cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

cpu.c (71356B)


      1/*
      2 * QEMU ARM CPU
      3 *
      4 * Copyright (c) 2012 SUSE LINUX Products GmbH
      5 *
      6 * This program is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU General Public License
      8 * as published by the Free Software Foundation; either version 2
      9 * of the License, or (at your option) any later version.
     10 *
     11 * This program is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 * GNU General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU General Public License
     17 * along with this program; if not, see
     18 * <http://www.gnu.org/licenses/gpl-2.0.html>
     19 */
     20
     21#include "qemu/osdep.h"
     22#include "qemu/qemu-print.h"
     23#include "qemu-common.h"
     24#include "target/arm/idau.h"
     25#include "qemu/module.h"
     26#include "qapi/error.h"
     27#include "qapi/visitor.h"
     28#include "cpu.h"
     29#ifdef CONFIG_TCG
     30#include "hw/core/tcg-cpu-ops.h"
     31#endif /* CONFIG_TCG */
     32#include "internals.h"
     33#include "exec/exec-all.h"
     34#include "hw/qdev-properties.h"
     35#if !defined(CONFIG_USER_ONLY)
     36#include "hw/loader.h"
     37#include "hw/boards.h"
     38#endif
     39#include "sysemu/tcg.h"
     40#include "sysemu/hw_accel.h"
     41#include "kvm_arm.h"
     42#include "hvf_arm.h"
     43#include "disas/capstone.h"
     44#include "fpu/softfloat.h"
     45
     46static void arm_cpu_set_pc(CPUState *cs, vaddr value)
     47{
     48    ARMCPU *cpu = ARM_CPU(cs);
     49    CPUARMState *env = &cpu->env;
     50
     51    if (is_a64(env)) {
     52        env->pc = value;
     53        env->thumb = 0;
     54    } else {
     55        env->regs[15] = value & ~1;
     56        env->thumb = value & 1;
     57    }
     58}
     59
     60#ifdef CONFIG_TCG
     61void arm_cpu_synchronize_from_tb(CPUState *cs,
     62                                 const TranslationBlock *tb)
     63{
     64    ARMCPU *cpu = ARM_CPU(cs);
     65    CPUARMState *env = &cpu->env;
     66
     67    /*
     68     * It's OK to look at env for the current mode here, because it's
     69     * never possible for an AArch64 TB to chain to an AArch32 TB.
     70     */
     71    if (is_a64(env)) {
     72        env->pc = tb->pc;
     73    } else {
     74        env->regs[15] = tb->pc;
     75    }
     76}
     77#endif /* CONFIG_TCG */
     78
     79static bool arm_cpu_has_work(CPUState *cs)
     80{
     81    ARMCPU *cpu = ARM_CPU(cs);
     82
     83    return (cpu->power_state != PSCI_OFF)
     84        && cs->interrupt_request &
     85        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
     86         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
     87         | CPU_INTERRUPT_EXITTB);
     88}
     89
     90void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
     91                                 void *opaque)
     92{
     93    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
     94
     95    entry->hook = hook;
     96    entry->opaque = opaque;
     97
     98    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
     99}
    100
    101void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
    102                                 void *opaque)
    103{
    104    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
    105
    106    entry->hook = hook;
    107    entry->opaque = opaque;
    108
    109    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
    110}
    111
    112static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
    113{
    114    /* Reset a single ARMCPRegInfo register */
    115    ARMCPRegInfo *ri = value;
    116    ARMCPU *cpu = opaque;
    117
    118    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
    119        return;
    120    }
    121
    122    if (ri->resetfn) {
    123        ri->resetfn(&cpu->env, ri);
    124        return;
    125    }
    126
    127    /* A zero offset is never possible as it would be regs[0]
    128     * so we use it to indicate that reset is being handled elsewhere.
    129     * This is basically only used for fields in non-core coprocessors
    130     * (like the pxa2xx ones).
    131     */
    132    if (!ri->fieldoffset) {
    133        return;
    134    }
    135
    136    if (cpreg_field_is_64bit(ri)) {
    137        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
    138    } else {
    139        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
    140    }
    141}
    142
    143static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
    144{
    145    /* Purely an assertion check: we've already done reset once,
    146     * so now check that running the reset for the cpreg doesn't
    147     * change its value. This traps bugs where two different cpregs
    148     * both try to reset the same state field but to different values.
    149     */
    150    ARMCPRegInfo *ri = value;
    151    ARMCPU *cpu = opaque;
    152    uint64_t oldvalue, newvalue;
    153
    154    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
    155        return;
    156    }
    157
    158    oldvalue = read_raw_cp_reg(&cpu->env, ri);
    159    cp_reg_reset(key, value, opaque);
    160    newvalue = read_raw_cp_reg(&cpu->env, ri);
    161    assert(oldvalue == newvalue);
    162}
    163
    164static void arm_cpu_reset(DeviceState *dev)
    165{
    166    CPUState *s = CPU(dev);
    167    ARMCPU *cpu = ARM_CPU(s);
    168    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
    169    CPUARMState *env = &cpu->env;
    170
    171    acc->parent_reset(dev);
    172
    173    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
    174
    175    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
    176    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
    177
    178    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
    179    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
    180    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
    181    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
    182
    183    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
    184
    185    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
    186        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
    187    }
    188
    189    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
    190        /* 64 bit CPUs always start in 64 bit mode */
    191        env->aarch64 = 1;
    192#if defined(CONFIG_USER_ONLY)
    193        env->pstate = PSTATE_MODE_EL0t;
    194        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
    195        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
    196        /* Enable all PAC keys.  */
    197        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
    198                                  SCTLR_EnDA | SCTLR_EnDB);
    199        /* and to the FP/Neon instructions */
    200        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
    201        /* and to the SVE instructions */
    202        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
    203        /* with reasonable vector length */
    204        if (cpu_isar_feature(aa64_sve, cpu)) {
    205            env->vfp.zcr_el[1] =
    206                aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
    207        }
    208        /*
    209         * Enable TBI0 but not TBI1.
    210         * Note that this must match useronly_clean_ptr.
    211         */
    212        env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
    213
    214        /* Enable MTE */
    215        if (cpu_isar_feature(aa64_mte, cpu)) {
    216            /* Enable tag access, but leave TCF0 as No Effect (0). */
    217            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
    218            /*
    219             * Exclude all tags, so that tag 0 is always used.
    220             * This corresponds to Linux current->thread.gcr_incl = 0.
    221             *
    222             * Set RRND, so that helper_irg() will generate a seed later.
    223             * Here in cpu_reset(), the crypto subsystem has not yet been
    224             * initialized.
    225             */
    226            env->cp15.gcr_el1 = 0x1ffff;
    227        }
    228#else
    229        /* Reset into the highest available EL */
    230        if (arm_feature(env, ARM_FEATURE_EL3)) {
    231            env->pstate = PSTATE_MODE_EL3h;
    232        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
    233            env->pstate = PSTATE_MODE_EL2h;
    234        } else {
    235            env->pstate = PSTATE_MODE_EL1h;
    236        }
    237        env->pc = cpu->rvbar;
    238#endif
    239    } else {
    240#if defined(CONFIG_USER_ONLY)
    241        /* Userspace expects access to cp10 and cp11 for FP/Neon */
    242        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
    243#endif
    244    }
    245
    246#if defined(CONFIG_USER_ONLY)
    247    env->uncached_cpsr = ARM_CPU_MODE_USR;
    248    /* For user mode we must enable access to coprocessors */
    249    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
    250    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
    251        env->cp15.c15_cpar = 3;
    252    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
    253        env->cp15.c15_cpar = 1;
    254    }
    255#else
    256
    257    /*
    258     * If the highest available EL is EL2, AArch32 will start in Hyp
    259     * mode; otherwise it starts in SVC. Note that if we start in
    260     * AArch64 then these values in the uncached_cpsr will be ignored.
    261     */
    262    if (arm_feature(env, ARM_FEATURE_EL2) &&
    263        !arm_feature(env, ARM_FEATURE_EL3)) {
    264        env->uncached_cpsr = ARM_CPU_MODE_HYP;
    265    } else {
    266        env->uncached_cpsr = ARM_CPU_MODE_SVC;
    267    }
    268    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
    269
    270    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
    271     * executing as AArch32 then check if highvecs are enabled and
    272     * adjust the PC accordingly.
    273     */
    274    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
    275        env->regs[15] = 0xFFFF0000;
    276    }
    277
    278    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
    279#endif
    280
    281    if (arm_feature(env, ARM_FEATURE_M)) {
    282#ifndef CONFIG_USER_ONLY
    283        uint32_t initial_msp; /* Loaded from 0x0 */
    284        uint32_t initial_pc; /* Loaded from 0x4 */
    285        uint8_t *rom;
    286        uint32_t vecbase;
    287#endif
    288
    289        if (cpu_isar_feature(aa32_lob, cpu)) {
    290            /*
    291             * LTPSIZE is constant 4 if MVE not implemented, and resets
    292             * to an UNKNOWN value if MVE is implemented. We choose to
    293             * always reset to 4.
