                 bool is_write,
    487                                                 bool is_mmio,
    488                                                 AddressSpace **target_as,
    489                                                 MemTxAttrs attrs)
    490{
    491    MemoryRegionSection *section;
    492    IOMMUMemoryRegion *iommu_mr;
    493    hwaddr plen = (hwaddr)(-1);
    494
    495    if (!plen_out) {
    496        plen_out = &plen;
    497    }
    498
    499    section = address_space_translate_internal(
    500            flatview_to_dispatch(fv), addr, xlat,
    501            plen_out, is_mmio);
    502
    503    iommu_mr = memory_region_get_iommu(section->mr);
    504    if (unlikely(iommu_mr)) {
    505        return address_space_translate_iommu(iommu_mr, xlat,
    506                                             plen_out, page_mask_out,
    507                                             is_write, is_mmio,
    508                                             target_as, attrs);
    509    }
    510    if (page_mask_out) {
    511        /* Not behind an IOMMU, use default page size. */
    512        *page_mask_out = ~TARGET_PAGE_MASK;
    513    }
    514
    515    return *section;
    516}
    517
    518/* Called from RCU critical section */
    519IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
    520                                            bool is_write, MemTxAttrs attrs)
    521{
    522    MemoryRegionSection section;
    523    hwaddr xlat, page_mask;
    524
    525    /*
    526     * This can never be MMIO, and we don't really care about plen,
    527     * but page mask.
    528     */
    529    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
    530                                    NULL, &page_mask, is_write, false, &as,
    531                                    attrs);
    532
    533    /* Illegal translation */
    534    if (section.mr == &io_mem_unassigned) {
    535        goto iotlb_fail;
    536    }
    537
    538    /* Convert memory region offset into address space offset */
    539    xlat += section.offset_within_address_space -
    540        section.offset_within_region;
    541
    542    return (IOMMUTLBEntry) {
    543        .target_as = as,
    544        .iova = addr & ~page_mask,
    545        .translated_addr = xlat & ~page_mask,
    546        .addr_mask = page_mask,
    547        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
    548        .perm = IOMMU_RW,
    549    };
    550
    551iotlb_fail:
    552    return (IOMMUTLBEntry) {0};
    553}
    554
    555/* Called from RCU critical section */
    556MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
    557                                 hwaddr *plen, bool is_write,
    558                                 MemTxAttrs attrs)
    559{
    560    MemoryRegion *mr;
    561    MemoryRegionSection section;
    562    AddressSpace *as = NULL;
    563
    564    /* This can be MMIO, so setup MMIO bit. */
    565    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
    566                                    is_write, true, &as, attrs);
    567    mr = section.mr;
    568
    569    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
    570        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
    571        *plen = MIN(page, *plen);
    572    }
    573
    574    return mr;
    575}
    576
    577typedef struct TCGIOMMUNotifier {
    578    IOMMUNotifier n;
    579    MemoryRegion *mr;
    580    CPUState *cpu;
    581    int iommu_idx;
    582    bool active;
    583} TCGIOMMUNotifier;
    584
    585static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
    586{
    587    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
    588
    589    if (!notifier->active) {
    590        return;
    591    }
    592    tlb_flush(notifier->cpu);
    593    notifier->active = false;
    594    /* We leave the notifier struct on the list to avoid reallocating it later.
    595     * Generally the number of IOMMUs a CPU deals with will be small.
    596     * In any case we can't unregister the iommu notifier from a notify
    597     * callback.
    598     */
    599}
    600
    601static void tcg_register_iommu_notifier(CPUState *cpu,
    602                                        IOMMUMemoryRegion *iommu_mr,
    603                                        int iommu_idx)
    604{
    605    /* Make sure this CPU has an IOMMU notifier registered for this
    606     * IOMMU/IOMMU index combination, so that we can flush its TLB
    607     * when the IOMMU tells us the mappings we've cached have changed.
    608     */
    609    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    610    TCGIOMMUNotifier *notifier = NULL;
    611    int i;
    612
    613    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
    614        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
    615        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
    616            break;
    617        }
    618    }
    619    if (i == cpu->iommu_notifiers->len) {
    620        /* Not found, add a new entry at the end of the array */
    621        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
    622        notifier = g_new0(TCGIOMMUNotifier, 1);
    623        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
    624
    625        notifier->mr = mr;
    626        notifier->iommu_idx = iommu_idx;
    627        notifier->cpu = cpu;
    628        /* Rather than trying to register interest in the specific part
    629         * of the iommu's address space that we've accessed and then
    630         * expand it later as subsequent accesses touch more of it, we
    631         * just register interest in the whole thing, on the assumption
    632         * that iommu reconfiguration will be rare.
    633         */
    634        iommu_notifier_init(&notifier->n,
    635                            tcg_iommu_unmap_notify,
    636                            IOMMU_NOTIFIER_UNMAP,
    637                            0,
    638                            HWADDR_MAX,
    639                            iommu_idx);
    640        memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
    641                                              &error_fatal);
    642    }
    643
    644    if (!notifier->active) {
    645        notifier->active = true;
    646    }
    647}
    648
    649void tcg_iommu_free_notifier_list(CPUState *cpu)
    650{
    651    /* Destroy the CPU's notifier list */
    652    int i;
    653    TCGIOMMUNotifier *notifier;
    654
    655    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
    656        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
    657        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
    658        g_free(notifier);
    659    }
    660    g_array_free(cpu->iommu_notifiers, true);
    661}
    662
    663void tcg_iommu_init_notifier_list(CPUState *cpu)
    664{
    665    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
    666}
    667
    668/* Called from RCU critical section */
    669MemoryRegionSection *
    670address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
    671                                  hwaddr *xlat, hwaddr *plen,
    672                                  MemTxAttrs attrs, int *prot)
    673{
    674    MemoryRegionSection *section;
    675    IOMMUMemoryRegion *iommu_mr;
    676    IOMMUMemoryRegionClass *imrc;
    677    IOMMUTLBEntry iotlb;
    678    int iommu_idx;
    679    AddressSpaceDispatch *d =
    680        qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
    681
    682    for (;;) {
    683        section = address_space_translate_internal(d, addr, &addr, plen, false);
    684
    685        iommu_mr = memory_region_get_iommu(section->mr);
    686        if (!iommu_mr) {
    687            break;
    688        }
    689
    690        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
    691
    692        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
    693        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
    694        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
    695         * doesn't short-cut its translation table walk.
    696         */
    697        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
    698        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
    699                | (addr & iotlb.addr_mask));
    700        /* Update the caller's prot bits to remove permissions the IOMMU
    701         * is giving us a failure response for. If we get down to no
    702         * permissions left at all we can give up now.
    703         */
    704        if (!(iotlb.perm & IOMMU_RO)) {
    705            *prot &= ~(PAGE_READ | PAGE_EXEC);
    706        }
    707        if (!(iotlb.perm & IOMMU_WO)) {
    708            *prot &= ~PAGE_WRITE;
    709        }
    710
    711        if (!*prot) {
    712            goto translate_fail;
    713        }
    714
    715        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    716    }
    717
    718    assert(!memory_region_is_iommu(section->mr));
    719    *xlat = addr;
    720    return section;
    721
    722translate_fail:
    723    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
    724}
    725
    726void cpu_address_space_init(CPUState *cpu, int asidx,
    727                            const char *prefix, MemoryRegion *mr)
    728{
    729    CPUAddressSpace *newas;
    730    AddressSpace *as = g_new0(AddressSpace, 1);
    731    char *as_name;
    732
    733    assert(mr);
    734    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    735    address_space_init(as, mr, as_name);
    736    g_free(as_name);
    737
    738    /* Target code should have set num_ases before calling us */
    739    assert(asidx < cpu->num_ases);
    740
    741    if (asidx == 0) {
    742        /* address space 0 gets the convenience alias */
    743        cpu->as = as;
    744    }
    745
    746    /* KVM cannot currently support multiple address spaces. */
    747    assert(asidx == 0 || !kvm_enabled());
    748
    749    if (!cpu->cpu_ases) {
    750        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
    751    }
    752
    753    newas = &cpu->cpu_ases[asidx];
    754    newas->cpu = cpu;
    755    newas->as = as;
    756    if (tcg_enabled()) {
    757        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
    758        newas->tcg_as_listener.commit = tcg_commit;
    759        newas->tcg_as_listener.name = "tcg";
    760        memory_listener_register(&newas->tcg_as_listener, as);
    761    }
    762}
    763
    764AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
    765{
    766    /* Return the AddressSpace corresponding to the specified index */
    767    return cpu->cpu_ases[asidx].as;
    768}
    769
    770/* Add a watchpoint.  */
    771int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
    772                          int flags, CPUWatchpoint **watchpoint)
    773{
    774    CPUWatchpoint *wp;
    775    vaddr in_page;
    776
    777    /* forbid ranges which are empty or run off the end of the address space */
    778    if (len == 0 || (addr + len - 1) < addr) {
    779        error_report("tried to set invalid watchpoint at %"
    780                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
    781        return -EINVAL;
    782    }
    783    wp = g_malloc(sizeof(*wp));
    784
    785    wp->vaddr = addr;
    786    wp->len = len;
    787    wp->flags = flags;
    788
    789    /* keep all GDB-injected watchpoints in front */
    790    if (flags & BP_GDB) {
    791        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    792    } else {
    793        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    794    }
    795
    796    in_page = -(addr | TARGET_PAGE_MASK);
    797    if (len <= in_page) {
    798        tlb_flush_page(cpu, addr);
    799    } else {
    800        tlb_flush(cpu);
    801    }
    802
    803    if (watchpoint)
    804        *watchpoint = wp;
    805    return 0;
    806}
    807
    808/* Remove a specific watchpoint.  */
    809int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
    810                          int flags)
    811{
    812    CPUWatchpoint *wp;
    813
    814    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
    815        if (addr == wp->vaddr && len == wp->len
    816                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
    817            cpu_watchpoint_remove_by_ref(cpu, wp);
    818            return 0;
    819        }
    820    }
    821    return -ENOENT;
    822}
    823
    824/* Remove a specific watchpoint by reference.  */
    825void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
    826{
    827    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
    828
    829    tlb_flush_page(cpu, watchpoint->vaddr);
    830
    831    g_free(watchpoint);
    832}
    833
    834/* Remove all matching watchpoints.  */
    835void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
    836{
    837    CPUWatchpoint *wp, *next;
    838
    839    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
    840        if (wp->flags & mask) {
    841            cpu_watchpoint_remove_by_ref(cpu, wp);
    842        }
    843    }
    844}
    845
    846#ifdef CONFIG_TCG
    847/* Return true if this watchpoint address matches the specified
    848 * access (ie the address range covered by the watchpoint overlaps
    849 * partially or completely with the address range covered by the
    850 * access).
    851 */
    852static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
    853                                              vaddr addr, vaddr len)
    854{
    855    /* We know the lengths are non-zero, but a little caution is
    856     * required to avoid errors in the case where the range ends
    857     * exactly at the top of the address space and so addr + len
    858     * wraps round to zero.
    859     */
    860    vaddr wpend = wp->vaddr + wp->len - 1;
    861    vaddr addrend = addr + len - 1;
    862
    863    return !(addr > wpend || wp->vaddr > addrend);
    864}
    865
    866/* Return flags for watchpoints that match addr + prot.  */
    867int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
    868{
    869    CPUWatchpoint *wp;
    870    int ret = 0;
    871
    872    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
    873        if (watchpoint_address_matches(wp, addr, len)) {
    874            ret |= wp->flags;
    875        }
    876    }
    877    return ret;
    878}
    879
    880/* Generate a debug exception if a watchpoint has been hit.  */
    881void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
    882                          MemTxAttrs attrs, int flags, uintptr_t ra)
    883{
    884    CPUClass *cc = CPU_GET_CLASS(cpu);
    885    CPUWatchpoint *wp;
    886
    887    assert(tcg_enabled());
    888    if (cpu->watchpoint_hit) {
    889        /*
    890         * We re-entered the check after replacing the TB.
    891         * Now raise the debug interrupt so that it will
    892         * trigger after the current instruction.
    893         */
    894        qemu_mutex_lock_iothread();
    895        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
    896        qemu_mutex_unlock_iothread();
    897        return;
    898    }
    899
    900    if (cc->tcg_ops->adjust_watchpoint_address) {
    901        /* this is currently used only by ARM BE32 */
    902        addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
    903    }
    904    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
    905        if (watchpoint_address_matches(wp, addr, len)
    906            && (wp->flags & flags)) {
    907            if (replay_running_debug()) {
    908                /*
    909                 * replay_breakpoint reads icount.
    910                 * Force recompile to succeed, because icount may
    911                 * be read only at the end of the block.
    912                 */
    913                if (!cpu->can_do_io) {
    914                    /* Force execution of one insn next time.  */
    915                    cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu);
    916                    cpu_loop_exit_restore(cpu, ra);
    917                }
    918                /*
    919                 * Don't process the watchpoints when we are
    920                 * in a reverse debugging operation.
    921                 */
    922                replay_breakpoint();
    923                return;
    924            }
    925            if (flags == BP_MEM_READ) {
    926                wp->flags |= BP_WATCHPOINT_HIT_READ;
    927            } else {
    928                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
    929            }
    930            wp->hitaddr = MAX(addr, wp->vaddr);
    931            wp->hitattrs = attrs;
    932            if (!cpu->watchpoint_hit) {
    933                if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
    934                    !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
    935                    wp->flags &= ~BP_WATCHPOINT_HIT;
    936                    continue;
    937                }
    938                cpu->watchpoint_hit = wp;
    939
    940                mmap_lock();
    941                tb_check_watchpoint(cpu, ra);
    942                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
    943                    cpu->exception_index = EXCP_DEBUG;
    944                    mmap_unlock();
    945                    cpu_loop_exit_restore(cpu, ra);
    946                } else {
    947                    /* Force execution of one insn next time.  */
    948                    cpu->cflags_next_tb = 1 | curr_cflags(cpu);
    949                    mmap_unlock();
    950                    if (ra) {
    951                        cpu_restore_state(cpu, ra, true);
    952                    }
    953                    cpu_loop_exit_noexc(cpu);
    954                }
    955            }
    956        } else {
    957            wp->flags &= ~BP_WATCHPOINT_HIT;
    958        }
    959    }
    960}
    961
    962#endif /* CONFIG_TCG */
    963
    964/* Called from RCU critical section */
    965static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
    966{
    967    RAMBlock *block;
    968
    969    block = qatomic_rcu_read(&ram_list.mru_block);
    970    if (block && addr - block->offset < block->max_length) {
    971        return block;
    972    }
    973    RAMBLOCK_FOREACH(block) {
    974        if (addr - block->offset < block->max_length) {
    975            goto found;
    976        }
    977    }
    978
    979    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    980    abort();
    981
    982found:
    983    /* It is safe to write mru_block outside the iothread lock.  This
    984     * is what happens:
    985     *
    986     *     mru_block = xxx
    987     *     rcu_read_unlock()
    988     *                                        xxx removed from list
    989     *                  rcu_read_lock()
    990     *                  read mru_block
    991     *                                        mru_block = NULL;
    992     *                                        call_rcu(reclaim_ramblock, xxx);
    993     *                  rcu_read_unlock()
    994     *
    995     * qatomic_rcu_set is not needed here.  The block was already published
    996     * when it was placed into the list.  Here we're just making an extra
    997     * copy of the pointer.
    998     */
    999    ram_list.mru_block = block;
   1000    return block;
   1001}
   1002
   1003static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
   1004{
   1005    CPUState *cpu;
   1006    ram_addr_t start1;
   1007    RAMBlock *block;
   1008    ram_addr_t end;
   1009
   1010    assert(tcg_enabled());
   1011    end = TARGET_PAGE_ALIGN(start + length);
   1012    start &= TARGET_PAGE_MASK;
   1013
   1014    RCU_READ_LOCK_GUARD();
   1015    block = qemu_get_ram_block(start);
   1016    assert(block == qemu_get_ram_block(end - 1));
   1017    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
   1018    CPU_FOREACH(cpu) {
   1019        tlb_reset_dirty(cpu, start1, length);
   1020    }
   1021}
   1022
   1023/* Note: start and end must be within the same ram block.  */
   1024bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
   1025                                              ram_addr_t length,
   1026                                              unsigned client)
   1027{
   1028    DirtyMemoryBlocks *blocks;
   1029    unsigned long end, page, start_page;
   1030    bool dirty = false;
   1031    RAMBlock *ramblock;
   1032    uint64_t mr_offset, mr_size;
   1033
   1034    if (length == 0) {
   1035        return false;
   1036    }
   1037
   1038    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
   1039    start_page = start >> TARGET_PAGE_BITS;
   1040    page = start_page;
   1041
   1042    WITH_RCU_READ_LOCK_GUARD() {
   1043        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
   1044        ramblock = qemu_get_ram_block(start);
   1045        /* Range sanity check on the ramblock */
   1046        assert(start >= ramblock->offset &&
   1047               start + length <= ramblock->offset + ramblock->used_length);
   1048
   1049        while (page < end) {
   1050            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
   1051            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
   1052            unsigned long num = MIN(end - page,
   1053                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
   1054
   1055            dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
   1056                                                  offset, num);
   1057            page += num;
   1058        }
   1059
   1060        mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
   1061        mr_size = (end - start_page) << TARGET_PAGE_BITS;
   1062        memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
   1063    }
   1064
   1065    if (dirty && tcg_enabled()) {
   1066        tlb_reset_dirty_range_all(start, length);
   1067    }
   1068
   1069    return dirty;
   1070}
   1071
   1072DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
   1073    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
   1074{
   1075    DirtyMemoryBlocks *blocks;
   1076    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
   1077    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
   1078    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
   1079    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
   1080    DirtyBitmapSnapshot *snap;
   1081    unsigned long page, end, dest;
   1082
   1083    snap = g_malloc0(sizeof(*snap) +
   1084                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
   1085    snap->start = first;
   1086    snap->end   = last;
   1087
   1088    page = first >> TARGET_PAGE_BITS;
   1089    end  = last  >> TARGET_PAGE_BITS;
   1090    dest = 0;
   1091
   1092    WITH_RCU_READ_LOCK_GUARD() {
   1093        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
   1094
   1095        while (page < end) {
   1096            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
   1097            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
   1098            unsigned long num = MIN(end - page,
   1099                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
   1100
   1101            assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
   1102            assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
   1103            offset >>= BITS_PER_LEVEL;
   1104
   1105            bitmap_copy_and_clear_atomic(snap->dirty + dest,
   1106                                         blocks->blocks[idx] + offset,
   1107                                         num);
   1108            page += num;
   1109            dest += num >> BITS_PER_LEVEL;
   1110        }
   1111    }
   1112
   1113    if (tcg_enabled()) {
   1114        tlb_reset_dirty_range_all(start, length);
   1115    }
   1116
   1117    memory_region_clear_dirty_bitmap(mr, offset, length);
   1118
   1119    return snap;
   1120}
   1121
   1122bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
   1123                                            ram_addr_t start,
   1124                                            ram_addr_t length)
   1125{
   1126    unsigned long page, end;
   1127
   1128    assert(start >= snap->start);
   1129    assert(start + length <= snap->end);
   1130
   1131    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
   1132    page = (start - snap->start) >> TARGET_PAGE_BITS;
   1133
   1134    while (page < end) {
   1135        if (test_bit(page, snap->dirty)) {
   1136            return true;
   1137        }
   1138        page++;
   1139    }
   1140    return false;
   1141}
   1142
   1143/* Called from RCU critical section */
   1144hwaddr memory_region_section_get_iotlb(CPUState *cpu,
   1145                                       MemoryRegionSection *section)
   1146{
   1147    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
   1148    return section - d->map.sections;
   1149}
   1150
   1151static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
   1152                            uint16_t section);
   1153static subpage_t *subpage_init(FlatView *fv, hwaddr base);
   1154
   1155static uint16_t phys_section_add(PhysPageMap *map,
   1156                                 MemoryRegionSection *section)
   1157{
   1158    /* The physical section number is ORed with a page-aligned
   1159     * pointer to produce the iotlb entries.  Thus it should
   1160     * never overflow into the page-aligned value.
   1161     */
   1162    assert(map->sections_nb < TARGET_PAGE_SIZE);
   1163
   1164    if (map->sections_nb == map->sections_nb_alloc) {
   1165        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
   1166        map->sections = g_renew(MemoryRegionSection, map->sections,
   1167                                map->sections_nb_alloc);
   1168    }
   1169    map->sections[map->sections_nb] = *section;
   1170    memory_region_ref(section->mr);
   1171    return map->sections_nb++;
   1172}
   1173
   1174static void phys_section_destroy(MemoryRegion *mr)
   1175{
   1176    bool have_sub_page = mr->subpage;
   1177
   1178    memory_region_unref(mr);
   1179
   1180    if (have_sub_page) {
   1181        subpage_t *subpage = container_of(mr, subpage_t, iomem);
   1182        object_unref(OBJECT(&subpage->iomem));
   1183        g_free(subpage);
   1184    }
   1185}
   1186
   1187static void phys_sections_free(PhysPageMap *map)
   1188{
   1189    while (map->sections_nb > 0) {
   1190        MemoryRegionSection *section = &map->sections[--map->sections_nb];
   1191        phys_section_destroy(section->mr);
   1192    }
   1193    g_free(map->sections);
   1194    g_free(map->nodes);
   1195}
   1196
   1197static void register_subpage(FlatView *fv, MemoryRegionSection *section)
   1198{
   1199    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
   1200    subpage_t *subpage;
   1201    hwaddr base = section->offset_within_address_space
   1202        & TARGET_PAGE_MASK;
   1203    MemoryRegionSection *existing = phys_page_find(d, base);
   1204    MemoryRegionSection subsection = {
   1205        .offset_within_address_space = base,
   1206        .size = int128_make64(TARGET_PAGE_SIZE),
   1207    };
   1208    hwaddr start, end;
   1209
   1210    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
   1211
   1212    if (!(existing->mr->subpage)) {
   1213        subpage = subpage_init(fv, base);
   1214        subsection.fv = fv;
   1215        subsection.mr = &subpage->iomem;
   1216        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
   1217                      phys_section_add(&d->map, &subsection));
   1218    } else {
   1219        subpage = container_of(existing->mr, subpage_t, iomem);
   1220    }
   1221    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
   1222    end = start + int128_get64(section->size) - 1;
   1223    subpage_register(subpage, start, end,
   1224                     phys_section_add(&d->map, section));
   1225}
   1226
   1227
   1228static void register_multipage(FlatView *fv,
   1229                               MemoryRegionSection *section)
   1230{
   1231    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
   1232    hwaddr start_addr = section->offset_within_address_space;
   1233    uint16_t section_index = phys_section_add(&d->map, section);
   1234    uint64_t num_pages = int128_get64(int128_rshift(section->size,
   1235                                                    TARGET_PAGE_BITS));
   1236
   1237    assert(num_pages);
   1238    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
   1239}
   1240
   1241/*
   1242 * The range in *section* may look like this:
   1243 *
   1244 *      |s|PPPPPPP|s|
   1245 *
   1246 * where s stands for subpage and P for page.
   1247 */
   1248void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
   1249{
   1250    MemoryRegionSection remain = *section;
   1251    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
   1252
   1253    /* register first subpage */
   1254    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
   1255        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
   1256                        - remain.offset_within_address_space;
   1257
   1258        MemoryRegionSection now = remain;
   1259        now.size = int128_min(int128_make64(left), now.size);
   1260        register_subpage(fv, &now);
   1261        if (int128_eq(remain.size, now.size)) {
   1262            return;
   1263        }
   1264        remain.size = int128_sub(remain.size, now.size);
   1265        remain.offset_within_address_space += int128_get64(now.size);
   1266        remain.offset_within_region += int128_get64(now.size);
   1267    }
   1268
   1269    /* register whole pages */
   1270    if (int128_ge(remain.size, page_size)) {
   1271        MemoryRegionSection now = remain;
   1272        now.size = int128_and(now.size, int128_neg(page_size));
   1273        register_multipage(fv, &now);
   1274        if (int128_eq(remain.size, now.size)) {
   1275            return;
   1276        }
   1277        remain.size = int128_sub(remain.size, now.size);
   1278        remain.offset_within_address_space += int128_get64(now.size);
   1279        remain.offset_within_region += int128_get64(now.size);
   1280    }
   1281
   1282    /* register last subpage */
   1283    register_subpage(fv, &remain);
   1284}
   1285
   1286void qemu_flush_coalesced_mmio_buffer(void)
   1287{
   1288    if (kvm_enabled())
   1289        kvm_flush_coalesced_mmio_buffer();
   1290}
   1291
   1292void qemu_mutex_lock_ramlist(void)
   1293{
   1294    qemu_mutex_lock(&ram_list.mutex);
   1295}
   1296
   1297void qemu_mutex_unlock_ramlist(void)
   1298{
   1299    qemu_mutex_unlock(&ram_list.mutex);
   1300}
   1301
   1302void ram_block_dump(Monitor *mon)
   1303{
   1304    RAMBlock *block;
   1305    char *psize;
   1306
   1307    RCU_READ_LOCK_GUARD();
   1308    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
   1309                   "Block Name", "PSize", "Offset", "Used", "Total");
   1310    RAMBLOCK_FOREACH(block) {
   1311        psize = size_to_str(block->page_size);
   1312        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
   1313                       " 0x%016" PRIx64 "\n", block->idstr, psize,
   1314                       (uint64_t)block->offset,
   1315                       (uint64_t)block->used_length,
   1316                       (uint64_t)block->max_length);
   1317        g_free(psize);
   1318    }
   1319}
   1320
   1321#ifdef __linux__
   1322/*
   1323 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
   1324 * may or may not name the same files / on the same filesystem now as
   1325 * when we actually open and map them.  Iterate over the file
   1326 * descriptors instead, and use qemu_fd_getpagesize().
   1327 */
   1328static int find_min_backend_pagesize(Object *obj, void *opaque)
   1329{
   1330    long *hpsize_min = opaque;
   1331
   1332    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
   1333        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
   1334        long hpsize = host_memory_backend_pagesize(backend);
   1335
   1336        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
   1337            *hpsize_min = hpsize;
   1338        }
   1339    }
   1340
   1341    return 0;
   1342}
   1343
   1344static int find_max_backend_pagesize(Object *obj, void *opaque)
   1345{
   1346    long *hpsize_max = opaque;
   1347
   1348    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
   1349        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
   1350        long hpsize = host_memory_backend_pagesize(backend);
   1351
   1352        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
   1353            *hpsize_max = hpsize;
   1354        }
   1355    }
   1356
   1357    return 0;
   1358}
   1359
   1360/*
   1361 * TODO: We assume right now that all mapped host memory backends are
   1362 * used as RAM, however some might be used for different purposes.