    294             */
    295            env->v7m.ltpsize = 4;
    296            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
    297            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
    298            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
    299        }
    300
    301        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
    302            env->v7m.secure = true;
    303        } else {
    304            /* This bit resets to 0 if security is supported, but 1 if
    305             * it is not. The bit is not present in v7M, but we set it
    306             * here so we can avoid having to make checks on it conditional
    307             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
    308             */
    309            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
    310            /*
    311             * Set NSACR to indicate "NS access permitted to everything";
    312             * this avoids having to have all the tests of it being
    313             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
    314             * v8.1M the guest-visible value of NSACR in a CPU without the
    315             * Security Extension is 0xcff.
    316             */
    317            env->v7m.nsacr = 0xcff;
    318        }
    319
    320        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
    321         * that it resets to 1, so QEMU always does that rather than making
    322         * it dependent on CPU model. In v8M it is RES1.
    323         */
    324        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
    325        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
    326        if (arm_feature(env, ARM_FEATURE_V8)) {
    327            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
    328            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
    329            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
    330        }
    331        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
    332            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
    333            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
    334        }
    335
    336        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
    337            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
    338            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
    339                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
    340        }
    341
    342#ifndef CONFIG_USER_ONLY
    343        /* Unlike A/R profile, M profile defines the reset LR value */
    344        env->regs[14] = 0xffffffff;
    345
    346        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
    347        env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
    348
    349        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
    350        vecbase = env->v7m.vecbase[env->v7m.secure];
    351        rom = rom_ptr_for_as(s->as, vecbase, 8);
    352        if (rom) {
    353            /* Address zero is covered by ROM which hasn't yet been
    354             * copied into physical memory.
    355             */
    356            initial_msp = ldl_p(rom);
    357            initial_pc = ldl_p(rom + 4);
    358        } else {
    359            /* Address zero not covered by a ROM blob, or the ROM blob
    360             * is in non-modifiable memory and this is a second reset after
    361             * it got copied into memory. In the latter case, rom_ptr
    362             * will return a NULL pointer and we should use ldl_phys instead.
    363             */
    364            initial_msp = ldl_phys(s->as, vecbase);
    365            initial_pc = ldl_phys(s->as, vecbase + 4);
    366        }
    367
    368        env->regs[13] = initial_msp & 0xFFFFFFFC;
    369        env->regs[15] = initial_pc & ~1;
    370        env->thumb = initial_pc & 1;
    371#else
    372        /*
    373         * For user mode we run non-secure and with access to the FPU.
    374         * The FPU context is active (ie does not need further setup)
    375         * and is owned by non-secure.
    376         */
    377        env->v7m.secure = false;
    378        env->v7m.nsacr = 0xcff;
    379        env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
    380        env->v7m.fpccr[M_REG_S] &=
    381            ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
    382        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
    383#endif
    384    }
    385
    386    /* M profile requires that reset clears the exclusive monitor;
    387     * A profile does not, but clearing it makes more sense than having it
    388     * set with an exclusive access on address zero.
    389     */
    390    arm_clear_exclusive(env);
    391
    392    if (arm_feature(env, ARM_FEATURE_PMSA)) {
    393        if (cpu->pmsav7_dregion > 0) {
    394            if (arm_feature(env, ARM_FEATURE_V8)) {
    395                memset(env->pmsav8.rbar[M_REG_NS], 0,
    396                       sizeof(*env->pmsav8.rbar[M_REG_NS])
    397                       * cpu->pmsav7_dregion);
    398                memset(env->pmsav8.rlar[M_REG_NS], 0,
    399                       sizeof(*env->pmsav8.rlar[M_REG_NS])
    400                       * cpu->pmsav7_dregion);
    401                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
    402                    memset(env->pmsav8.rbar[M_REG_S], 0,
    403                           sizeof(*env->pmsav8.rbar[M_REG_S])
    404                           * cpu->pmsav7_dregion);
    405                    memset(env->pmsav8.rlar[M_REG_S], 0,
    406                           sizeof(*env->pmsav8.rlar[M_REG_S])
    407                           * cpu->pmsav7_dregion);
    408                }
    409            } else if (arm_feature(env, ARM_FEATURE_V7)) {
    410                memset(env->pmsav7.drbar, 0,
    411                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
    412                memset(env->pmsav7.drsr, 0,
    413                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
    414                memset(env->pmsav7.dracr, 0,
    415                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
    416            }
    417        }
    418        env->pmsav7.rnr[M_REG_NS] = 0;
    419        env->pmsav7.rnr[M_REG_S] = 0;
    420        env->pmsav8.mair0[M_REG_NS] = 0;
    421        env->pmsav8.mair0[M_REG_S] = 0;
    422        env->pmsav8.mair1[M_REG_NS] = 0;
    423        env->pmsav8.mair1[M_REG_S] = 0;
    424    }
    425
    426    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
    427        if (cpu->sau_sregion > 0) {
    428            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
    429            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
    430        }
    431        env->sau.rnr = 0;
    432        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
    433         * the Cortex-M33 does.
    434         */
    435        env->sau.ctrl = 0;
    436    }
    437
    438    set_flush_to_zero(1, &env->vfp.standard_fp_status);
    439    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
    440    set_default_nan_mode(1, &env->vfp.standard_fp_status);
    441    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
    442    set_float_detect_tininess(float_tininess_before_rounding,
    443                              &env->vfp.fp_status);
    444    set_float_detect_tininess(float_tininess_before_rounding,
    445                              &env->vfp.standard_fp_status);
    446    set_float_detect_tininess(float_tininess_before_rounding,
    447                              &env->vfp.fp_status_f16);
    448    set_float_detect_tininess(float_tininess_before_rounding,
    449                              &env->vfp.standard_fp_status_f16);
    450#ifndef CONFIG_USER_ONLY
    451    if (kvm_enabled()) {
    452        kvm_arm_reset_vcpu(cpu);
    453    }
    454#endif
    455
    456    hw_breakpoint_update_all(cpu);
    457    hw_watchpoint_update_all(cpu);
    458    arm_rebuild_hflags(env);
    459}
    460
    461#ifndef CONFIG_USER_ONLY
    462
    463static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
    464                                     unsigned int target_el,
    465                                     unsigned int cur_el, bool secure,
    466                                     uint64_t hcr_el2)
    467{
    468    CPUARMState *env = cs->env_ptr;
    469    bool pstate_unmasked;
    470    bool unmasked = false;
    471
    472    /*
    473     * Don't take exceptions if they target a lower EL.
    474     * This check should catch any exceptions that would not be taken
    475     * but left pending.
    476     */
    477    if (cur_el > target_el) {
    478        return false;
    479    }
    480
    481    switch (excp_idx) {
    482    case EXCP_FIQ:
    483        pstate_unmasked = !(env->daif & PSTATE_F);
    484        break;
    485
    486    case EXCP_IRQ:
    487        pstate_unmasked = !(env->daif & PSTATE_I);
    488        break;
    489
    490    case EXCP_VFIQ:
    491        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
    492            /* VFIQs are only taken when hypervized.  */
    493            return false;
    494        }
    495        return !(env->daif & PSTATE_F);
    496    case EXCP_VIRQ:
    497        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
    498            /* VIRQs are only taken when hypervized.  */
    499            return false;
    500        }
    501        return !(env->daif & PSTATE_I);
    502    default:
    503        g_assert_not_reached();
    504    }
    505
    506    /*
    507     * Use the target EL, current execution state and SCR/HCR settings to
    508     * determine whether the corresponding CPSR bit is used to mask the
    509     * interrupt.
    510     */
    511    if ((target_el > cur_el) && (target_el != 1)) {
    512        /* Exceptions targeting a higher EL may not be maskable */
    513        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
    514            /*
    515             * 64-bit masking rules are simple: exceptions to EL3
    516             * can't be masked, and exceptions to EL2 can only be
    517             * masked from Secure state. The HCR and SCR settings
    518             * don't affect the masking logic, only the interrupt routing.
    519             */
    520            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
    521                unmasked = true;
    522            }
    523        } else {
    524            /*
    525             * The old 32-bit-only environment has a more complicated
    526             * masking setup. HCR and SCR bits not only affect interrupt
    527             * routing but also change the behaviour of masking.
    528             */
    529            bool hcr, scr;
    530
    531            switch (excp_idx) {
    532            case EXCP_FIQ:
    533                /*
    534                 * If FIQs are routed to EL3 or EL2 then there are cases where
    535                 * we override the CPSR.F in determining if the exception is
    536                 * masked or not. If neither of these are set then we fall back
    537                 * to the CPSR.F setting otherwise we further assess the state
    538                 * below.
    539                 */
    540                hcr = hcr_el2 & HCR_FMO;
    541                scr = (env->cp15.scr_el3 & SCR_FIQ);
    542
    543                /*
    544                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
    545                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
    546                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
    547                 * when non-secure but only when FIQs are only routed to EL3.