   1363 */
   1364long qemu_minrampagesize(void)
   1365{
   1366    long hpsize = LONG_MAX;
   1367    Object *memdev_root = object_resolve_path("/objects", NULL);
   1368
   1369    object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
   1370    return hpsize;
   1371}
   1372
   1373long qemu_maxrampagesize(void)
   1374{
   1375    long pagesize = 0;
   1376    Object *memdev_root = object_resolve_path("/objects", NULL);
   1377
   1378    object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
   1379    return pagesize;
   1380}
   1381#else
   1382long qemu_minrampagesize(void)
   1383{
   1384    return qemu_real_host_page_size;
   1385}
   1386long qemu_maxrampagesize(void)
   1387{
   1388    return qemu_real_host_page_size;
   1389}
   1390#endif
   1391
   1392#ifdef CONFIG_POSIX
   1393static int64_t get_file_size(int fd)
   1394{
   1395    int64_t size;
   1396#if defined(__linux__)
   1397    struct stat st;
   1398
   1399    if (fstat(fd, &st) < 0) {
   1400        return -errno;
   1401    }
   1402
   1403    /* Special handling for devdax character devices */
   1404    if (S_ISCHR(st.st_mode)) {
   1405        g_autofree char *subsystem_path = NULL;
   1406        g_autofree char *subsystem = NULL;
   1407
   1408        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
   1409                                         major(st.st_rdev), minor(st.st_rdev));
   1410        subsystem = g_file_read_link(subsystem_path, NULL);
   1411
   1412        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
   1413            g_autofree char *size_path = NULL;
   1414            g_autofree char *size_str = NULL;
   1415
   1416            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
   1417                                    major(st.st_rdev), minor(st.st_rdev));
   1418
   1419            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
   1420                return g_ascii_strtoll(size_str, NULL, 0);
   1421            }
   1422        }
   1423    }
   1424#endif /* defined(__linux__) */
   1425
   1426    /* st.st_size may be zero for special files yet lseek(2) works */
   1427    size = lseek(fd, 0, SEEK_END);
   1428    if (size < 0) {
   1429        return -errno;
   1430    }
   1431    return size;
   1432}
   1433
   1434static int64_t get_file_align(int fd)
   1435{
   1436    int64_t align = -1;
   1437#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
   1438    struct stat st;
   1439
   1440    if (fstat(fd, &st) < 0) {
   1441        return -errno;
   1442    }
   1443
   1444    /* Special handling for devdax character devices */
   1445    if (S_ISCHR(st.st_mode)) {
   1446        g_autofree char *path = NULL;
   1447        g_autofree char *rpath = NULL;
   1448        struct daxctl_ctx *ctx;
   1449        struct daxctl_region *region;
   1450        int rc = 0;
   1451
   1452        path = g_strdup_printf("/sys/dev/char/%d:%d",
   1453                    major(st.st_rdev), minor(st.st_rdev));
   1454        rpath = realpath(path, NULL);
   1455        if (!rpath) {
   1456            return -errno;
   1457        }
   1458
   1459        rc = daxctl_new(&ctx);
   1460        if (rc) {
   1461            return -1;
   1462        }
   1463
   1464        daxctl_region_foreach(ctx, region) {
   1465            if (strstr(rpath, daxctl_region_get_path(region))) {
   1466                align = daxctl_region_get_align(region);
   1467                break;
   1468            }
   1469        }
   1470        daxctl_unref(ctx);
   1471    }
   1472#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
   1473
   1474    return align;
   1475}
   1476
   1477static int file_ram_open(const char *path,
   1478                         const char *region_name,
   1479                         bool readonly,
   1480                         bool *created,
   1481                         Error **errp)
   1482{
   1483    char *filename;
   1484    char *sanitized_name;
   1485    char *c;
   1486    int fd = -1;
   1487
   1488    *created = false;
   1489    for (;;) {
   1490        fd = open(path, readonly ? O_RDONLY : O_RDWR);
   1491        if (fd >= 0) {
   1492            /* @path names an existing file, use it */
   1493            break;
   1494        }
   1495        if (errno == ENOENT) {
   1496            /* @path names a file that doesn't exist, create it */
   1497            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
   1498            if (fd >= 0) {
   1499                *created = true;
   1500                break;
   1501            }
   1502        } else if (errno == EISDIR) {
   1503            /* @path names a directory, create a file there */
   1504            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
   1505            sanitized_name = g_strdup(region_name);
   1506            for (c = sanitized_name; *c != '\0'; c++) {
   1507                if (*c == '/') {
   1508                    *c = '_';
   1509                }
   1510            }
   1511
   1512            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
   1513                                       sanitized_name);
   1514            g_free(sanitized_name);
   1515
   1516            fd = mkstemp(filename);
   1517            if (fd >= 0) {
   1518                unlink(filename);
   1519                g_free(filename);
   1520                break;
   1521            }
   1522            g_free(filename);
   1523        }
   1524        if (errno != EEXIST && errno != EINTR) {
   1525            error_setg_errno(errp, errno,
   1526                             "can't open backing store %s for guest RAM",
   1527                             path);
   1528            return -1;
   1529        }
   1530        /*
   1531         * Try again on EINTR and EEXIST.  The latter happens when
   1532         * something else creates the file between our two open().
   1533         */
   1534    }
   1535
   1536    return fd;
   1537}
   1538
   1539static void *file_ram_alloc(RAMBlock *block,
   1540                            ram_addr_t memory,
   1541                            int fd,
   1542                            bool readonly,
   1543                            bool truncate,
   1544                            off_t offset,
   1545                            Error **errp)
   1546{
   1547    uint32_t qemu_map_flags;
   1548    void *area;
   1549
   1550    block->page_size = qemu_fd_getpagesize(fd);
   1551    if (block->mr->align % block->page_size) {
   1552        error_setg(errp, "alignment 0x%" PRIx64
   1553                   " must be multiples of page size 0x%zx",
   1554                   block->mr->align, block->page_size);
   1555        return NULL;
   1556    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
   1557        error_setg(errp, "alignment 0x%" PRIx64
   1558                   " must be a power of two", block->mr->align);
   1559        return NULL;
   1560    }
   1561    block->mr->align = MAX(block->page_size, block->mr->align);
   1562#if defined(__s390x__)
   1563    if (kvm_enabled()) {
   1564        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
   1565    }
   1566#endif
   1567
   1568    if (memory < block->page_size) {
   1569        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
   1570                   "or larger than page size 0x%zx",
   1571                   memory, block->page_size);
   1572        return NULL;
   1573    }
   1574
   1575    memory = ROUND_UP(memory, block->page_size);
   1576
   1577    /*
   1578     * ftruncate is not supported by hugetlbfs in older
   1579     * hosts, so don't bother bailing out on errors.
   1580     * If anything goes wrong with it under other filesystems,
   1581     * mmap will fail.
   1582     *
   1583     * Do not truncate the non-empty backend file to avoid corrupting
   1584     * the existing data in the file. Disabling shrinking is not
   1585     * enough. For example, the current vNVDIMM implementation stores
   1586     * the guest NVDIMM labels at the end of the backend file. If the
   1587     * backend file is later extended, QEMU will not be able to find
   1588     * those labels. Therefore, extending the non-empty backend file
   1589     * is disabled as well.
   1590     */
   1591    if (truncate && ftruncate(fd, memory)) {
   1592        perror("ftruncate");
   1593    }
   1594
   1595    qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
   1596    qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
   1597    qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
   1598    qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
   1599    area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
   1600    if (area == MAP_FAILED) {
   1601        error_setg_errno(errp, errno,
   1602                         "unable to map backing store for guest RAM");
   1603        return NULL;
   1604    }
   1605
   1606    block->fd = fd;
   1607    return area;
   1608}
   1609#endif
   1610
   1611/* Allocate space within the ram_addr_t space that governs the
   1612 * dirty bitmaps.
   1613 * Called with the ramlist lock held.
   1614 */
   1615static ram_addr_t find_ram_offset(ram_addr_t size)
   1616{
   1617    RAMBlock *block, *next_block;
   1618    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
   1619
   1620    assert(size != 0); /* it would hand out same offset multiple times */
   1621
   1622    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
   1623        return 0;
   1624    }
   1625
   1626    RAMBLOCK_FOREACH(block) {
   1627        ram_addr_t candidate, next = RAM_ADDR_MAX;
   1628
   1629        /* Align blocks to start on a 'long' in the bitmap
   1630         * which makes the bitmap sync'ing take the fast path.
   1631         */
   1632        candidate = block->offset + block->max_length;
   1633        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
   1634
   1635        /* Search for the closest following block
   1636         * and find the gap.
   1637         */
   1638        RAMBLOCK_FOREACH(next_block) {
   1639            if (next_block->offset >= candidate) {
   1640                next = MIN(next, next_block->offset);
   1641            }
   1642        }
   1643
   1644        /* If it fits remember our place and remember the size
   1645         * of gap, but keep going so that we might find a smaller
   1646         * gap to fill so avoiding fragmentation.
   1647         */
   1648        if (next - candidate >= size && next - candidate < mingap) {
   1649            offset = candidate;
   1650            mingap = next - candidate;
   1651        }
   1652
   1653        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
   1654    }
   1655
   1656    if (offset == RAM_ADDR_MAX) {
   1657        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
   1658                (uint64_t)size);
   1659        abort();
   1660    }
   1661
   1662    trace_find_ram_offset(size, offset);
   1663
   1664    return offset;
   1665}
   1666
   1667static unsigned long last_ram_page(void)
   1668{
   1669    RAMBlock *block;
   1670    ram_addr_t last = 0;
   1671
   1672    RCU_READ_LOCK_GUARD();
   1673    RAMBLOCK_FOREACH(block) {
   1674        last = MAX(last, block->offset + block->max_length);
   1675    }
   1676    return last >> TARGET_PAGE_BITS;
   1677}
   1678
   1679static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
   1680{
   1681    int ret;
   1682
   1683    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
   1684    if (!machine_dump_guest_core(current_machine)) {
   1685        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
   1686        if (ret) {
   1687            perror("qemu_madvise");
   1688            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
   1689                            "but dump_guest_core=off specified\n");
   1690        }
   1691    }
   1692}
   1693
   1694const char *qemu_ram_get_idstr(RAMBlock *rb)
   1695{
   1696    return rb->idstr;
   1697}
   1698
   1699void *qemu_ram_get_host_addr(RAMBlock *rb)
   1700{
   1701    return rb->host;
   1702}
   1703
   1704ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
   1705{
   1706    return rb->offset;
   1707}
   1708
   1709ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
   1710{
   1711    return rb->used_length;
   1712}
   1713
   1714ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
   1715{
   1716    return rb->max_length;
   1717}
   1718
   1719bool qemu_ram_is_shared(RAMBlock *rb)
   1720{
   1721    return rb->flags & RAM_SHARED;
   1722}
   1723
   1724bool qemu_ram_is_noreserve(RAMBlock *rb)
   1725{
   1726    return rb->flags & RAM_NORESERVE;
   1727}
   1728
   1729/* Note: Only set at the start of postcopy */
   1730bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
   1731{
   1732    return rb->flags & RAM_UF_ZEROPAGE;
   1733}
   1734
   1735void qemu_ram_set_uf_zeroable(RAMBlock *rb)
   1736{
   1737    rb->flags |= RAM_UF_ZEROPAGE;
   1738}
   1739
   1740bool qemu_ram_is_migratable(RAMBlock *rb)
   1741{
   1742    return rb->flags & RAM_MIGRATABLE;
   1743}
   1744
   1745void qemu_ram_set_migratable(RAMBlock *rb)
   1746{
   1747    rb->flags |= RAM_MIGRATABLE;
   1748}
   1749
   1750void qemu_ram_unset_migratable(RAMBlock *rb)
   1751{
   1752    rb->flags &= ~RAM_MIGRATABLE;
   1753}
   1754
   1755/* Called with iothread lock held.  */
   1756void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
   1757{
   1758    RAMBlock *block;
   1759
   1760    assert(new_block);
   1761    assert(!new_block->idstr[0]);
   1762
   1763    if (dev) {
   1764        char *id = qdev_get_dev_path(dev);
   1765        if (id) {
   1766            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
   1767            g_free(id);
   1768        }
   1769    }
   1770    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
   1771
   1772    RCU_READ_LOCK_GUARD();
   1773    RAMBLOCK_FOREACH(block) {
   1774        if (block != new_block &&
   1775            !strcmp(block->idstr, new_block->idstr)) {
   1776            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
   1777                    new_block->idstr);
   1778            abort();
   1779        }
   1780    }
   1781}
   1782
   1783/* Called with iothread lock held.  */
   1784void qemu_ram_unset_idstr(RAMBlock *block)
   1785{
   1786    /* FIXME: arch_init.c assumes that this is not called throughout
   1787     * migration.  Ignore the problem since hot-unplug during migration
   1788     * does not work anyway.
   1789     */
   1790    if (block) {
   1791        memset(block->idstr, 0, sizeof(block->idstr));
   1792    }
   1793}
   1794
   1795size_t qemu_ram_pagesize(RAMBlock *rb)
   1796{
   1797    return rb->page_size;
   1798}
   1799
   1800/* Returns the largest size of page in use */
   1801size_t qemu_ram_pagesize_largest(void)
   1802{
   1803    RAMBlock *block;
   1804    size_t largest = 0;
   1805
   1806    RAMBLOCK_FOREACH(block) {
   1807        largest = MAX(largest, qemu_ram_pagesize(block));
   1808    }
   1809
   1810    return largest;
   1811}
   1812
   1813static int memory_try_enable_merging(void *addr, size_t len)
   1814{
   1815    if (!machine_mem_merge(current_machine)) {
   1816        /* disabled by the user */
   1817        return 0;
   1818    }
   1819
   1820    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
   1821}
   1822
   1823/*
   1824 * Resizing RAM while migrating can result in the migration being canceled.
   1825 * Care has to be taken if the guest might have already detected the memory.
   1826 *
   1827 * As memory core doesn't know how is memory accessed, it is up to
   1828 * resize callback to update device state and/or add assertions to detect
   1829 * misuse, if necessary.
   1830 */
   1831int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
   1832{
   1833    const ram_addr_t oldsize = block->used_length;
   1834    const ram_addr_t unaligned_size = newsize;
   1835
   1836    assert(block);
   1837
   1838    newsize = HOST_PAGE_ALIGN(newsize);
   1839
   1840    if (block->used_length == newsize) {
   1841        /*
   1842         * We don't have to resize the ram block (which only knows aligned
   1843         * sizes), however, we have to notify if the unaligned size changed.
   1844         */
   1845        if (unaligned_size != memory_region_size(block->mr)) {
   1846            memory_region_set_size(block->mr, unaligned_size);
   1847            if (block->resized) {
   1848                block->resized(block->idstr, unaligned_size, block->host);
   1849            }
   1850        }
   1851        return 0;
   1852    }
   1853
   1854    if (!(block->flags & RAM_RESIZEABLE)) {
   1855        error_setg_errno(errp, EINVAL,
   1856                         "Size mismatch: %s: 0x" RAM_ADDR_FMT
   1857                         " != 0x" RAM_ADDR_FMT, block->idstr,
   1858                         newsize, block->used_length);
   1859        return -EINVAL;
   1860    }
   1861
   1862    if (block->max_length < newsize) {
   1863        error_setg_errno(errp, EINVAL,
   1864                         "Size too large: %s: 0x" RAM_ADDR_FMT
   1865                         " > 0x" RAM_ADDR_FMT, block->idstr,
   1866                         newsize, block->max_length);
   1867        return -EINVAL;
   1868    }
   1869
   1870    /* Notify before modifying the ram block and touching the bitmaps. */
   1871    if (block->host) {
   1872        ram_block_notify_resize(block->host, oldsize, newsize);
   1873    }
   1874
   1875    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
   1876    block->used_length = newsize;
   1877    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
   1878                                        DIRTY_CLIENTS_ALL);
   1879    memory_region_set_size(block->mr, unaligned_size);
   1880    if (block->resized) {
   1881        block->resized(block->idstr, unaligned_size, block->host);
   1882    }
   1883    return 0;
   1884}
   1885
   1886/*
   1887 * Trigger sync on the given ram block for range [start, start + length]
   1888 * with the backing store if one is available.
   1889 * Otherwise no-op.
   1890 * @Note: this is supposed to be a synchronous op.
   1891 */
   1892void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
   1893{
   1894    /* The requested range should fit in within the block range */
   1895    g_assert((start + length) <= block->used_length);
   1896
   1897#ifdef CONFIG_LIBPMEM
   1898    /* The lack of support for pmem should not block the sync */
   1899    if (ramblock_is_pmem(block)) {
   1900        void *addr = ramblock_ptr(block, start);
   1901        pmem_persist(addr, length);
   1902        return;
   1903    }
   1904#endif
   1905    if (block->fd >= 0) {
   1906        /**
   1907         * Case there is no support for PMEM or the memory has not been
   1908         * specified as persistent (or is not one) - use the msync.
   1909         * Less optimal but still achieves the same goal
   1910         */
   1911        void *addr = ramblock_ptr(block, start);
   1912        if (qemu_msync(addr, length, block->fd)) {
   1913            warn_report("%s: failed to sync memory range: start: "
   1914                    RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
   1915                    __func__, start, length);
   1916        }
   1917    }
   1918}
   1919
   1920/* Called with ram_list.mutex held */
   1921static void dirty_memory_extend(ram_addr_t old_ram_size,
   1922                                ram_addr_t new_ram_size)
   1923{
   1924    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
   1925                                             DIRTY_MEMORY_BLOCK_SIZE);
   1926    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
   1927                                             DIRTY_MEMORY_BLOCK_SIZE);
   1928    int i;
   1929
   1930    /* Only need to extend if block count increased */
   1931    if (new_num_blocks <= old_num_blocks) {
   1932        return;
   1933    }
   1934
   1935    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
   1936        DirtyMemoryBlocks *old_blocks;
   1937        DirtyMemoryBlocks *new_blocks;
   1938        int j;
   1939
   1940        old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
   1941        new_blocks = g_malloc(sizeof(*new_blocks) +
   1942                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
   1943
   1944        if (old_num_blocks) {
   1945            memcpy(new_blocks->blocks, old_blocks->blocks,
   1946                   old_num_blocks * sizeof(old_blocks->blocks[0]));
   1947        }
   1948
   1949        for (j = old_num_blocks; j < new_num_blocks; j++) {
   1950            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
   1951        }
   1952
   1953        qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
   1954
   1955        if (old_blocks) {
   1956            g_free_rcu(old_blocks, rcu);
   1957        }
   1958    }
   1959}
   1960
   1961static void ram_block_add(RAMBlock *new_block, Error **errp)
   1962{
   1963    const bool noreserve = qemu_ram_is_noreserve(new_block);
   1964    const bool shared = qemu_ram_is_shared(new_block);
   1965    RAMBlock *block;
   1966    RAMBlock *last_block = NULL;
   1967    ram_addr_t old_ram_size, new_ram_size;
   1968    Error *err = NULL;
   1969
   1970    old_ram_size = last_ram_page();
   1971
   1972    qemu_mutex_lock_ramlist();
   1973    new_block->offset = find_ram_offset(new_block->max_length);
   1974
   1975    if (!new_block->host) {
   1976        if (xen_enabled()) {
   1977            xen_ram_alloc(new_block->offset, new_block->max_length,
   1978                          new_block->mr, &err);
   1979            if (err) {
   1980                error_propagate(errp, err);
   1981                qemu_mutex_unlock_ramlist();
   1982                return;
   1983            }
   1984        } else {
   1985            new_block->host = qemu_anon_ram_alloc(new_block->max_length,
   1986                                                  &new_block->mr->align,
   1987                                                  shared, noreserve);
   1988            if (!new_block->host) {
   1989                error_setg_errno(errp, errno,
   1990                                 "cannot set up guest memory '%s'",
   1991                                 memory_region_name(new_block->mr));
   1992                qemu_mutex_unlock_ramlist();
   1993                return;
   1994            }
   1995            memory_try_enable_merging(new_block->host, new_block->max_length);
   1996        }
   1997    }
   1998
   1999    new_ram_size = MAX(old_ram_size,
   2000              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
   2001    if (new_ram_size > old_ram_size) {
   2002        dirty_memory_extend(old_ram_size, new_ram_size);
   2003    }
   2004    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
   2005     * QLIST (which has an RCU-friendly variant) does not have insertion at
   2006     * tail, so save the last element in last_block.
   2007     */
   2008    RAMBLOCK_FOREACH(block) {
   2009        last_block = block;
   2010        if (block->max_length < new_block->max_length) {
   2011            break;
   2012        }
   2013    }
   2014    if (block) {
   2015        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
   2016    } else if (last_block) {
   2017        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
   2018    } else { /* list is empty */
   2019        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
   2020    }
   2021    ram_list.mru_block = NULL;
   2022
   2023    /* Write list before version */
   2024    smp_wmb();
   2025    ram_list.version++;
   2026    qemu_mutex_unlock_ramlist();
   2027
   2028    cpu_physical_memory_set_dirty_range(new_block->offset,
   2029                                        new_block->used_length,
   2030                                        DIRTY_CLIENTS_ALL);
   2031
   2032    if (new_block->host) {
   2033        qemu_ram_setup_dump(new_block->host, new_block->max_length);
   2034        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
   2035        /*
   2036         * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
   2037         * Configure it unless the machine is a qtest server, in which case
   2038         * KVM is not used and it may be forked (eg for fuzzing purposes).
   2039         */
   2040        if (!qtest_enabled()) {
   2041            qemu_madvise(new_block->host, new_block->max_length,
   2042                         QEMU_MADV_DONTFORK);
   2043        }
   2044        ram_block_notify_add(new_block->host, new_block->used_length,
   2045                             new_block->max_length);
   2046    }
   2047}
   2048
   2049#ifdef CONFIG_POSIX
   2050RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
   2051                                 uint32_t ram_flags, int fd, off_t offset,
   2052                                 bool readonly, Error **errp)
   2053{
   2054    RAMBlock *new_block;
   2055    Error *local_err = NULL;
   2056    int64_t file_size, file_align;
   2057
   2058    /* Just support these ram flags by now. */
   2059    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
   2060                          RAM_PROTECTED)) == 0);
   2061
   2062    if (xen_enabled()) {
   2063        error_setg(errp, "-mem-path not supported with Xen");
   2064        return NULL;
   2065    }
   2066
   2067    if (kvm_enabled() && !kvm_has_sync_mmu()) {
   2068        error_setg(errp,
   2069                   "host lacks kvm mmu notifiers, -mem-path unsupported");
   2070        return NULL;
   2071    }
   2072
   2073    size = HOST_PAGE_ALIGN(size);
   2074    file_size = get_file_size(fd);
   2075    if (file_size > 0 && file_size < size) {
   2076        error_setg(errp, "backing store size 0x%" PRIx64
   2077                   " does not match 'size' option 0x" RAM_ADDR_FMT,
   2078                   file_size, size);
   2079        return NULL;
   2080    }
   2081
   2082    file_align = get_file_align(fd);
   2083    if (file_align > 0 && file_align > mr->align) {
   2084        error_setg(errp, "backing store align 0x%" PRIx64
   2085                   " is larger than 'align' option 0x%" PRIx64,
   2086                   file_align, mr->align);
   2087        return NULL;
   2088    }
   2089
   2090    new_block = g_malloc0(sizeof(*new_block));
   2091    new_block->mr = mr;
   2092    new_block->used_length = size;
   2093    new_block->max_length = size;
   2094    new_block->flags = ram_flags;
   2095    new_block->host = file_ram_alloc(new_block, size, fd, readonly,
   2096                                     !file_size, offset, errp);
   2097    if (!new_block->host) {
   2098        g_free(new_block);
   2099        return NULL;
   2100    }
   2101
   2102    ram_block_add(new_block, &local_err);
   2103    if (local_err) {
   2104        g_free(new_block);
   2105        error_propagate(errp, local_err);
   2106        return NULL;
   2107    }
   2108    return new_block;
   2109
   2110}
   2111
   2112
   2113RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
   2114                                   uint32_t ram_flags, const char *mem_path,
   2115                                   bool readonly, Error **errp)
   2116{
   2117    int fd;
   2118    bool created;
   2119    RAMBlock *block;
   2120
   2121    fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
   2122                       errp);
   2123    if (fd < 0) {
   2124        return NULL;
   2125    }
   2126
   2127    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
   2128    if (!block) {
   2129        if (created) {
   2130            unlink(mem_path);
   2131        }
   2132        close(fd);
   2133        return NULL;
   2134    }
   2135
   2136    return block;
   2137}
   2138#endif
   2139
   2140static
   2141RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
   2142                                  void (*resized)(const char*,
   2143                                                  uint64_t length,
   2144                                                  void *host),
   2145                                  void *host, uint32_t ram_flags,
   2146                                  MemoryRegion *mr, Error **errp)
   2147{
   2148    RAMBlock *new_block;
   2149    Error *local_err = NULL;
   2150
   2151    assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
   2152                          RAM_NORESERVE)) == 0);
   2153    assert(!host ^ (ram_flags & RAM_PREALLOC));
   2154
   2155    size = HOST_PAGE_ALIGN(size);
   2156    max_size = HOST_PAGE_ALIGN(max_size);
   2157    new_block = g_malloc0(sizeof(*new_block));
   2158    new_block->mr = mr;
   2159    new_block->resized = resized;
   2160    new_block->used_length = size;
   2161    new_block->max_length = max_size;
   2162    assert(max_size >= size);
   2163    new_block->fd = -1;
   2164    new_block->page_size = qemu_real_host_page_size;
   2165    new_block->host = host;
   2166    new_block->flags = ram_flags;
   2167    ram_block_add(new_block, &local_err);
   2168    if (local_err) {
   2169        g_free(new_block);
   2170        error_propagate(errp, local_err);
   2171        return NULL;
   2172    }
   2173    return new_block;
   2174}
   2175
   2176RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
   2177                                   MemoryRegion *mr, Error **errp)
   2178{
   2179    return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
   2180                                   errp);
   2181}
   2182
   2183RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
   2184                         MemoryRegion *mr, Error **errp)
   2185{
   2186    assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
   2187    return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
   2188}
   2189
   2190RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
   2191                                     void (*resized)(const char*,
   2192                                                     uint64_t length,
   2193                                                     void *host),
   2194                                     MemoryRegion *mr, Error **errp)
   2195{
   2196    return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
   2197                                   RAM_RESIZEABLE, mr, errp);
   2198}
   2199
   2200static void reclaim_ramblock(RAMBlock *block)
   2201{
   2202    if (block->flags & RAM_PREALLOC) {
   2203        ;
   2204    } else if (xen_enabled()) {
   2205        xen_invalidate_map_cache_entry(block->host);
   2206#ifndef _WIN32
   2207    } else if (block->fd >= 0) {
   2208        qemu_ram_munmap(block->fd, block->host, block->max_length);
   2209        close(block->fd);
   2210#endif
   2211    } else {
   2212        qemu_anon_ram_free(block->host, block->max_length);
   2213    }
   2214    g_free(block);
   2215}
   2216
   2217void qemu_ram_free(RAMBlock *block)
   2218{
   2219    if (!block) {
   2220        return;
   2221    }
   2222
   2223    if (block->host) {
   2224        ram_block_notify_remove(block->host, block->used_length,
   2225                                block->max_length);
   2226    }
   2227
   2228    qemu_mutex_lock_ramlist();
   2229    QLIST_REMOVE_RCU(block, next);
   2230    ram_list.mru_block = NULL;
   2231    /* Write list before version */
   2232    smp_wmb();
   2233    ram_list.version++;
   2234    call_rcu(block, reclaim_ramblock, rcu);
   2235    qemu_mutex_unlock_ramlist();
   2236}
   2237
   2238#ifndef _WIN32
   2239void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
   2240{
   2241    RAMBlock *block;
   2242    ram_addr_t offset;
   2243    int flags;
   2244    void *area, *vaddr;
   2245
   2246    RAMBLOCK_FOREACH(block) {
   2247        offset = addr - block->offset;
   2248        if (offset < block->max_length) {
   2249            vaddr = ramblock_ptr(block, offset);
   2250            if (block->flags & RAM_PREALLOC) {
   2251                ;
   2252            } else if (xen_enabled()) {
   2253                abort();
   2254            } else {
   2255                flags = MAP_FIXED;
   2256                flags |= block->flags & RAM_SHARED ?