    548                 */
    549                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
    550                break;
    551            case EXCP_IRQ:
    552                /*
    553                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
    554                 * we may override the CPSR.I masking when in non-secure state.
    555                 * The SCR.IRQ setting has already been taken into consideration
    556                 * when setting the target EL, so it does not have a further
    557                 * affect here.
    558                 */
    559                hcr = hcr_el2 & HCR_IMO;
    560                scr = false;
    561                break;
    562            default:
    563                g_assert_not_reached();
    564            }
    565
    566            if ((scr || hcr) && !secure) {
    567                unmasked = true;
    568            }
    569        }
    570    }
    571
    572    /*
    573     * The PSTATE bits only mask the interrupt if we have not overriden the
    574     * ability above.
    575     */
    576    return unmasked || pstate_unmasked;
    577}
    578
    579static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
    580{
    581    CPUClass *cc = CPU_GET_CLASS(cs);
    582    CPUARMState *env = cs->env_ptr;
    583    uint32_t cur_el = arm_current_el(env);
    584    bool secure = arm_is_secure(env);
    585    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
    586    uint32_t target_el;
    587    uint32_t excp_idx;
    588
    589    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
    590
    591    if (interrupt_request & CPU_INTERRUPT_FIQ) {
    592        excp_idx = EXCP_FIQ;
    593        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
    594        if (arm_excp_unmasked(cs, excp_idx, target_el,
    595                              cur_el, secure, hcr_el2)) {
    596            goto found;
    597        }
    598    }
    599    if (interrupt_request & CPU_INTERRUPT_HARD) {
    600        excp_idx = EXCP_IRQ;
    601        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
    602        if (arm_excp_unmasked(cs, excp_idx, target_el,
    603                              cur_el, secure, hcr_el2)) {
    604            goto found;
    605        }
    606    }
    607    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
    608        excp_idx = EXCP_VIRQ;
    609        target_el = 1;
    610        if (arm_excp_unmasked(cs, excp_idx, target_el,
    611                              cur_el, secure, hcr_el2)) {
    612            goto found;
    613        }
    614    }
    615    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
    616        excp_idx = EXCP_VFIQ;
    617        target_el = 1;
    618        if (arm_excp_unmasked(cs, excp_idx, target_el,
    619                              cur_el, secure, hcr_el2)) {
    620            goto found;
    621        }
    622    }
    623    return false;
    624
    625 found:
    626    cs->exception_index = excp_idx;
    627    env->exception.target_el = target_el;
    628    cc->tcg_ops->do_interrupt(cs);
    629    return true;
    630}
    631#endif /* !CONFIG_USER_ONLY */
    632
    633void arm_cpu_update_virq(ARMCPU *cpu)
    634{
    635    /*
    636     * Update the interrupt level for VIRQ, which is the logical OR of
    637     * the HCR_EL2.VI bit and the input line level from the GIC.
    638     */
    639    CPUARMState *env = &cpu->env;
    640    CPUState *cs = CPU(cpu);
    641
    642    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
    643        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
    644
    645    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
    646        if (new_state) {
    647            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
    648        } else {
    649            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
    650        }
    651    }
    652}
    653
    654void arm_cpu_update_vfiq(ARMCPU *cpu)
    655{
    656    /*
    657     * Update the interrupt level for VFIQ, which is the logical OR of
    658     * the HCR_EL2.VF bit and the input line level from the GIC.
    659     */
    660    CPUARMState *env = &cpu->env;
    661    CPUState *cs = CPU(cpu);
    662
    663    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
    664        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
    665
    666    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
    667        if (new_state) {
    668            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
    669        } else {
    670            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
    671        }
    672    }
    673}
    674
    675#ifndef CONFIG_USER_ONLY
    676static void arm_cpu_set_irq(void *opaque, int irq, int level)
    677{
    678    ARMCPU *cpu = opaque;
    679    CPUARMState *env = &cpu->env;
    680    CPUState *cs = CPU(cpu);
    681    static const int mask[] = {
    682        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
    683        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
    684        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
    685        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
    686    };
    687
    688    if (level) {
    689        env->irq_line_state |= mask[irq];
    690    } else {
    691        env->irq_line_state &= ~mask[irq];
    692    }
    693
    694    switch (irq) {
    695    case ARM_CPU_VIRQ:
    696        assert(arm_feature(env, ARM_FEATURE_EL2));
    697        arm_cpu_update_virq(cpu);
    698        break;
    699    case ARM_CPU_VFIQ:
    700        assert(arm_feature(env, ARM_FEATURE_EL2));
    701        arm_cpu_update_vfiq(cpu);
    702        break;
    703    case ARM_CPU_IRQ:
    704    case ARM_CPU_FIQ:
    705        if (level) {
    706            cpu_interrupt(cs, mask[irq]);
    707        } else {
    708            cpu_reset_interrupt(cs, mask[irq]);
    709        }
    710        break;
    711    default:
    712        g_assert_not_reached();
    713    }
    714}
    715
    716static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
    717{
    718#ifdef CONFIG_KVM
    719    ARMCPU *cpu = opaque;
    720    CPUARMState *env = &cpu->env;
    721    CPUState *cs = CPU(cpu);
    722    uint32_t linestate_bit;
    723    int irq_id;
    724
    725    switch (irq) {
    726    case ARM_CPU_IRQ:
    727        irq_id = KVM_ARM_IRQ_CPU_IRQ;
    728        linestate_bit = CPU_INTERRUPT_HARD;
    729        break;
    730    case ARM_CPU_FIQ:
    731        irq_id = KVM_ARM_IRQ_CPU_FIQ;
    732        linestate_bit = CPU_INTERRUPT_FIQ;
    733        break;
    734    default:
    735        g_assert_not_reached();
    736    }
    737
    738    if (level) {
    739        env->irq_line_state |= linestate_bit;
    740    } else {
    741        env->irq_line_state &= ~linestate_bit;
    742    }
    743    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
    744#endif
    745}
    746
    747static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
    748{
    749    ARMCPU *cpu = ARM_CPU(cs);
    750    CPUARMState *env = &cpu->env;
    751
    752    cpu_synchronize_state(cs);
    753    return arm_cpu_data_is_big_endian(env);
    754}
    755
    756#endif
    757
    758static int
    759print_insn_thumb1(bfd_vma pc, disassemble_info *info)
    760{
    761  return print_insn_arm(pc | 1, info);
    762}
    763
    764static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
    765{
    766    ARMCPU *ac = ARM_CPU(cpu);
    767    CPUARMState *env = &ac->env;
    768    bool sctlr_b;
    769
    770    if (is_a64(env)) {
    771        /* We might not be compiled with the A64 disassembler
    772         * because it needs a C++ compiler. Leave print_insn
    773         * unset in this case to use the caller default behaviour.
    774         */
    775#if defined(CONFIG_ARM_A64_DIS)
    776        info->print_insn = print_insn_arm_a64;
    777#endif
    778        info->cap_arch = CS_ARCH_ARM64;
    779        info->cap_insn_unit = 4;
    780        info->cap_insn_split = 4;
    781    } else {
    782        int cap_mode;
    783        if (env->thumb) {
    784            info->print_insn = print_insn_thumb1;
    785            info->cap_insn_unit = 2;
    786            info->cap_insn_split = 4;
    787            cap_mode = CS_MODE_THUMB;
    788        } else {
    789            info->print_insn = print_insn_arm;
    790            info->cap_insn_unit = 4;
    791            info->cap_insn_split = 4;
    792            cap_mode = CS_MODE_ARM;
    793        }
    794        if (arm_feature(env, ARM_FEATURE_V8)) {
    795            cap_mode |= CS_MODE_V8;
    796        }
    797        if (arm_feature(env, ARM_FEATURE_M)) {
    798            cap_mode |= CS_MODE_MCLASS;
    799        }
    800        info->cap_arch = CS_ARCH_ARM;
    801        info->cap_mode = cap_mode;
    802    }
    803
    804    sctlr_b = arm_sctlr_b(env);
    805    if (bswap_code(sctlr_b)) {
    806#ifdef TARGET_WORDS_BIGENDIAN
    807        info->endian = BFD_ENDIAN_LITTLE;
    808#else
    809        info->endian = BFD_ENDIAN_BIG;
    810#endif
    811    }
    812    info->flags &= ~INSN_ARM_BE32;
    813#ifndef CONFIG_USER_ONLY
    814    if (sctlr_b) {
    815        info->flags |= INSN_ARM_BE32;
    816    }
    817#endif
    818}
    819
    820#ifdef TARGET_AARCH64
    821
    822static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
    823{
    824    ARMCPU *cpu = ARM_CPU(cs);
    825    CPUARMState *env = &cpu->env;
    826    uint32_t psr = pstate_read(env);
    827    int i;
    828    int el = arm_current_el(env);
    829    const char *ns_status;
    830
    831    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
    832    for (i = 0; i < 32; i++) {
    833        if (i == 31) {
    834            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
    835        } else {
    836            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
    837                         (i + 2) % 3 ? " " : "\n");
    838        }
    839    }
    840
    841    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
    842        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
    843    } else {
    844        ns_status = "";
    845    }
    846    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
    847                 psr,
    848                 psr & PSTATE_N ? 'N' : '-',
    849                 psr & PSTATE_Z ? 'Z' : '-',
    850                 psr & PSTATE_C ? 'C' : '-',
    851                 psr & PSTATE_V ? 'V' : '-',
    852                 ns_status,
    853                 el,
    854                 psr & PSTATE_SP ? 'h' : 't');
    855
    856    if (cpu_isar_feature(aa64_bti, cpu)) {
    857        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
    858    }
    859    if (!(flags & CPU_DUMP_FPU)) {
    860        qemu_fprintf(f, "\n");
    861        return;
    862    }
    863    if (fp_exception_el(env, el) != 0) {
    864        qemu_fprintf(f, "    FPU disabled\n");
    865        return;
    866    }
    867    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
    868                 vfp_get_fpcr(env), vfp_get_fpsr(env));
    869
    870    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
    871        int j, zcr_len = sve_zcr_len_for_el(env, el);
    872
    873        for (i = 0; i <= FFR_PRED_NUM; i++) {
    874            bool eol;
    875            if (i == FFR_PRED_NUM) {
    876                qemu_fprintf(f, "FFR=");
    877                /* It's last, so end the line.  */
    878                eol = true;
    879            } else {
    880                qemu_fprintf(f, "P%02d=", i);
    881                switch (zcr_len) {
    882                case 0:
    883                    eol = i % 8 == 7;
    884                    break;
    885                case 1:
    886                    eol = i % 6 == 5;
    887                    break;
    888                case 2:
    889                case 3:
    890                    eol = i % 3 == 2;
    891                    break;
    892                default:
    893                    /* More than one quadword per predicate.  */
    894                    eol = true;
    895                    break;
    896                }
    897            }
    898            for (j = zcr_len / 4; j >= 0; j--) {
    899                int digits;
    900                if (j * 4 + 4 <= zcr_len + 1) {
    901                    digits = 16;
    902                } else {
    903                    digits = (zcr_len % 4 + 1) * 4;
    904                }
    905                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
    906                             env->vfp.pregs[i].p[j],
    907                             j ? ":" : eol ? "\n" : " ");
    908            }
    909        }
    910
    911        for (i = 0; i < 32; i++) {
    912            if (zcr_len == 0) {
    913                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
    914                             i, env->vfp.zregs[i].d[1],
    915                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
    916            } else if (zcr_len == 1) {
    917                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
    918                             ":%016" PRIx64 ":%016" PRIx64 "\n",
    919                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
    920                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
    921            } else {
    922                for (j = zcr_len; j >= 0; j--) {
    923                    bool odd = (zcr_len - j) % 2 != 0;
    924                    if (j == zcr_len) {
    925                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
    926                    } else if (!odd) {
    927                        if (j > 0) {
    928                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
    929                        } else {
    930                            qemu_fprintf(f, "     [%x]=", j);
    931                        }
    932                    }
    933                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
    934                                 env->vfp.zregs[i].d[j * 2 + 1],
    935                                 env->vfp.zregs[i].d[j * 2],
    936                                 odd || j == 0 ? "\n" : ":");
    937                }
    938            }
    939        }
    940    } else {
    941        for (i = 0; i < 32; i++) {
    942            uint64_t *q = aa64_vfp_qreg(env, i);
    943            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
    944                         i, q[1], q[0], (i & 1 ? "\n" : " "));
    945        }
    946    }
    947}
    948
    949#else
    950
    951static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
    952{
    953    g_assert_not_reached();
    954}
    955
    956#endif
    957
    958static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
    959{
    960    ARMCPU *cpu = ARM_CPU(cs);
    961    CPUARMState *env = &cpu->env;
    962    int i;
    963
    964    if (is_a64(env)) {
    965        aarch64_cpu_dump_state(cs, f, flags);
    966        return;
    967    }
    968
    969    for (i = 0; i < 16; i++) {
    970        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
    971        if ((i % 4) == 3) {
    972            qemu_fprintf(f, "\n");
    973        } else {
    974            qemu_fprintf(f, " ");
    975        }
    976    }
    977
    978    if (arm_feature(env, ARM_FEATURE_M)) {
    979        uint32_t xpsr = xpsr_read(env);
    980        const char *mode;
    981        const char *ns_status = "";
    982
    983        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
    984            ns_status = env->v7m.secure ? "S " : "NS ";
    985        }
    986
    987        if (xpsr & XPSR_EXCP) {
    988            mode = "handler";
    989        } else {
    990            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
    991                mode = "unpriv-thread";
    992            } else {
    993                mode = "priv-thread";
    994            }
    995        }
    996
    997        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
    998                     xpsr,
    999                     xpsr & XPSR_N ? 'N' : '-',
   1000                     xpsr & XPSR_Z ? 'Z' : '-',
   1001                     xpsr & XPSR_C ? 'C' : '-',
   1002                     xpsr & XPSR_V ? 'V' : '-',
   1003                     xpsr & XPSR_T ? 'T' : 'A',
   1004                     ns_status,
   1005                     mode);
   1006    } else {
   1007        uint32_t psr = cpsr_read(env);
   1008        const char *ns_status = "";
   1009
   1010        if (arm_feature(env, ARM_FEATURE_EL3) &&
   1011            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
   1012            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
   1013        }
   1014
   1015        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
   1016                     psr,
   1017                     psr & CPSR_N ? 'N' : '-',
   1018                     psr & CPSR_Z ? 'Z' : '-',
   1019                     psr & CPSR_C ? 'C' : '-',
   1020                     psr & CPSR_V ? 'V' : '-',
   1021                     psr & CPSR_T ? 'T' : 'A',
   1022                     ns_status,
   1023                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
   1024    }
   1025
   1026    if (flags & CPU_DUMP_FPU) {
   1027        int numvfpregs = 0;
   1028        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
   1029            numvfpregs = 32;
   1030        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
   1031            numvfpregs = 16;
   1032        }
   1033        for (i = 0; i < numvfpregs; i++) {
   1034            uint64_t v = *aa32_vfp_dreg(env, i);
   1035            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
   1036                         i * 2, (uint32_t)v,
   1037                         i * 2 + 1, (uint32_t)(v >> 32),
   1038                         i, v);
   1039        }
   1040        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
   1041        if (cpu_isar_feature(aa32_mve, cpu)) {
   1042            qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
   1043        }
   1044    }
   1045}
   1046
   1047uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
   1048{
   1049    uint32_t Aff1 = idx / clustersz;
   1050    uint32_t Aff0 = idx % clustersz;
   1051    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
   1052}
   1053
   1054static void cpreg_hashtable_data_destroy(gpointer data)
   1055{
   1056    /*
   1057     * Destroy function for cpu->cp_regs hashtable data entries.
   1058     * We must free the name string because it was g_strdup()ed in
   1059     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
   1060     * from r->name because we know we definitely allocated it.
   1061     */
   1062    ARMCPRegInfo *r = data;
   1063
   1064    g_free((void *)r->name);
   1065    g_free(r);
   1066}
   1067
   1068static void arm_cpu_initfn(Object *obj)
   1069{
   1070    ARMCPU *cpu = ARM_CPU(obj);
   1071
   1072    cpu_set_cpustate_pointers(cpu);
   1073    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
   1074                                         g_free, cpreg_hashtable_data_destroy);
   1075
   1076    QLIST_INIT(&cpu->pre_el_change_hooks);
   1077    QLIST_INIT(&cpu->el_change_hooks);
   1078
   1079#ifdef CONFIG_USER_ONLY
   1080# ifdef TARGET_AARCH64
   1081    /*
   1082     * The linux kernel defaults to 512-bit vectors, when sve is supported.
   1083     * See documentation for /proc/sys/abi/sve_default_vector_length, and
   1084     * our corresponding sve-default-vector-length cpu property.
   1085     */
   1086    cpu->sve_default_vq = 4;
   1087# endif
   1088#else
   1089    /* Our inbound IRQ and FIQ lines */
   1090    if (kvm_enabled()) {
   1091        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
   1092         * the same interface as non-KVM CPUs.
   1093         */
   1094        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
   1095    } else {
   1096        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
   1097    }
   1098
   1099    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
   1100                       ARRAY_SIZE(cpu->gt_timer_outputs));
   1101
   1102    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
   1103                             "gicv3-maintenance-interrupt", 1);
   1104    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
   1105                             "pmu-interrupt", 1);
   1106#endif
   1107
   1108    /* DTB consumers generally don't in fact care what the 'compatible'
   1109     * string is, so always provide some string and trust that a hypothetical
   1110     * picky DTB consumer will also provide a helpful error message.