   2257                         MAP_SHARED : MAP_PRIVATE;
   2258                flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
   2259                if (block->fd >= 0) {
   2260                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
   2261                                flags, block->fd, offset);
   2262                } else {
   2263                    flags |= MAP_ANONYMOUS;
   2264                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
   2265                                flags, -1, 0);
   2266                }
   2267                if (area != vaddr) {
   2268                    error_report("Could not remap addr: "
   2269                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
   2270                                 length, addr);
   2271                    exit(1);
   2272                }
   2273                memory_try_enable_merging(vaddr, length);
   2274                qemu_ram_setup_dump(vaddr, length);
   2275            }
   2276        }
   2277    }
   2278}
   2279#endif /* !_WIN32 */
   2280
   2281/* Return a host pointer to ram allocated with qemu_ram_alloc.
   2282 * This should not be used for general purpose DMA.  Use address_space_map
   2283 * or address_space_rw instead. For local memory (e.g. video ram) that the
   2284 * device owns, use memory_region_get_ram_ptr.
   2285 *
   2286 * Called within RCU critical section.
   2287 */
   2288void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
   2289{
   2290    RAMBlock *block = ram_block;
   2291
   2292    if (block == NULL) {
   2293        block = qemu_get_ram_block(addr);
   2294        addr -= block->offset;
   2295    }
   2296
   2297    if (xen_enabled() && block->host == NULL) {
   2298        /* We need to check if the requested address is in the RAM
   2299         * because we don't want to map the entire memory in QEMU.
   2300         * In that case just map until the end of the page.
   2301         */
   2302        if (block->offset == 0) {
   2303            return xen_map_cache(addr, 0, 0, false);
   2304        }
   2305
   2306        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
   2307    }
   2308    return ramblock_ptr(block, addr);
   2309}
   2310
   2311/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
   2312 * but takes a size argument.
   2313 *
   2314 * Called within RCU critical section.
   2315 */
   2316static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
   2317                                 hwaddr *size, bool lock)
   2318{
   2319    RAMBlock *block = ram_block;
   2320    if (*size == 0) {
   2321        return NULL;
   2322    }
   2323
   2324    if (block == NULL) {
   2325        block = qemu_get_ram_block(addr);
   2326        addr -= block->offset;
   2327    }
   2328    *size = MIN(*size, block->max_length - addr);
   2329
   2330    if (xen_enabled() && block->host == NULL) {
   2331        /* We need to check if the requested address is in the RAM
   2332         * because we don't want to map the entire memory in QEMU.
   2333         * In that case just map the requested area.
   2334         */
   2335        if (block->offset == 0) {
   2336            return xen_map_cache(addr, *size, lock, lock);
   2337        }
   2338
   2339        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
   2340    }
   2341
   2342    return ramblock_ptr(block, addr);
   2343}
   2344
   2345/* Return the offset of a hostpointer within a ramblock */
   2346ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
   2347{
   2348    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
   2349    assert((uintptr_t)host >= (uintptr_t)rb->host);
   2350    assert(res < rb->max_length);
   2351
   2352    return res;
   2353}
   2354
   2355/*
   2356 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
   2357 * in that RAMBlock.
   2358 *
   2359 * ptr: Host pointer to look up
   2360 * round_offset: If true round the result offset down to a page boundary
   2361 * *ram_addr: set to result ram_addr
   2362 * *offset: set to result offset within the RAMBlock
   2363 *
   2364 * Returns: RAMBlock (or NULL if not found)
   2365 *
   2366 * By the time this function returns, the returned pointer is not protected
   2367 * by RCU anymore.  If the caller is not within an RCU critical section and
   2368 * does not hold the iothread lock, it must have other means of protecting the
   2369 * pointer, such as a reference to the region that includes the incoming
   2370 * ram_addr_t.
   2371 */
   2372RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
   2373                                   ram_addr_t *offset)
   2374{
   2375    RAMBlock *block;
   2376    uint8_t *host = ptr;
   2377
   2378    if (xen_enabled()) {
   2379        ram_addr_t ram_addr;
   2380        RCU_READ_LOCK_GUARD();
   2381        ram_addr = xen_ram_addr_from_mapcache(ptr);
   2382        block = qemu_get_ram_block(ram_addr);
   2383        if (block) {
   2384            *offset = ram_addr - block->offset;
   2385        }
   2386        return block;
   2387    }
   2388
   2389    RCU_READ_LOCK_GUARD();
   2390    block = qatomic_rcu_read(&ram_list.mru_block);
   2391    if (block && block->host && host - block->host < block->max_length) {
   2392        goto found;
   2393    }
   2394
   2395    RAMBLOCK_FOREACH(block) {
   2396        /* This case append when the block is not mapped. */
   2397        if (block->host == NULL) {
   2398            continue;
   2399        }
   2400        if (host - block->host < block->max_length) {
   2401            goto found;
   2402        }
   2403    }
   2404
   2405    return NULL;
   2406
   2407found:
   2408    *offset = (host - block->host);
   2409    if (round_offset) {
   2410        *offset &= TARGET_PAGE_MASK;
   2411    }
   2412    return block;
   2413}
   2414
   2415/*
   2416 * Finds the named RAMBlock
   2417 *
   2418 * name: The name of RAMBlock to find
   2419 *
   2420 * Returns: RAMBlock (or NULL if not found)
   2421 */
   2422RAMBlock *qemu_ram_block_by_name(const char *name)
   2423{
   2424    RAMBlock *block;
   2425
   2426    RAMBLOCK_FOREACH(block) {
   2427        if (!strcmp(name, block->idstr)) {
   2428            return block;
   2429        }
   2430    }
   2431
   2432    return NULL;
   2433}
   2434
   2435/* Some of the softmmu routines need to translate from a host pointer
   2436   (typically a TLB entry) back to a ram offset.  */
   2437ram_addr_t qemu_ram_addr_from_host(void *ptr)
   2438{
   2439    RAMBlock *block;
   2440    ram_addr_t offset;
   2441
   2442    block = qemu_ram_block_from_host(ptr, false, &offset);
   2443    if (!block) {
   2444        return RAM_ADDR_INVALID;
   2445    }
   2446
   2447    return block->offset + offset;
   2448}
   2449
   2450static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
   2451                                 MemTxAttrs attrs, void *buf, hwaddr len);
   2452static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
   2453                                  const void *buf, hwaddr len);
   2454static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
   2455                                  bool is_write, MemTxAttrs attrs);
   2456
   2457static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
   2458                                unsigned len, MemTxAttrs attrs)
   2459{
   2460    subpage_t *subpage = opaque;
   2461    uint8_t buf[8];
   2462    MemTxResult res;
   2463
   2464#if defined(DEBUG_SUBPAGE)
   2465    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
   2466           subpage, len, addr);
   2467#endif
   2468    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
   2469    if (res) {
   2470        return res;
   2471    }
   2472    *data = ldn_p(buf, len);
   2473    return MEMTX_OK;
   2474}
   2475
   2476static MemTxResult subpage_write(void *opaque, hwaddr addr,
   2477                                 uint64_t value, unsigned len, MemTxAttrs attrs)
   2478{
   2479    subpage_t *subpage = opaque;
   2480    uint8_t buf[8];
   2481
   2482#if defined(DEBUG_SUBPAGE)
   2483    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
   2484           " value %"PRIx64"\n",
   2485           __func__, subpage, len, addr, value);
   2486#endif
   2487    stn_p(buf, len, value);
   2488    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
   2489}
   2490
   2491static bool subpage_accepts(void *opaque, hwaddr addr,
   2492                            unsigned len, bool is_write,
   2493                            MemTxAttrs attrs)
   2494{
   2495    subpage_t *subpage = opaque;
   2496#if defined(DEBUG_SUBPAGE)
   2497    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
   2498           __func__, subpage, is_write ? 'w' : 'r', len, addr);
   2499#endif
   2500
   2501    return flatview_access_valid(subpage->fv, addr + subpage->base,
   2502                                 len, is_write, attrs);
   2503}
   2504
   2505static const MemoryRegionOps subpage_ops = {
   2506    .read_with_attrs = subpage_read,
   2507    .write_with_attrs = subpage_write,
   2508    .impl.min_access_size = 1,
   2509    .impl.max_access_size = 8,
   2510    .valid.min_access_size = 1,
   2511    .valid.max_access_size = 8,
   2512    .valid.accepts = subpage_accepts,
   2513    .endianness = DEVICE_NATIVE_ENDIAN,
   2514};
   2515
   2516static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
   2517                            uint16_t section)
   2518{
   2519    int idx, eidx;
   2520
   2521    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
   2522        return -1;
   2523    idx = SUBPAGE_IDX(start);
   2524    eidx = SUBPAGE_IDX(end);
   2525#if defined(DEBUG_SUBPAGE)
   2526    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
   2527           __func__, mmio, start, end, idx, eidx, section);
   2528#endif
   2529    for (; idx <= eidx; idx++) {
   2530        mmio->sub_section[idx] = section;
   2531    }
   2532
   2533    return 0;
   2534}
   2535
   2536static subpage_t *subpage_init(FlatView *fv, hwaddr base)
   2537{
   2538    subpage_t *mmio;
   2539
   2540    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
   2541    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
   2542    mmio->fv = fv;
   2543    mmio->base = base;
   2544    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
   2545                          NULL, TARGET_PAGE_SIZE);
   2546    mmio->iomem.subpage = true;
   2547#if defined(DEBUG_SUBPAGE)
   2548    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
   2549           mmio, base, TARGET_PAGE_SIZE);
   2550#endif
   2551
   2552    return mmio;
   2553}
   2554
   2555static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
   2556{
   2557    assert(fv);
   2558    MemoryRegionSection section = {
   2559        .fv = fv,
   2560        .mr = mr,
   2561        .offset_within_address_space = 0,
   2562        .offset_within_region = 0,
   2563        .size = int128_2_64(),
   2564    };
   2565
   2566    return phys_section_add(map, &section);
   2567}
   2568
   2569MemoryRegionSection *iotlb_to_section(CPUState *cpu,
   2570                                      hwaddr index, MemTxAttrs attrs)
   2571{
   2572    int asidx = cpu_asidx_from_attrs(cpu, attrs);
   2573    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
   2574    AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
   2575    MemoryRegionSection *sections = d->map.sections;
   2576
   2577    return &sections[index & ~TARGET_PAGE_MASK];
   2578}
   2579
   2580static void io_mem_init(void)
   2581{
   2582    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
   2583                          NULL, UINT64_MAX);
   2584}
   2585
   2586AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
   2587{
   2588    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
   2589    uint16_t n;
   2590
   2591    n = dummy_section(&d->map, fv, &io_mem_unassigned);
   2592    assert(n == PHYS_SECTION_UNASSIGNED);
   2593
   2594    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
   2595
   2596    return d;
   2597}
   2598
   2599void address_space_dispatch_free(AddressSpaceDispatch *d)
   2600{
   2601    phys_sections_free(&d->map);
   2602    g_free(d);
   2603}
   2604
   2605static void do_nothing(CPUState *cpu, run_on_cpu_data d)
   2606{
   2607}
   2608
   2609static void tcg_log_global_after_sync(MemoryListener *listener)
   2610{
   2611    CPUAddressSpace *cpuas;
   2612
   2613    /* Wait for the CPU to end the current TB.  This avoids the following
   2614     * incorrect race:
   2615     *
   2616     *      vCPU                         migration
   2617     *      ----------------------       -------------------------
   2618     *      TLB check -> slow path
   2619     *        notdirty_mem_write
   2620     *          write to RAM
   2621     *          mark dirty
   2622     *                                   clear dirty flag
   2623     *      TLB check -> fast path
   2624     *                                   read memory
   2625     *        write to RAM
   2626     *
   2627     * by pushing the migration thread's memory read after the vCPU thread has
   2628     * written the memory.