   1111     */
   1112    cpu->dtb_compatible = "qemu,unknown";
   1113    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
   1114    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
   1115
   1116    if (tcg_enabled() || hvf_enabled()) {
   1117        cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */
   1118    }
   1119}
   1120
   1121static Property arm_cpu_gt_cntfrq_property =
   1122            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
   1123                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
   1124
   1125static Property arm_cpu_reset_cbar_property =
   1126            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
   1127
   1128static Property arm_cpu_reset_hivecs_property =
   1129            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
   1130
   1131static Property arm_cpu_rvbar_property =
   1132            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
   1133
   1134#ifndef CONFIG_USER_ONLY
   1135static Property arm_cpu_has_el2_property =
   1136            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
   1137
   1138static Property arm_cpu_has_el3_property =
   1139            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
   1140#endif
   1141
   1142static Property arm_cpu_cfgend_property =
   1143            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
   1144
   1145static Property arm_cpu_has_vfp_property =
   1146            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
   1147
   1148static Property arm_cpu_has_neon_property =
   1149            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
   1150
   1151static Property arm_cpu_has_dsp_property =
   1152            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
   1153
   1154static Property arm_cpu_has_mpu_property =
   1155            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
   1156
   1157/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
   1158 * because the CPU initfn will have already set cpu->pmsav7_dregion to
   1159 * the right value for that particular CPU type, and we don't want
   1160 * to override that with an incorrect constant value.
   1161 */
   1162static Property arm_cpu_pmsav7_dregion_property =
   1163            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
   1164                                           pmsav7_dregion,
   1165                                           qdev_prop_uint32, uint32_t);
   1166
   1167static bool arm_get_pmu(Object *obj, Error **errp)
   1168{
   1169    ARMCPU *cpu = ARM_CPU(obj);
   1170
   1171    return cpu->has_pmu;
   1172}
   1173
   1174static void arm_set_pmu(Object *obj, bool value, Error **errp)
   1175{
   1176    ARMCPU *cpu = ARM_CPU(obj);
   1177
   1178    if (value) {
   1179        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
   1180            error_setg(errp, "'pmu' feature not supported by KVM on this host");
   1181            return;
   1182        }
   1183        set_feature(&cpu->env, ARM_FEATURE_PMU);
   1184    } else {
   1185        unset_feature(&cpu->env, ARM_FEATURE_PMU);
   1186    }
   1187    cpu->has_pmu = value;
   1188}
   1189
   1190unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
   1191{
   1192    /*
   1193     * The exact approach to calculating guest ticks is:
   1194     *
   1195     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
   1196     *              NANOSECONDS_PER_SECOND);
   1197     *
   1198     * We don't do that. Rather we intentionally use integer division
   1199     * truncation below and in the caller for the conversion of host monotonic
   1200     * time to guest ticks to provide the exact inverse for the semantics of
   1201     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
   1202     * it loses precision when representing frequencies where
   1203     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
   1204     * provide an exact inverse leads to scheduling timers with negative
   1205     * periods, which in turn leads to sticky behaviour in the guest.
   1206     *
   1207     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
   1208     * cannot become zero.
   1209     */
   1210    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
   1211      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
   1212}
   1213
   1214void arm_cpu_post_init(Object *obj)
   1215{
   1216    ARMCPU *cpu = ARM_CPU(obj);
   1217
   1218    /* M profile implies PMSA. We have to do this here rather than
   1219     * in realize with the other feature-implication checks because
   1220     * we look at the PMSA bit to see if we should add some properties.
   1221     */
   1222    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
   1223        set_feature(&cpu->env, ARM_FEATURE_PMSA);
   1224    }
   1225
   1226    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
   1227        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
   1228        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
   1229    }
   1230
   1231    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
   1232        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
   1233    }
   1234
   1235    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
   1236        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
   1237    }
   1238
   1239#ifndef CONFIG_USER_ONLY
   1240    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
   1241        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
   1242         * prevent "has_el3" from existing on CPUs which cannot support EL3.
   1243         */
   1244        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
   1245
   1246        object_property_add_link(obj, "secure-memory",
   1247                                 TYPE_MEMORY_REGION,
   1248                                 (Object **)&cpu->secure_memory,
   1249                                 qdev_prop_allow_set_link_before_realize,
   1250                                 OBJ_PROP_LINK_STRONG);
   1251    }
   1252
   1253    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
   1254        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
   1255    }
   1256#endif
   1257
   1258    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
   1259        cpu->has_pmu = true;
   1260        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
   1261    }
   1262
   1263    /*
   1264     * Allow user to turn off VFP and Neon support, but only for TCG --
   1265     * KVM does not currently allow us to lie to the guest about its
   1266     * ID/feature registers, so the guest always sees what the host has.
   1267     */
   1268    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
   1269        ? cpu_isar_feature(aa64_fp_simd, cpu)
   1270        : cpu_isar_feature(aa32_vfp, cpu)) {
   1271        cpu->has_vfp = true;
   1272        if (!kvm_enabled()) {
   1273            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
   1274        }
   1275    }
   1276
   1277    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
   1278        cpu->has_neon = true;
   1279        if (!kvm_enabled()) {
   1280            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
   1281        }
   1282    }
   1283
   1284    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
   1285        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
   1286        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
   1287    }
   1288
   1289    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
   1290        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
   1291        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1292            qdev_property_add_static(DEVICE(obj),
   1293                                     &arm_cpu_pmsav7_dregion_property);
   1294        }
   1295    }
   1296
   1297    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
   1298        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
   1299                                 qdev_prop_allow_set_link_before_realize,
   1300                                 OBJ_PROP_LINK_STRONG);
   1301        /*
   1302         * M profile: initial value of the Secure VTOR. We can't just use
   1303         * a simple DEFINE_PROP_UINT32 for this because we want to permit
   1304         * the property to be set after realize.
   1305         */
   1306        object_property_add_uint32_ptr(obj, "init-svtor",
   1307                                       &cpu->init_svtor,
   1308                                       OBJ_PROP_FLAG_READWRITE);
   1309    }
   1310    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
   1311        /*
   1312         * Initial value of the NS VTOR (for cores without the Security
   1313         * extension, this is the only VTOR)
   1314         */
   1315        object_property_add_uint32_ptr(obj, "init-nsvtor",
   1316                                       &cpu->init_nsvtor,
   1317                                       OBJ_PROP_FLAG_READWRITE);
   1318    }
   1319
   1320    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
   1321
   1322    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
   1323        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
   1324    }
   1325
   1326    if (kvm_enabled()) {
   1327        kvm_arm_add_vcpu_properties(obj);
   1328    }
   1329
   1330#ifndef CONFIG_USER_ONLY
   1331    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
   1332        cpu_isar_feature(aa64_mte, cpu)) {
   1333        object_property_add_link(obj, "tag-memory",
   1334                                 TYPE_MEMORY_REGION,
   1335                                 (Object **)&cpu->tag_memory,
   1336                                 qdev_prop_allow_set_link_before_realize,
   1337                                 OBJ_PROP_LINK_STRONG);
   1338
   1339        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
   1340            object_property_add_link(obj, "secure-tag-memory",
   1341                                     TYPE_MEMORY_REGION,
   1342                                     (Object **)&cpu->secure_tag_memory,
   1343                                     qdev_prop_allow_set_link_before_realize,
   1344                                     OBJ_PROP_LINK_STRONG);
   1345        }
   1346    }
   1347#endif
   1348}
   1349
   1350static void arm_cpu_finalizefn(Object *obj)
   1351{
   1352    ARMCPU *cpu = ARM_CPU(obj);
   1353    ARMELChangeHook *hook, *next;
   1354
   1355    g_hash_table_destroy(cpu->cp_regs);
   1356
   1357    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
   1358        QLIST_REMOVE(hook, node);
   1359        g_free(hook);
   1360    }
   1361    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
   1362        QLIST_REMOVE(hook, node);
   1363        g_free(hook);
   1364    }
   1365#ifndef CONFIG_USER_ONLY
   1366    if (cpu->pmu_timer) {
   1367        timer_free(cpu->pmu_timer);
   1368    }
   1369#endif
   1370}
   1371
   1372void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
   1373{
   1374    Error *local_err = NULL;
   1375
   1376    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
   1377        arm_cpu_sve_finalize(cpu, &local_err);
   1378        if (local_err != NULL) {
   1379            error_propagate(errp, local_err);
   1380            return;
   1381        }
   1382
   1383        /*
   1384         * KVM does not support modifications to this feature.
   1385         * We have not registered the cpu properties when KVM
   1386         * is in use, so the user will not be able to set them.
   1387         */
   1388        if (!kvm_enabled()) {
   1389            arm_cpu_pauth_finalize(cpu, &local_err);
   1390            if (local_err != NULL) {
   1391                error_propagate(errp, local_err);
   1392                return;
   1393            }
   1394        }
   1395    }
   1396
   1397    if (kvm_enabled()) {
   1398        kvm_arm_steal_time_finalize(cpu, &local_err);
   1399        if (local_err != NULL) {
   1400            error_propagate(errp, local_err);
   1401            return;
   1402        }
   1403    }
   1404}
   1405
   1406static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
   1407{
   1408    CPUState *cs = CPU(dev);
   1409    ARMCPU *cpu = ARM_CPU(dev);
   1410    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
   1411    CPUARMState *env = &cpu->env;
   1412    int pagebits;
   1413    Error *local_err = NULL;
   1414    bool no_aa32 = false;
   1415
   1416    /* If we needed to query the host kernel for the CPU features
   1417     * then it's possible that might have failed in the initfn, but
   1418     * this is the first point where we can report it.
   1419     */
   1420    if (cpu->host_cpu_probe_failed) {
   1421        if (!kvm_enabled() && !hvf_enabled()) {
   1422            error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
   1423        } else {
   1424            error_setg(errp, "Failed to retrieve host CPU features");
   1425        }
   1426        return;
   1427    }
   1428
   1429#ifndef CONFIG_USER_ONLY
   1430    /* The NVIC and M-profile CPU are two halves of a single piece of
   1431     * hardware; trying to use one without the other is a command line
   1432     * error and will result in segfaults if not caught here.
   1433     */
   1434    if (arm_feature(env, ARM_FEATURE_M)) {
   1435        if (!env->nvic) {
   1436            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
   1437            return;
   1438        }
   1439    } else {
   1440        if (env->nvic) {
   1441            error_setg(errp, "This board can only be used with Cortex-M CPUs");
   1442            return;
   1443        }
   1444    }
   1445
   1446    if (kvm_enabled()) {
   1447        /*
   1448         * Catch all the cases which might cause us to create more than one
   1449         * address space for the CPU (otherwise we will assert() later in
   1450         * cpu_address_space_init()).
   1451         */
   1452        if (arm_feature(env, ARM_FEATURE_M)) {
   1453            error_setg(errp,
   1454                       "Cannot enable KVM when using an M-profile guest CPU");
   1455            return;
   1456        }
   1457        if (cpu->has_el3) {
   1458            error_setg(errp,
   1459                       "Cannot enable KVM when guest CPU has EL3 enabled");
   1460            return;
   1461        }
   1462        if (cpu->tag_memory) {
   1463            error_setg(errp,
   1464                       "Cannot enable KVM when guest CPUs has MTE enabled");
   1465            return;
   1466        }
   1467    }
   1468
   1469    {
   1470        uint64_t scale;
   1471
   1472        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
   1473            if (!cpu->gt_cntfrq_hz) {
   1474                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
   1475                           cpu->gt_cntfrq_hz);
   1476                return;
   1477            }
   1478            scale = gt_cntfrq_period_ns(cpu);
   1479        } else {
   1480            scale = GTIMER_SCALE;
   1481        }
   1482
   1483        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1484                                               arm_gt_ptimer_cb, cpu);
   1485        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1486                                               arm_gt_vtimer_cb, cpu);
   1487        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1488                                              arm_gt_htimer_cb, cpu);
   1489        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1490                                              arm_gt_stimer_cb, cpu);
   1491        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
   1492                                                  arm_gt_hvtimer_cb, cpu);
   1493    }
   1494#endif
   1495
   1496    cpu_exec_realizefn(cs, &local_err);
   1497    if (local_err != NULL) {
   1498        error_propagate(errp, local_err);
   1499        return;
   1500    }
   1501
   1502    arm_cpu_finalize_features(cpu, &local_err);
   1503    if (local_err != NULL) {
   1504        error_propagate(errp, local_err);
   1505        return;
   1506    }
   1507
   1508    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
   1509        cpu->has_vfp != cpu->has_neon) {
   1510        /*
   1511         * This is an architectural requirement for AArch64; AArch32 is
   1512         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
   1513         */
   1514        error_setg(errp,
   1515                   "AArch64 CPUs must have both VFP and Neon or neither");
   1516        return;
   1517    }
   1518
   1519    if (!cpu->has_vfp) {
   1520        uint64_t t;
   1521        uint32_t u;
   1522
   1523        t = cpu->isar.id_aa64isar1;
   1524        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
   1525        cpu->isar.id_aa64isar1 = t;
   1526
   1527        t = cpu->isar.id_aa64pfr0;
   1528        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
   1529        cpu->isar.id_aa64pfr0 = t;
   1530
   1531        u = cpu->isar.id_isar6;
   1532        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
   1533        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
   1534        cpu->isar.id_isar6 = u;
   1535
   1536        u = cpu->isar.mvfr0;
   1537        u = FIELD_DP32(u, MVFR0, FPSP, 0);
   1538        u = FIELD_DP32(u, MVFR0, FPDP, 0);
   1539        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
   1540        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
   1541        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
   1542        if (!arm_feature(env, ARM_FEATURE_M)) {
   1543            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
   1544            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
   1545        }
   1546        cpu->isar.mvfr0 = u;
   1547
   1548        u = cpu->isar.mvfr1;
   1549        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
   1550        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
   1551        u = FIELD_DP32(u, MVFR1, FPHP, 0);
   1552        if (arm_feature(env, ARM_FEATURE_M)) {
   1553            u = FIELD_DP32(u, MVFR1, FP16, 0);
   1554        }
   1555        cpu->isar.mvfr1 = u;
   1556
   1557        u = cpu->isar.mvfr2;
   1558        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
   1559        cpu->isar.mvfr2 = u;
   1560    }
   1561
   1562    if (!cpu->has_neon) {
   1563        uint64_t t;
   1564        uint32_t u;
   1565
   1566        unset_feature(env, ARM_FEATURE_NEON);
   1567
   1568        t = cpu->isar.id_aa64isar0;
   1569        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
   1570        cpu->isar.id_aa64isar0 = t;
   1571
   1572        t = cpu->isar.id_aa64isar1;
   1573        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
   1574        t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
   1575        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
   1576        cpu->isar.id_aa64isar1 = t;
   1577
   1578        t = cpu->isar.id_aa64pfr0;
   1579        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
   1580        cpu->isar.id_aa64pfr0 = t;
   1581
   1582        u = cpu->isar.id_isar5;
   1583        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
   1584        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
   1585        cpu->isar.id_isar5 = u;
   1586
   1587        u = cpu->isar.id_isar6;
   1588        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
   1589        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
   1590        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
   1591        u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
   1592        cpu->isar.id_isar6 = u;
   1593
   1594        if (!arm_feature(env, ARM_FEATURE_M)) {
   1595            u = cpu->isar.mvfr1;
   1596            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
   1597            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
   1598            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
   1599            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
   1600            cpu->isar.mvfr1 = u;
   1601
   1602            u = cpu->isar.mvfr2;
   1603            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
   1604            cpu->isar.mvfr2 = u;
   1605        }
   1606    }
   1607
   1608    if (!cpu->has_neon && !cpu->has_vfp) {
   1609        uint64_t t;
   1610        uint32_t u;
   1611
   1612        t = cpu->isar.id_aa64isar0;
   1613        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
   1614        cpu->isar.id_aa64isar0 = t;
   1615
   1616        t = cpu->isar.id_aa64isar1;
   1617        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
   1618        cpu->isar.id_aa64isar1 = t;
   1619
   1620        u = cpu->isar.mvfr0;
   1621        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
   1622        cpu->isar.mvfr0 = u;
   1623
   1624        /* Despite the name, this field covers both VFP and Neon */
   1625        u = cpu->isar.mvfr1;
   1626        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
   1627        cpu->isar.mvfr1 = u;
   1628    }
   1629
   1630    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
   1631        uint32_t u;
   1632
   1633        unset_feature(env, ARM_FEATURE_THUMB_DSP);
   1634
   1635        u = cpu->isar.id_isar1;
   1636        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
   1637        cpu->isar.id_isar1 = u;
   1638
   1639        u = cpu->isar.id_isar2;
   1640        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
   1641        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
   1642        cpu->isar.id_isar2 = u;
   1643
   1644        u = cpu->isar.id_isar3;
   1645        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
   1646        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
   1647        cpu->isar.id_isar3 = u;
   1648    }
   1649
   1650    /* Some features automatically imply others: */
   1651    if (arm_feature(env, ARM_FEATURE_V8)) {
   1652        if (arm_feature(env, ARM_FEATURE_M)) {
   1653            set_feature(env, ARM_FEATURE_V7);
   1654        } else {
   1655            set_feature(env, ARM_FEATURE_V7VE);
   1656        }
   1657    }
   1658
   1659    /*
   1660     * There exist AArch64 cpus without AArch32 support.  When KVM
   1661     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
   1662     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
   1663     * As a general principle, we also do not make ID register
   1664     * consistency checks anywhere unless using TCG, because only
   1665     * for TCG would a consistency-check failure be a QEMU bug.
   1666     */
   1667    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
   1668        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
   1669    }
   1670
   1671    if (arm_feature(env, ARM_FEATURE_V7VE)) {
   1672        /* v7 Virtualization Extensions. In real hardware this implies
   1673         * EL2 and also the presence of the Security Extensions.