   2629     */
   2630    if (replay_mode == REPLAY_MODE_NONE) {
   2631        /*
   2632         * VGA can make calls to this function while updating the screen.
   2633         * In record/replay mode this causes a deadlock, because
   2634         * run_on_cpu waits for rr mutex. Therefore no races are possible
   2635         * in this case and no need for making run_on_cpu when
   2636         * record/replay is not enabled.
   2637         */
   2638        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
   2639        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
   2640    }
   2641}
   2642
   2643static void tcg_commit(MemoryListener *listener)
   2644{
   2645    CPUAddressSpace *cpuas;
   2646    AddressSpaceDispatch *d;
   2647
   2648    assert(tcg_enabled());
   2649    /* since each CPU stores ram addresses in its TLB cache, we must
   2650       reset the modified entries */
   2651    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
   2652    cpu_reloading_memory_map();
   2653    /* The CPU and TLB are protected by the iothread lock.
   2654     * We reload the dispatch pointer now because cpu_reloading_memory_map()
   2655     * may have split the RCU critical section.
   2656     */
   2657    d = address_space_to_dispatch(cpuas->as);
   2658    qatomic_rcu_set(&cpuas->memory_dispatch, d);
   2659    tlb_flush(cpuas->cpu);
   2660}
   2661
   2662static void memory_map_init(void)
   2663{
   2664    system_memory = g_malloc(sizeof(*system_memory));
   2665
   2666    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
   2667    address_space_init(&address_space_memory, system_memory, "memory");
   2668
   2669    system_io = g_malloc(sizeof(*system_io));
   2670    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
   2671                          65536);
   2672    address_space_init(&address_space_io, system_io, "I/O");
   2673}
   2674
   2675MemoryRegion *get_system_memory(void)
   2676{
   2677    return system_memory;
   2678}
   2679
   2680MemoryRegion *get_system_io(void)
   2681{
   2682    return system_io;
   2683}
   2684
   2685static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
   2686                                     hwaddr length)
   2687{
   2688    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
   2689    addr += memory_region_get_ram_addr(mr);
   2690
   2691    /* No early return if dirty_log_mask is or becomes 0, because
   2692     * cpu_physical_memory_set_dirty_range will still call
   2693     * xen_modified_memory.
   2694     */
   2695    if (dirty_log_mask) {
   2696        dirty_log_mask =
   2697            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
   2698    }
   2699    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
   2700        assert(tcg_enabled());
   2701        tb_invalidate_phys_range(addr, addr + length);
   2702        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
   2703    }
   2704    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
   2705}
   2706
   2707void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
   2708{
   2709    /*
   2710     * In principle this function would work on other memory region types too,
   2711     * but the ROM device use case is the only one where this operation is
   2712     * necessary.  Other memory regions should use the
   2713     * address_space_read/write() APIs.
   2714     */
   2715    assert(memory_region_is_romd(mr));
   2716
   2717    invalidate_and_set_dirty(mr, addr, size);
   2718}
   2719
   2720static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
   2721{
   2722    unsigned access_size_max = mr->ops->valid.max_access_size;
   2723
   2724    /* Regions are assumed to support 1-4 byte accesses unless
   2725       otherwise specified.  */
   2726    if (access_size_max == 0) {
   2727        access_size_max = 4;
   2728    }
   2729
   2730    /* Bound the maximum access by the alignment of the address.  */
   2731    if (!mr->ops->impl.unaligned) {
   2732        unsigned align_size_max = addr & -addr;
   2733        if (align_size_max != 0 && align_size_max < access_size_max) {
   2734            access_size_max = align_size_max;
   2735        }
   2736    }
   2737
   2738    /* Don't attempt accesses larger than the maximum.  */
   2739    if (l > access_size_max) {
   2740        l = access_size_max;
   2741    }
   2742    l = pow2floor(l);
   2743
   2744    return l;
   2745}
   2746
   2747static bool prepare_mmio_access(MemoryRegion *mr)
   2748{
   2749    bool release_lock = false;
   2750
   2751    if (!qemu_mutex_iothread_locked()) {
   2752        qemu_mutex_lock_iothread();
   2753        release_lock = true;
   2754    }
   2755    if (mr->flush_coalesced_mmio) {
   2756        qemu_flush_coalesced_mmio_buffer();
   2757    }
   2758
   2759    return release_lock;
   2760}
   2761
   2762/* Called within RCU critical section.  */
   2763static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
   2764                                           MemTxAttrs attrs,
   2765                                           const void *ptr,
   2766                                           hwaddr len, hwaddr addr1,
   2767                                           hwaddr l, MemoryRegion *mr)
   2768{
   2769    uint8_t *ram_ptr;
   2770    uint64_t val;
   2771    MemTxResult result = MEMTX_OK;
   2772    bool release_lock = false;
   2773    const uint8_t *buf = ptr;
   2774
   2775    for (;;) {
   2776        if (!memory_access_is_direct(mr, true)) {
   2777            release_lock |= prepare_mmio_access(mr);
   2778            l = memory_access_size(mr, l, addr1);
   2779            /* XXX: could force current_cpu to NULL to avoid
   2780               potential bugs */
   2781            val = ldn_he_p(buf, l);
   2782            result |= memory_region_dispatch_write(mr, addr1, val,
   2783                                                   size_memop(l), attrs);
   2784        } else {
   2785            /* RAM case */
   2786            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
   2787            memcpy(ram_ptr, buf, l);
   2788            invalidate_and_set_dirty(mr, addr1, l);
   2789        }
   2790
   2791        if (release_lock) {
   2792            qemu_mutex_unlock_iothread();
   2793            release_lock = false;
   2794        }
   2795
   2796        len -= l;
   2797        buf += l;
   2798        addr += l;
   2799
   2800        if (!len) {
   2801            break;
   2802        }
   2803
   2804        l = len;
   2805        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
   2806    }
   2807
   2808    return result;
   2809}
   2810
   2811/* Called from RCU critical section.  */
   2812static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
   2813                                  const void *buf, hwaddr len)
   2814{
   2815    hwaddr l;
   2816    hwaddr addr1;
   2817    MemoryRegion *mr;
   2818    MemTxResult result = MEMTX_OK;
   2819
   2820    l = len;
   2821    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
   2822    result = flatview_write_continue(fv, addr, attrs, buf, len,
   2823                                     addr1, l, mr);
   2824
   2825    return result;
   2826}
   2827
   2828/* Called within RCU critical section.  */
   2829MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
   2830                                   MemTxAttrs attrs, void *ptr,
   2831                                   hwaddr len, hwaddr addr1, hwaddr l,
   2832                                   MemoryRegion *mr)
   2833{
   2834    uint8_t *ram_ptr;
   2835    uint64_t val;
   2836    MemTxResult result = MEMTX_OK;
   2837    bool release_lock = false;
   2838    uint8_t *buf = ptr;
   2839
   2840    fuzz_dma_read_cb(addr, len, mr);
   2841    for (;;) {
   2842        if (!memory_access_is_direct(mr, false)) {
   2843            /* I/O case */
   2844            release_lock |= prepare_mmio_access(mr);
   2845            l = memory_access_size(mr, l, addr1);
   2846            result |= memory_region_dispatch_read(mr, addr1, &val,
   2847                                                  size_memop(l), attrs);
   2848            stn_he_p(buf, l, val);
   2849        } else {
   2850            /* RAM case */
   2851            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
   2852            memcpy(buf, ram_ptr, l);
   2853        }
   2854
   2855        if (release_lock) {
   2856            qemu_mutex_unlock_iothread();
   2857            release_lock = false;
   2858        }
   2859
   2860        len -= l;
   2861        buf += l;
   2862        addr += l;
   2863
   2864        if (!len) {
   2865            break;
   2866        }
   2867
   2868        l = len;
   2869        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
   2870    }
   2871
   2872    return result;
   2873}
   2874
   2875/* Called from RCU critical section.  */
   2876static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
   2877                                 MemTxAttrs attrs, void *buf, hwaddr len)
   2878{
   2879    hwaddr l;
   2880    hwaddr addr1;
   2881    MemoryRegion *mr;
   2882
   2883    l = len;
   2884    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
   2885    return flatview_read_continue(fv, addr, attrs, buf, len,
   2886                                  addr1, l, mr);
   2887}
   2888
   2889MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
   2890                                    MemTxAttrs attrs, void *buf, hwaddr len)
   2891{
   2892    MemTxResult result = MEMTX_OK;
   2893    FlatView *fv;
   2894
   2895    if (len > 0) {
   2896        RCU_READ_LOCK_GUARD();
   2897        fv = address_space_to_flatview(as);
   2898        result = flatview_read(fv, addr, attrs, buf, len);
   2899    }
   2900
   2901    return result;
   2902}
   2903
   2904MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
   2905                                MemTxAttrs attrs,
   2906                                const void *buf, hwaddr len)
   2907{
   2908    MemTxResult result = MEMTX_OK;
   2909    FlatView *fv;
   2910
   2911    if (len > 0) {
   2912        RCU_READ_LOCK_GUARD();
   2913        fv = address_space_to_flatview(as);
   2914        result = flatview_write(fv, addr, attrs, buf, len);
   2915    }
   2916
   2917    return result;
   2918}
   2919
   2920MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
   2921                             void *buf, hwaddr len, bool is_write)
   2922{
   2923    if (is_write) {
   2924        return address_space_write(as, addr, attrs, buf, len);
   2925    } else {
   2926        return address_space_read_full(as, addr, attrs, buf, len);
   2927    }
   2928}
   2929
   2930void cpu_physical_memory_rw(hwaddr addr, void *buf,
   2931                            hwaddr len, bool is_write)
   2932{
   2933    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
   2934                     buf, len, is_write);
   2935}
   2936
   2937enum write_rom_type {
   2938    WRITE_DATA,
   2939    FLUSH_CACHE,
   2940};
   2941
   2942static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
   2943                                                           hwaddr addr,
   2944                                                           MemTxAttrs attrs,
   2945                                                           const void *ptr,
   2946                                                           hwaddr len,
   2947                                                           enum write_rom_type type)
   2948{
   2949    hwaddr l;
   2950    uint8_t *ram_ptr;
   2951    hwaddr addr1;
   2952    MemoryRegion *mr;
   2953    const uint8_t *buf = ptr;
   2954
   2955    RCU_READ_LOCK_GUARD();
   2956    while (len > 0) {
   2957        l = len;
   2958        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
   2959
   2960        if (!(memory_region_is_ram(mr) ||
   2961              memory_region_is_romd(mr))) {
   2962            l = memory_access_size(mr, l, addr1);
   2963        } else {
   2964            /* ROM/RAM case */
   2965            ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
   2966            switch (type) {
   2967            case WRITE_DATA:
   2968                memcpy(ram_ptr, buf, l);
   2969                invalidate_and_set_dirty(mr, addr1, l);
   2970                break;
   2971            case FLUSH_CACHE:
   2972                flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
   2973                break;
   2974            }
   2975        }
   2976        len -= l;
   2977        buf += l;
   2978        addr += l;
   2979    }
   2980    return MEMTX_OK;
   2981}
   2982
   2983/* used for ROM loading : can write in RAM and ROM */
   2984MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
   2985                                    MemTxAttrs attrs,
   2986                                    const void *buf, hwaddr len)
   2987{
   2988    return address_space_write_rom_internal(as, addr, attrs,
   2989                                            buf, len, WRITE_DATA);
   2990}
   2991
   2992void cpu_flush_icache_range(hwaddr start, hwaddr len)
   2993{
   2994    /*
   2995     * This function should do the same thing as an icache flush that was
   2996     * triggered from within the guest. For TCG we are always cache coherent,
   2997     * so there is no need to flush anything. For KVM / Xen we need to flush
   2998     * the host's instruction cache at least.