   1674         * For QEMU, for backwards-compatibility we implement some
   1675         * CPUs or CPU configs which have no actual EL2 or EL3 but do
   1676         * include the various other features that V7VE implies.
   1677         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
   1678         * Security Extensions is ARM_FEATURE_EL3.
   1679         */
   1680        assert(!tcg_enabled() || no_aa32 ||
   1681               cpu_isar_feature(aa32_arm_div, cpu));
   1682        set_feature(env, ARM_FEATURE_LPAE);
   1683        set_feature(env, ARM_FEATURE_V7);
   1684    }
   1685    if (arm_feature(env, ARM_FEATURE_V7)) {
   1686        set_feature(env, ARM_FEATURE_VAPA);
   1687        set_feature(env, ARM_FEATURE_THUMB2);
   1688        set_feature(env, ARM_FEATURE_MPIDR);
   1689        if (!arm_feature(env, ARM_FEATURE_M)) {
   1690            set_feature(env, ARM_FEATURE_V6K);
   1691        } else {
   1692            set_feature(env, ARM_FEATURE_V6);
   1693        }
   1694
   1695        /* Always define VBAR for V7 CPUs even if it doesn't exist in
   1696         * non-EL3 configs. This is needed by some legacy boards.
   1697         */
   1698        set_feature(env, ARM_FEATURE_VBAR);
   1699    }
   1700    if (arm_feature(env, ARM_FEATURE_V6K)) {
   1701        set_feature(env, ARM_FEATURE_V6);
   1702        set_feature(env, ARM_FEATURE_MVFR);
   1703    }
   1704    if (arm_feature(env, ARM_FEATURE_V6)) {
   1705        set_feature(env, ARM_FEATURE_V5);
   1706        if (!arm_feature(env, ARM_FEATURE_M)) {
   1707            assert(!tcg_enabled() || no_aa32 ||
   1708                   cpu_isar_feature(aa32_jazelle, cpu));
   1709            set_feature(env, ARM_FEATURE_AUXCR);
   1710        }
   1711    }
   1712    if (arm_feature(env, ARM_FEATURE_V5)) {
   1713        set_feature(env, ARM_FEATURE_V4T);
   1714    }
   1715    if (arm_feature(env, ARM_FEATURE_LPAE)) {
   1716        set_feature(env, ARM_FEATURE_V7MP);
   1717    }
   1718    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
   1719        set_feature(env, ARM_FEATURE_CBAR);
   1720    }
   1721    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
   1722        !arm_feature(env, ARM_FEATURE_M)) {
   1723        set_feature(env, ARM_FEATURE_THUMB_DSP);
   1724    }
   1725
   1726    /*
   1727     * We rely on no XScale CPU having VFP so we can use the same bits in the
   1728     * TB flags field for VECSTRIDE and XSCALE_CPAR.
   1729     */
   1730    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
   1731           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
   1732           !arm_feature(env, ARM_FEATURE_XSCALE));
   1733
   1734    if (arm_feature(env, ARM_FEATURE_V7) &&
   1735        !arm_feature(env, ARM_FEATURE_M) &&
   1736        !arm_feature(env, ARM_FEATURE_PMSA)) {
   1737        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
   1738         * can use 4K pages.
   1739         */
   1740        pagebits = 12;
   1741    } else {
   1742        /* For CPUs which might have tiny 1K pages, or which have an
   1743         * MPU and might have small region sizes, stick with 1K pages.
   1744         */
   1745        pagebits = 10;
   1746    }
   1747    if (!set_preferred_target_page_bits(pagebits)) {
   1748        /* This can only ever happen for hotplugging a CPU, or if
   1749         * the board code incorrectly creates a CPU which it has
   1750         * promised via minimum_page_size that it will not.
   1751         */
   1752        error_setg(errp, "This CPU requires a smaller page size than the "
   1753                   "system is using");
   1754        return;
   1755    }
   1756
   1757    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
   1758     * We don't support setting cluster ID ([16..23]) (known as Aff2
   1759     * in later ARM ARM versions), or any of the higher affinity level fields,
   1760     * so these bits always RAZ.
   1761     */
   1762    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
   1763        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
   1764                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
   1765    }
   1766
   1767    if (cpu->reset_hivecs) {
   1768            cpu->reset_sctlr |= (1 << 13);
   1769    }
   1770
   1771    if (cpu->cfgend) {
   1772        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
   1773            cpu->reset_sctlr |= SCTLR_EE;
   1774        } else {
   1775            cpu->reset_sctlr |= SCTLR_B;
   1776        }
   1777    }
   1778
   1779    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
   1780        /* If the has_el3 CPU property is disabled then we need to disable the
   1781         * feature.
   1782         */
   1783        unset_feature(env, ARM_FEATURE_EL3);
   1784
   1785        /* Disable the security extension feature bits in the processor feature
   1786         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
   1787         */
   1788        cpu->isar.id_pfr1 &= ~0xf0;
   1789        cpu->isar.id_aa64pfr0 &= ~0xf000;
   1790    }
   1791
   1792    if (!cpu->has_el2) {
   1793        unset_feature(env, ARM_FEATURE_EL2);
   1794    }
   1795
   1796    if (!cpu->has_pmu) {
   1797        unset_feature(env, ARM_FEATURE_PMU);
   1798    }
   1799    if (arm_feature(env, ARM_FEATURE_PMU)) {
   1800        pmu_init(cpu);
   1801
   1802        if (!kvm_enabled()) {
   1803            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
   1804            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
   1805        }
   1806
   1807#ifndef CONFIG_USER_ONLY
   1808        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
   1809                cpu);
   1810#endif
   1811    } else {
   1812        cpu->isar.id_aa64dfr0 =
   1813            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
   1814        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
   1815        cpu->pmceid0 = 0;
   1816        cpu->pmceid1 = 0;
   1817    }
   1818
   1819    if (!arm_feature(env, ARM_FEATURE_EL2)) {
   1820        /* Disable the hypervisor feature bits in the processor feature
   1821         * registers if we don't have EL2. These are id_pfr1[15:12] and
   1822         * id_aa64pfr0_el1[11:8].
   1823         */
   1824        cpu->isar.id_aa64pfr0 &= ~0xf00;
   1825        cpu->isar.id_pfr1 &= ~0xf000;
   1826    }
   1827
   1828#ifndef CONFIG_USER_ONLY
   1829    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
   1830        /*
   1831         * Disable the MTE feature bits if we do not have tag-memory
   1832         * provided by the machine.
   1833         */
   1834        cpu->isar.id_aa64pfr1 =
   1835            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
   1836    }
   1837#endif
   1838
   1839    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
   1840     * to false or by setting pmsav7-dregion to 0.
   1841     */
   1842    if (!cpu->has_mpu) {
   1843        cpu->pmsav7_dregion = 0;
   1844    }
   1845    if (cpu->pmsav7_dregion == 0) {
   1846        cpu->has_mpu = false;
   1847    }
   1848
   1849    if (arm_feature(env, ARM_FEATURE_PMSA) &&
   1850        arm_feature(env, ARM_FEATURE_V7)) {
   1851        uint32_t nr = cpu->pmsav7_dregion;
   1852
   1853        if (nr > 0xff) {
   1854            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
   1855            return;
   1856        }
   1857
   1858        if (nr) {
   1859            if (arm_feature(env, ARM_FEATURE_V8)) {
   1860                /* PMSAv8 */
   1861                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
   1862                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
   1863                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
   1864                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
   1865                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
   1866                }
   1867            } else {
   1868                env->pmsav7.drbar = g_new0(uint32_t, nr);
   1869                env->pmsav7.drsr = g_new0(uint32_t, nr);
   1870                env->pmsav7.dracr = g_new0(uint32_t, nr);
   1871            }
   1872        }
   1873    }
   1874
   1875    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
   1876        uint32_t nr = cpu->sau_sregion;
   1877
   1878        if (nr > 0xff) {
   1879            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
   1880            return;
   1881        }
   1882
   1883        if (nr) {
   1884            env->sau.rbar = g_new0(uint32_t, nr);
   1885            env->sau.rlar = g_new0(uint32_t, nr);
   1886        }
   1887    }
   1888
   1889    if (arm_feature(env, ARM_FEATURE_EL3)) {
   1890        set_feature(env, ARM_FEATURE_VBAR);
   1891    }
   1892
   1893    register_cp_regs_for_features(cpu);
   1894    arm_cpu_register_gdb_regs_for_features(cpu);
   1895
   1896    init_cpreg_list(cpu);
   1897
   1898#ifndef CONFIG_USER_ONLY
   1899    MachineState *ms = MACHINE(qdev_get_machine());
   1900    unsigned int smp_cpus = ms->smp.cpus;
   1901    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
   1902
   1903    /*
   1904     * We must set cs->num_ases to the final value before
   1905     * the first call to cpu_address_space_init.
   1906     */
   1907    if (cpu->tag_memory != NULL) {
   1908        cs->num_ases = 3 + has_secure;
   1909    } else {
   1910        cs->num_ases = 1 + has_secure;
   1911    }
   1912
   1913    if (has_secure) {
   1914        if (!cpu->secure_memory) {
   1915            cpu->secure_memory = cs->memory;
   1916        }
   1917        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
   1918                               cpu->secure_memory);
   1919    }
   1920
   1921    if (cpu->tag_memory != NULL) {
   1922        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
   1923                               cpu->tag_memory);
   1924        if (has_secure) {
   1925            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
   1926                                   cpu->secure_tag_memory);
   1927        }
   1928    }
   1929
   1930    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
   1931
   1932    /* No core_count specified, default to smp_cpus. */
   1933    if (cpu->core_count == -1) {
   1934        cpu->core_count = smp_cpus;
   1935    }
   1936#endif
   1937
   1938    if (tcg_enabled()) {
   1939        int dcz_blocklen = 4 << cpu->dcz_blocksize;
   1940
   1941        /*
   1942         * We only support DCZ blocklen that fits on one page.
   1943         *
   1944         * Architectually this is always true.  However TARGET_PAGE_SIZE
   1945         * is variable and, for compatibility with -machine virt-2.7,
   1946         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
   1947         * But even then, while the largest architectural DCZ blocklen
   1948         * is 2KiB, no cpu actually uses such a large blocklen.
   1949         */
   1950        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
   1951
   1952        /*
   1953         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
   1954         * both nibbles of each byte storing tag data may be written at once.
   1955         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
   1956         */
   1957        if (cpu_isar_feature(aa64_mte, cpu)) {
   1958            assert(dcz_blocklen >= 2 * TAG_GRANULE);
   1959        }
   1960    }
   1961
   1962    qemu_init_vcpu(cs);
   1963    cpu_reset(cs);
   1964
   1965    acc->parent_realize(dev, errp);
   1966}
   1967
   1968static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
   1969{
   1970    ObjectClass *oc;
   1971    char *typename;
   1972    char **cpuname;
   1973    const char *cpunamestr;
   1974
   1975    cpuname = g_strsplit(cpu_model, ",", 1);
   1976    cpunamestr = cpuname[0];
   1977#ifdef CONFIG_USER_ONLY
   1978    /* For backwards compatibility usermode emulation allows "-cpu any",
   1979     * which has the same semantics as "-cpu max".
   1980     */
   1981    if (!strcmp(cpunamestr, "any")) {
   1982        cpunamestr = "max";
   1983    }
   1984#endif
   1985    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
   1986    oc = object_class_by_name(typename);
   1987    g_strfreev(cpuname);
   1988    g_free(typename);
   1989    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
   1990        object_class_is_abstract(oc)) {
   1991        return NULL;
   1992    }
   1993    return oc;
   1994}
   1995
   1996static Property arm_cpu_properties[] = {
   1997    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
   1998    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
   1999    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
   2000                        mp_affinity, ARM64_AFFINITY_INVALID),
   2001    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
   2002    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
   2003    DEFINE_PROP_END_OF_LIST()
   2004};
   2005
   2006static gchar *arm_gdb_arch_name(CPUState *cs)
   2007{
   2008    ARMCPU *cpu = ARM_CPU(cs);
   2009    CPUARMState *env = &cpu->env;
   2010
   2011    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
   2012        return g_strdup("iwmmxt");
   2013    }
   2014    return g_strdup("arm");
   2015}
   2016
   2017#ifndef CONFIG_USER_ONLY
   2018#include "hw/core/sysemu-cpu-ops.h"
   2019
   2020static const struct SysemuCPUOps arm_sysemu_ops = {
   2021    .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
   2022    .asidx_from_attrs = arm_asidx_from_attrs,
   2023    .write_elf32_note = arm_cpu_write_elf32_note,
   2024    .write_elf64_note = arm_cpu_write_elf64_note,
   2025    .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
   2026    .legacy_vmsd = &vmstate_arm_cpu,
   2027};
   2028#endif
   2029
   2030#ifdef CONFIG_TCG
   2031static const struct TCGCPUOps arm_tcg_ops = {
   2032    .initialize = arm_translate_init,
   2033    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
   2034    .tlb_fill = arm_cpu_tlb_fill,
   2035    .debug_excp_handler = arm_debug_excp_handler,
   2036
   2037#if !defined(CONFIG_USER_ONLY)
   2038    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
   2039    .do_interrupt = arm_cpu_do_interrupt,
   2040    .do_transaction_failed = arm_cpu_do_transaction_failed,
   2041    .do_unaligned_access = arm_cpu_do_unaligned_access,
   2042    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
   2043    .debug_check_watchpoint = arm_debug_check_watchpoint,
   2044    .debug_check_breakpoint = arm_debug_check_breakpoint,
   2045#endif /* !CONFIG_USER_ONLY */
   2046};
   2047#endif /* CONFIG_TCG */
   2048
   2049static void arm_cpu_class_init(ObjectClass *oc, void *data)
   2050{
   2051    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
   2052    CPUClass *cc = CPU_CLASS(acc);
   2053    DeviceClass *dc = DEVICE_CLASS(oc);
   2054
   2055    device_class_set_parent_realize(dc, arm_cpu_realizefn,
   2056                                    &acc->parent_realize);
   2057
   2058    device_class_set_props(dc, arm_cpu_properties);
   2059    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
   2060
   2061    cc->class_by_name = arm_cpu_class_by_name;
   2062    cc->has_work = arm_cpu_has_work;
   2063    cc->dump_state = arm_cpu_dump_state;
   2064    cc->set_pc = arm_cpu_set_pc;
   2065    cc->gdb_read_register = arm_cpu_gdb_read_register;
   2066    cc->gdb_write_register = arm_cpu_gdb_write_register;
   2067#ifndef CONFIG_USER_ONLY
   2068    cc->sysemu_ops = &arm_sysemu_ops;
   2069#endif
   2070    cc->gdb_num_core_regs = 26;
   2071    cc->gdb_core_xml_file = "arm-core.xml";
   2072    cc->gdb_arch_name = arm_gdb_arch_name;
   2073    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
   2074    cc->gdb_stop_before_watchpoint = true;
   2075    cc->disas_set_info = arm_disas_set_info;
   2076
   2077#ifdef CONFIG_TCG
   2078    cc->tcg_ops = &arm_tcg_ops;
   2079#endif /* CONFIG_TCG */
   2080}
   2081
   2082#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
   2083static void arm_host_initfn(Object *obj)
   2084{
   2085    ARMCPU *cpu = ARM_CPU(obj);
   2086
   2087#ifdef CONFIG_KVM
   2088    kvm_arm_set_cpu_features_from_host(cpu);
   2089    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
   2090        aarch64_add_sve_properties(obj);
   2091    }
   2092#else
   2093    hvf_arm_set_cpu_features_from_host(cpu);
   2094#endif
   2095    arm_cpu_post_init(obj);
   2096}
   2097
   2098static const TypeInfo host_arm_cpu_type_info = {
   2099    .name = TYPE_ARM_HOST_CPU,
   2100    .parent = TYPE_AARCH64_CPU,
   2101    .instance_init = arm_host_initfn,
   2102};
   2103
   2104#endif
   2105
   2106static void arm_cpu_instance_init(Object *obj)
   2107{
   2108    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
   2109
   2110    acc->info->initfn(obj);
   2111    arm_cpu_post_init(obj);
   2112}
   2113
   2114static void cpu_register_class_init(ObjectClass *oc, void *data)
   2115{
   2116    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
   2117
   2118    acc->info = data;
   2119}
   2120
   2121void arm_cpu_register(const ARMCPUInfo *info)
   2122{
   2123    TypeInfo type_info = {
   2124        .parent = TYPE_ARM_CPU,
   2125        .instance_size = sizeof(ARMCPU),
   2126        .instance_align = __alignof__(ARMCPU),
   2127        .instance_init = arm_cpu_instance_init,
   2128        .class_size = sizeof(ARMCPUClass),
   2129        .class_init = info->class_init ?: cpu_register_class_init,
   2130        .class_data = (void *)info,
   2131    };
   2132
   2133    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
   2134    type_register(&type_info);
   2135    g_free((void *)type_info.name);
   2136}
   2137
   2138static const TypeInfo arm_cpu_type_info = {
   2139    .name = TYPE_ARM_CPU,
   2140    .parent = TYPE_CPU,
   2141    .instance_size = sizeof(ARMCPU),
   2142    .instance_align = __alignof__(ARMCPU),
   2143    .instance_init = arm_cpu_initfn,
   2144    .instance_finalize = arm_cpu_finalizefn,
   2145    .abstract = true,
   2146    .class_size = sizeof(ARMCPUClass),
   2147    .class_init = arm_cpu_class_init,
   2148};
   2149
   2150static void arm_cpu_register_types(void)
   2151{
   2152    type_register_static(&arm_cpu_type_info);
   2153
   2154#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
   2155    type_register_static(&host_arm_cpu_type_info);
   2156#endif
   2157}
   2158
   2159type_init(arm_cpu_register_types)