   2999     */
   3000    if (tcg_enabled()) {
   3001        return;
   3002    }
   3003
   3004    address_space_write_rom_internal(&address_space_memory,
   3005                                     start, MEMTXATTRS_UNSPECIFIED,
   3006                                     NULL, len, FLUSH_CACHE);
   3007}
   3008
   3009typedef struct {
   3010    MemoryRegion *mr;
   3011    void *buffer;
   3012    hwaddr addr;
   3013    hwaddr len;
   3014    bool in_use;
   3015} BounceBuffer;
   3016
   3017static BounceBuffer bounce;
   3018
   3019typedef struct MapClient {
   3020    QEMUBH *bh;
   3021    QLIST_ENTRY(MapClient) link;
   3022} MapClient;
   3023
   3024QemuMutex map_client_list_lock;
   3025static QLIST_HEAD(, MapClient) map_client_list
   3026    = QLIST_HEAD_INITIALIZER(map_client_list);
   3027
   3028static void cpu_unregister_map_client_do(MapClient *client)
   3029{
   3030    QLIST_REMOVE(client, link);
   3031    g_free(client);
   3032}
   3033
   3034static void cpu_notify_map_clients_locked(void)
   3035{
   3036    MapClient *client;
   3037
   3038    while (!QLIST_EMPTY(&map_client_list)) {
   3039        client = QLIST_FIRST(&map_client_list);
   3040        qemu_bh_schedule(client->bh);
   3041        cpu_unregister_map_client_do(client);
   3042    }
   3043}
   3044
   3045void cpu_register_map_client(QEMUBH *bh)
   3046{
   3047    MapClient *client = g_malloc(sizeof(*client));
   3048
   3049    qemu_mutex_lock(&map_client_list_lock);
   3050    client->bh = bh;
   3051    QLIST_INSERT_HEAD(&map_client_list, client, link);
   3052    if (!qatomic_read(&bounce.in_use)) {
   3053        cpu_notify_map_clients_locked();
   3054    }
   3055    qemu_mutex_unlock(&map_client_list_lock);
   3056}
   3057
   3058void cpu_exec_init_all(void)
   3059{
   3060    qemu_mutex_init(&ram_list.mutex);
   3061    /* The data structures we set up here depend on knowing the page size,
   3062     * so no more changes can be made after this point.
   3063     * In an ideal world, nothing we did before we had finished the
   3064     * machine setup would care about the target page size, and we could
   3065     * do this much later, rather than requiring board models to state
   3066     * up front what their requirements are.
   3067     */
   3068    finalize_target_page_bits();
   3069    io_mem_init();
   3070    memory_map_init();
   3071    qemu_mutex_init(&map_client_list_lock);
   3072}
   3073
   3074void cpu_unregister_map_client(QEMUBH *bh)
   3075{
   3076    MapClient *client;
   3077
   3078    qemu_mutex_lock(&map_client_list_lock);
   3079    QLIST_FOREACH(client, &map_client_list, link) {
   3080        if (client->bh == bh) {
   3081            cpu_unregister_map_client_do(client);
   3082            break;
   3083        }
   3084    }
   3085    qemu_mutex_unlock(&map_client_list_lock);
   3086}
   3087
   3088static void cpu_notify_map_clients(void)
   3089{
   3090    qemu_mutex_lock(&map_client_list_lock);
   3091    cpu_notify_map_clients_locked();
   3092    qemu_mutex_unlock(&map_client_list_lock);
   3093}
   3094
   3095static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
   3096                                  bool is_write, MemTxAttrs attrs)
   3097{
   3098    MemoryRegion *mr;
   3099    hwaddr l, xlat;
   3100
   3101    while (len > 0) {
   3102        l = len;
   3103        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
   3104        if (!memory_access_is_direct(mr, is_write)) {
   3105            l = memory_access_size(mr, l, addr);
   3106            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
   3107                return false;
   3108            }
   3109        }
   3110
   3111        len -= l;
   3112        addr += l;
   3113    }
   3114    return true;
   3115}
   3116
   3117bool address_space_access_valid(AddressSpace *as, hwaddr addr,
   3118                                hwaddr len, bool is_write,
   3119                                MemTxAttrs attrs)
   3120{
   3121    FlatView *fv;
   3122    bool result;
   3123
   3124    RCU_READ_LOCK_GUARD();
   3125    fv = address_space_to_flatview(as);
   3126    result = flatview_access_valid(fv, addr, len, is_write, attrs);
   3127    return result;
   3128}
   3129
   3130static hwaddr
   3131flatview_extend_translation(FlatView *fv, hwaddr addr,
   3132                            hwaddr target_len,
   3133                            MemoryRegion *mr, hwaddr base, hwaddr len,
   3134                            bool is_write, MemTxAttrs attrs)
   3135{
   3136    hwaddr done = 0;
   3137    hwaddr xlat;
   3138    MemoryRegion *this_mr;
   3139
   3140    for (;;) {
   3141        target_len -= len;
   3142        addr += len;
   3143        done += len;
   3144        if (target_len == 0) {
   3145            return done;
   3146        }
   3147
   3148        len = target_len;
   3149        this_mr = flatview_translate(fv, addr, &xlat,
   3150                                     &len, is_write, attrs);
   3151        if (this_mr != mr || xlat != base + done) {
   3152            return done;
   3153        }
   3154    }
   3155}
   3156
   3157/* Map a physical memory region into a host virtual address.
   3158 * May map a subset of the requested range, given by and returned in *plen.
   3159 * May return NULL if resources needed to perform the mapping are exhausted.
   3160 * Use only for reads OR writes - not for read-modify-write operations.
   3161 * Use cpu_register_map_client() to know when retrying the map operation is
   3162 * likely to succeed.
   3163 */
   3164void *address_space_map(AddressSpace *as,
   3165                        hwaddr addr,
   3166                        hwaddr *plen,
   3167                        bool is_write,
   3168                        MemTxAttrs attrs)
   3169{
   3170    hwaddr len = *plen;
   3171    hwaddr l, xlat;
   3172    MemoryRegion *mr;
   3173    void *ptr;
   3174    FlatView *fv;
   3175
   3176    if (len == 0) {
   3177        return NULL;
   3178    }
   3179
   3180    l = len;
   3181    RCU_READ_LOCK_GUARD();
   3182    fv = address_space_to_flatview(as);
   3183    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
   3184
   3185    if (!memory_access_is_direct(mr, is_write)) {
   3186        if (qatomic_xchg(&bounce.in_use, true)) {
   3187            *plen = 0;
   3188            return NULL;
   3189        }
   3190        /* Avoid unbounded allocations */
   3191        l = MIN(l, TARGET_PAGE_SIZE);
   3192        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
   3193        bounce.addr = addr;
   3194        bounce.len = l;
   3195
   3196        memory_region_ref(mr);
   3197        bounce.mr = mr;
   3198        if (!is_write) {
   3199            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
   3200                               bounce.buffer, l);
   3201        }
   3202
   3203        *plen = l;
   3204        return bounce.buffer;
   3205    }
   3206
   3207
   3208    memory_region_ref(mr);
   3209    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
   3210                                        l, is_write, attrs);
   3211    fuzz_dma_read_cb(addr, *plen, mr);
   3212    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
   3213
   3214    return ptr;
   3215}
   3216
   3217/* Unmaps a memory region previously mapped by address_space_map().
   3218 * Will also mark the memory as dirty if is_write is true.  access_len gives
   3219 * the amount of memory that was actually read or written by the caller.
   3220 */
   3221void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
   3222                         bool is_write, hwaddr access_len)
   3223{
   3224    if (buffer != bounce.buffer) {
   3225        MemoryRegion *mr;
   3226        ram_addr_t addr1;
   3227
   3228        mr = memory_region_from_host(buffer, &addr1);
   3229        assert(mr != NULL);
   3230        if (is_write) {
   3231            invalidate_and_set_dirty(mr, addr1, access_len);
   3232        }
   3233        if (xen_enabled()) {
   3234            xen_invalidate_map_cache_entry(buffer);
   3235        }
   3236        memory_region_unref(mr);
   3237        return;
   3238    }
   3239    if (is_write) {
   3240        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
   3241                            bounce.buffer, access_len);
   3242    }
   3243    qemu_vfree(bounce.buffer);
   3244    bounce.buffer = NULL;
   3245    memory_region_unref(bounce.mr);
   3246    qatomic_mb_set(&bounce.in_use, false);
   3247    cpu_notify_map_clients();
   3248}
   3249
   3250void *cpu_physical_memory_map(hwaddr addr,
   3251                              hwaddr *plen,
   3252                              bool is_write)
   3253{
   3254    return address_space_map(&address_space_memory, addr, plen, is_write,
   3255                             MEMTXATTRS_UNSPECIFIED);
   3256}
   3257
   3258void cpu_physical_memory_unmap(void *buffer, hwaddr len,
   3259                               bool is_write, hwaddr access_len)
   3260{
   3261    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
   3262}
   3263
   3264#define ARG1_DECL                AddressSpace *as
   3265#define ARG1                     as
   3266#define SUFFIX
   3267#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
   3268#define RCU_READ_LOCK(...)       rcu_read_lock()
   3269#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
   3270#include "memory_ldst.c.inc"
   3271
   3272int64_t address_space_cache_init(MemoryRegionCache *cache,
   3273                                 AddressSpace *as,
   3274                                 hwaddr addr,
   3275                                 hwaddr len,
   3276                                 bool is_write)
   3277{
   3278    AddressSpaceDispatch *d;
   3279    hwaddr l;
   3280    MemoryRegion *mr;
   3281    Int128 diff;
   3282
   3283    assert(len > 0);
   3284
   3285    l = len;
   3286    cache->fv = address_space_get_flatview(as);
   3287    d = flatview_to_dispatch(cache->fv);
   3288    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
   3289
   3290    /*
   3291     * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
   3292     * Take that into account to compute how many bytes are there between
   3293     * cache->xlat and the end of the section.
   3294     */
   3295    diff = int128_sub(cache->mrs.size,
   3296		      int128_make64(cache->xlat - cache->mrs.offset_within_region));
   3297    l = int128_get64(int128_min(diff, int128_make64(l)));
   3298
   3299    mr = cache->mrs.mr;
   3300    memory_region_ref(mr);
   3301    if (memory_access_is_direct(mr, is_write)) {
   3302        /* We don't care about the memory attributes here as we're only
   3303         * doing this if we found actual RAM, which behaves the same
   3304         * regardless of attributes; so UNSPECIFIED is fine.
   3305         */
   3306        l = flatview_extend_translation(cache->fv, addr, len, mr,
   3307                                        cache->xlat, l, is_write,
   3308                                        MEMTXATTRS_UNSPECIFIED);
   3309        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
   3310    } else {
   3311        cache->ptr = NULL;
   3312    }
   3313
   3314    cache->len = l;
   3315    cache->is_write = is_write;
   3316    return l;
   3317}
   3318
   3319void address_space_cache_invalidate(MemoryRegionCache *cache,
   3320                                    hwaddr addr,
   3321                                    hwaddr access_len)
   3322{
   3323    assert(cache->is_write);
   3324    if (likely(cache->ptr)) {
   3325        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
   3326    }
   3327}
   3328
   3329void address_space_cache_destroy(MemoryRegionCache *cache)
   3330{
   3331    if (!cache->mrs.mr) {
   3332        return;
   3333    }
   3334
   3335    if (xen_enabled()) {
   3336        xen_invalidate_map_cache_entry(cache->ptr);
   3337    }
   3338    memory_region_unref(cache->mrs.mr);
   3339    flatview_unref(cache->fv);
   3340    cache->mrs.mr = NULL;
   3341    cache->fv = NULL;
   3342}
   3343
   3344/* Called from RCU critical section.  This function has the same
   3345 * semantics as address_space_translate, but it only works on a
   3346 * predefined range of a MemoryRegion that was mapped with
   3347 * address_space_cache_init.
   3348 */
   3349static inline MemoryRegion *address_space_translate_cached(
   3350    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
   3351    hwaddr *plen, bool is_write, MemTxAttrs attrs)
   3352{
   3353    MemoryRegionSection section;
   3354    MemoryRegion *mr;
   3355    IOMMUMemoryRegion *iommu_mr;
   3356    AddressSpace *target_as;
   3357
   3358    assert(!cache->ptr);
   3359    *xlat = addr + cache->xlat;
   3360
   3361    mr = cache->mrs.mr;
   3362    iommu_mr = memory_region_get_iommu(mr);
   3363    if (!iommu_mr) {
   3364        /* MMIO region.  */
   3365        return mr;
   3366    }
   3367
   3368    section = address_space_translate_iommu(iommu_mr, xlat, plen,
   3369                                            NULL, is_write, true,
   3370                                            &target_as, attrs);
   3371    return section.mr;
   3372}
   3373
   3374/* Called from RCU critical section. address_space_read_cached uses this
   3375 * out of line function when the target is an MMIO or IOMMU region.
   3376 */
   3377MemTxResult
   3378address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
   3379                                   void *buf, hwaddr len)
   3380{
   3381    hwaddr addr1, l;
   3382    MemoryRegion *mr;
   3383
   3384    l = len;
   3385    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
   3386                                        MEMTXATTRS_UNSPECIFIED);
   3387    return flatview_read_continue(cache->fv,
   3388                                  addr, MEMTXATTRS_UNSPECIFIED, buf, len,
   3389                                  addr1, l, mr);
   3390}
   3391
   3392/* Called from RCU critical section. address_space_write_cached uses this
   3393 * out of line function when the target is an MMIO or IOMMU region.
   3394 */
   3395MemTxResult
   3396address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
   3397                                    const void *buf, hwaddr len)
   3398{
   3399    hwaddr addr1, l;
   3400    MemoryRegion *mr;
   3401
   3402    l = len;
   3403    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
   3404                                        MEMTXATTRS_UNSPECIFIED);
   3405    return flatview_write_continue(cache->fv,
   3406                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
   3407                                   addr1, l, mr);
   3408}
   3409
   3410#define ARG1_DECL                MemoryRegionCache *cache
   3411#define ARG1                     cache
   3412#define SUFFIX                   _cached_slow
   3413#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
   3414#define RCU_READ_LOCK()          ((void)0)
   3415#define RCU_READ_UNLOCK()        ((void)0)
   3416#include "memory_ldst.c.inc"
   3417
   3418/* virtual memory access for debug (includes writing to ROM) */
   3419int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
   3420                        void *ptr, target_ulong len, bool is_write)
   3421{
   3422    hwaddr phys_addr;
   3423    target_ulong l, page;
   3424    uint8_t *buf = ptr;
   3425
   3426    cpu_synchronize_state(cpu);
   3427    while (len > 0) {
   3428        int asidx;
   3429        MemTxAttrs attrs;
   3430        MemTxResult res;
   3431
   3432        page = addr & TARGET_PAGE_MASK;
   3433        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
   3434        asidx = cpu_asidx_from_attrs(cpu, attrs);
   3435        /* if no physical page mapped, return an error */
   3436        if (phys_addr == -1)
   3437            return -1;
   3438        l = (page + TARGET_PAGE_SIZE) - addr;
   3439        if (l > len)
   3440            l = len;
   3441        phys_addr += (addr & ~TARGET_PAGE_MASK);
   3442        if (is_write) {
   3443            res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
   3444                                          attrs, buf, l);
   3445        } else {
   3446            res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
   3447                                     attrs, buf, l);
   3448        }
   3449        if (res != MEMTX_OK) {
   3450            return -1;
   3451        }
   3452        len -= l;
   3453        buf += l;
   3454        addr += l;
   3455    }
   3456    return 0;
   3457}
   3458
   3459/*
   3460 * Allows code that needs to deal with migration bitmaps etc to still be built
   3461 * target independent.
   3462 */
   3463size_t qemu_target_page_size(void)
   3464{
   3465    return TARGET_PAGE_SIZE;
   3466}
   3467
   3468int qemu_target_page_bits(void)
   3469{
   3470    return TARGET_PAGE_BITS;
   3471}
   3472
   3473int qemu_target_page_bits_min(void)
   3474{
   3475    return TARGET_PAGE_BITS_MIN;
   3476}
   3477
   3478bool cpu_physical_memory_is_io(hwaddr phys_addr)
   3479{
   3480    MemoryRegion*mr;
   3481    hwaddr l = 1;
   3482    bool res;
   3483
   3484    RCU_READ_LOCK_GUARD();
   3485    mr = address_space_translate(&address_space_memory,
   3486                                 phys_addr, &phys_addr, &l, false,
   3487                                 MEMTXATTRS_UNSPECIFIED);
   3488
   3489    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
   3490    return res;
   3491}
   3492
   3493int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
   3494{
   3495    RAMBlock *block;
   3496    int ret = 0;
   3497
   3498    RCU_READ_LOCK_GUARD();
   3499    RAMBLOCK_FOREACH(block) {
   3500        ret = func(block, opaque);
   3501        if (ret) {
   3502            break;
   3503        }
   3504    }
   3505    return ret;
   3506}
   3507
   3508/*
   3509 * Unmap pages of memory from start to start+length such that
   3510 * they a) read as 0, b) Trigger whatever fault mechanism
   3511 * the OS provides for postcopy.
   3512 * The pages must be unmapped by the end of the function.
   3513 * Returns: 0 on success, none-0 on failure
   3514 *
   3515 */
   3516int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
   3517{
   3518    int ret = -1;
   3519
   3520    uint8_t *host_startaddr = rb->host + start;
   3521
   3522    if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
   3523        error_report("ram_block_discard_range: Unaligned start address: %p",
   3524                     host_startaddr);
   3525        goto err;
   3526    }
   3527
   3528    if ((start + length) <= rb->max_length) {
   3529        bool need_madvise, need_fallocate;
   3530        if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
   3531            error_report("ram_block_discard_range: Unaligned length: %zx",
   3532                         length);
   3533            goto err;
   3534        }
   3535
   3536        errno = ENOTSUP; /* If we are missing MADVISE etc */
   3537
   3538        /* The logic here is messy;
   3539         *    madvise DONTNEED fails for hugepages
   3540         *    fallocate works on hugepages and shmem
   3541         *    shared anonymous memory requires madvise REMOVE
   3542         */
   3543        need_madvise = (rb->page_size == qemu_host_page_size);
   3544        need_fallocate = rb->fd != -1;
   3545        if (need_fallocate) {
   3546            /* For a file, this causes the area of the file to be zero'd
   3547             * if read, and for hugetlbfs also causes it to be unmapped
   3548             * so a userfault will trigger.
   3549             */
   3550#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
   3551            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
   3552                            start, length);
   3553            if (ret) {
   3554                ret = -errno;
   3555                error_report("ram_block_discard_range: Failed to fallocate "
   3556                             "%s:%" PRIx64 " +%zx (%d)",
   3557                             rb->idstr, start, length, ret);
   3558                goto err;
   3559            }
   3560#else
   3561            ret = -ENOSYS;
   3562            error_report("ram_block_discard_range: fallocate not available/file"
   3563                         "%s:%" PRIx64 " +%zx (%d)",
   3564                         rb->idstr, start, length, ret);
   3565            goto err;
   3566#endif
   3567        }
   3568        if (need_madvise) {
   3569            /* For normal RAM this causes it to be unmapped,
   3570             * for shared memory it causes the local mapping to disappear
   3571             * and to fall back on the file contents (which we just
   3572             * fallocate'd away).
   3573             */
   3574#if defined(CONFIG_MADVISE)
   3575            if (qemu_ram_is_shared(rb) && rb->fd < 0) {
   3576                ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
   3577            } else {
   3578                ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
   3579            }
   3580            if (ret) {
   3581                ret = -errno;
   3582                error_report("ram_block_discard_range: Failed to discard range "
   3583                             "%s:%" PRIx64 " +%zx (%d)",
   3584                             rb->idstr, start, length, ret);
   3585                goto err;
   3586            }
   3587#else
   3588            ret = -ENOSYS;
   3589            error_report("ram_block_discard_range: MADVISE not available"
   3590                         "%s:%" PRIx64 " +%zx (%d)",
   3591                         rb->idstr, start, length, ret);
   3592            goto err;
   3593#endif
   3594        }
   3595        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
   3596                                      need_madvise, need_fallocate, ret);
   3597    } else {
   3598        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
   3599                     "/%zx/" RAM_ADDR_FMT")",
   3600                     rb->idstr, start, length, rb->max_length);
   3601    }
   3602
   3603err:
   3604    return ret;
   3605}
   3606
   3607bool ramblock_is_pmem(RAMBlock *rb)
   3608{
   3609    return rb->flags & RAM_PMEM;
   3610}
   3611
   3612static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
   3613{
   3614    if (start == end - 1) {
   3615        qemu_printf("\t%3d      ", start);
   3616    } else {
   3617        qemu_printf("\t%3d..%-3d ", start, end - 1);
   3618    }
   3619    qemu_printf(" skip=%d ", skip);
   3620    if (ptr == PHYS_MAP_NODE_NIL) {
   3621        qemu_printf(" ptr=NIL");
   3622    } else if (!skip) {
   3623        qemu_printf(" ptr=#%d", ptr);
   3624    } else {
   3625        qemu_printf(" ptr=[%d]", ptr);
   3626    }
   3627    qemu_printf("\n");
   3628}
   3629
   3630#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
   3631                           int128_sub((size), int128_one())) : 0)
   3632
   3633void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
   3634{
   3635    int i;
   3636
   3637    qemu_printf("  Dispatch\n");
   3638    qemu_printf("    Physical sections\n");
   3639
   3640    for (i = 0; i < d->map.sections_nb; ++i) {
   3641        MemoryRegionSection *s = d->map.sections + i;
   3642        const char *names[] = { " [unassigned]", " [not dirty]",
   3643                                " [ROM]", " [watch]" };
   3644
   3645        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
   3646                    " %s%s%s%s%s",
   3647            i,
   3648            s->offset_within_address_space,
   3649            s->offset_within_address_space + MR_SIZE(s->mr->size),
   3650            s->mr->name ? s->mr->name : "(noname)",
   3651            i < ARRAY_SIZE(names) ? names[i] : "",
   3652            s->mr == root ? " [ROOT]" : "",
   3653            s == d->mru_section ? " [MRU]" : "",
   3654            s->mr->is_iommu ? " [iommu]" : "");
   3655
   3656        if (s->mr->alias) {
   3657            qemu_printf(" alias=%s", s->mr->alias->name ?
   3658                    s->mr->alias->name : "noname");
   3659        }
   3660        qemu_printf("\n");
   3661    }
   3662
   3663    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
   3664               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
   3665    for (i = 0; i < d->map.nodes_nb; ++i) {
   3666        int j, jprev;
   3667        PhysPageEntry prev;
   3668        Node *n = d->map.nodes + i;
   3669
   3670        qemu_printf("      [%d]\n", i);
   3671
   3672        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
   3673            PhysPageEntry *pe = *n + j;
   3674
   3675            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
   3676                continue;
   3677            }
   3678
   3679            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
   3680
   3681            jprev = j;
   3682            prev = *pe;
   3683        }
   3684
   3685        if (jprev != ARRAY_SIZE(*n)) {
   3686            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
   3687        }
   3688    }
   3689}
   3690
   3691/* Require any discards to work. */
   3692static unsigned int ram_block_discard_required_cnt;
   3693/* Require only coordinated discards to work. */
   3694static unsigned int ram_block_coordinated_discard_required_cnt;
   3695/* Disable any discards. */
   3696static unsigned int ram_block_discard_disabled_cnt;
   3697/* Disable only uncoordinated discards. */
   3698static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
   3699static QemuMutex ram_block_discard_disable_mutex;
   3700
   3701static void ram_block_discard_disable_mutex_lock(void)
   3702{
   3703    static gsize initialized;
   3704
   3705    if (g_once_init_enter(&initialized)) {
   3706        qemu_mutex_init(&ram_block_discard_disable_mutex);
   3707        g_once_init_leave(&initialized, 1);
   3708    }
   3709    qemu_mutex_lock(&ram_block_discard_disable_mutex);
   3710}
   3711
   3712static void ram_block_discard_disable_mutex_unlock(void)
   3713{
   3714    qemu_mutex_unlock(&ram_block_discard_disable_mutex);
   3715}
   3716
   3717int ram_block_discard_disable(bool state)
   3718{
   3719    int ret = 0;
   3720
   3721    ram_block_discard_disable_mutex_lock();
   3722    if (!state) {
   3723        ram_block_discard_disabled_cnt--;
   3724    } else if (ram_block_discard_required_cnt ||
   3725               ram_block_coordinated_discard_required_cnt) {
   3726        ret = -EBUSY;
   3727    } else {
   3728        ram_block_discard_disabled_cnt++;
   3729    }
   3730    ram_block_discard_disable_mutex_unlock();
   3731    return ret;
   3732}
   3733
   3734int ram_block_uncoordinated_discard_disable(bool state)
   3735{
   3736    int ret = 0;
   3737
   3738    ram_block_discard_disable_mutex_lock();
   3739    if (!state) {
   3740        ram_block_uncoordinated_discard_disabled_cnt--;
   3741    } else if (ram_block_discard_required_cnt) {
   3742        ret = -EBUSY;
   3743    } else {
   3744        ram_block_uncoordinated_discard_disabled_cnt++;
   3745    }
   3746    ram_block_discard_disable_mutex_unlock();
   3747    return ret;
   3748}
   3749
   3750int ram_block_discard_require(bool state)
   3751{
   3752    int ret = 0;
   3753
   3754    ram_block_discard_disable_mutex_lock();
   3755    if (!state) {
   3756        ram_block_discard_required_cnt--;
   3757    } else if (ram_block_discard_disabled_cnt ||
   3758               ram_block_uncoordinated_discard_disabled_cnt) {
   3759        ret = -EBUSY;
   3760    } else {
   3761        ram_block_discard_required_cnt++;
   3762    }
   3763    ram_block_discard_disable_mutex_unlock();
   3764    return ret;
   3765}
   3766
   3767int ram_block_coordinated_discard_require(bool state)
   3768{
   3769    int ret = 0;
   3770
   3771    ram_block_discard_disable_mutex_lock();
   3772    if (!state) {
   3773        ram_block_coordinated_discard_required_cnt--;
   3774    } else if (ram_block_discard_disabled_cnt) {
   3775        ret = -EBUSY;
   3776    } else {
   3777        ram_block_coordinated_discard_required_cnt++;
   3778    }
   3779    ram_block_discard_disable_mutex_unlock();
   3780    return ret;
   3781}
   3782
   3783bool ram_block_discard_is_disabled(void)
   3784{
   3785    return qatomic_read(&ram_block_discard_disabled_cnt) ||
   3786           qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
   3787}
   3788
   3789bool ram_block_discard_is_required(void)
   3790{
   3791    return qatomic_read(&ram_block_discard_required_cnt) ||
   3792           qatomic_read(&ram_block_coordinated_discard_required_cnt);
   3793}