cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

hvf.c (42531B)


      1/*
      2 * QEMU Hypervisor.framework support for Apple Silicon
      3
      4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
      5 * Copyright 2020 Google LLC
      6 *
      7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
      8 * See the COPYING file in the top-level directory.
      9 *
     10 */
     11
     12#include "qemu/osdep.h"
     13#include "qemu-common.h"
     14#include "qemu/error-report.h"
     15
     16#include "sysemu/runstate.h"
     17#include "sysemu/hvf.h"
     18#include "sysemu/hvf_int.h"
     19#include "sysemu/hw_accel.h"
     20#include "hvf_arm.h"
     21
     22#include <mach/mach_time.h>
     23
     24#include "exec/address-spaces.h"
     25#include "hw/irq.h"
     26#include "qemu/main-loop.h"
     27#include "sysemu/cpus.h"
     28#include "arm-powerctl.h"
     29#include "target/arm/cpu.h"
     30#include "target/arm/internals.h"
     31#include "trace/trace-target_arm_hvf.h"
     32#include "migration/vmstate.h"
     33
     34#define HVF_SYSREG(crn, crm, op0, op1, op2) \
     35        ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
     36#define PL1_WRITE_MASK 0x4
     37
     38#define SYSREG(op0, op1, crn, crm, op2) \
     39    ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
     40#define SYSREG_MASK           SYSREG(0x3, 0x7, 0xf, 0xf, 0x7)
     41#define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
     42#define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
     43#define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
     44#define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
     45#define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
     46#define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
     47#define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
     48#define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
     49#define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
     50#define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
     51#define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
     52#define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
     53#define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
     54#define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
     55#define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
     56#define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
     57
     58#define WFX_IS_WFE (1 << 0)
     59
     60#define TMR_CTL_ENABLE  (1 << 0)
     61#define TMR_CTL_IMASK   (1 << 1)
     62#define TMR_CTL_ISTATUS (1 << 2)
     63
     64static void hvf_wfi(CPUState *cpu);
     65
     66typedef struct HVFVTimer {
     67    /* Vtimer value during migration and paused state */
     68    uint64_t vtimer_val;
     69} HVFVTimer;
     70
     71static HVFVTimer vtimer;
     72
     73typedef struct ARMHostCPUFeatures {
     74    ARMISARegisters isar;
     75    uint64_t features;
     76    uint64_t midr;
     77    uint32_t reset_sctlr;
     78    const char *dtb_compatible;
     79} ARMHostCPUFeatures;
     80
     81static ARMHostCPUFeatures arm_host_cpu_features;
     82
     83struct hvf_reg_match {
     84    int reg;
     85    uint64_t offset;
     86};
     87
     88static const struct hvf_reg_match hvf_reg_match[] = {
     89    { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
     90    { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
     91    { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
     92    { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
     93    { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
     94    { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
     95    { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
     96    { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
     97    { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
     98    { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
     99    { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
    100    { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
    101    { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
    102    { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
    103    { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
    104    { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
    105    { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
    106    { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
    107    { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
    108    { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
    109    { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
    110    { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
    111    { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
    112    { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
    113    { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
    114    { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
    115    { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
    116    { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
    117    { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
    118    { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
    119    { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
    120    { HV_REG_PC,   offsetof(CPUARMState, pc) },
    121};
    122
    123static const struct hvf_reg_match hvf_fpreg_match[] = {
    124    { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
    125    { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
    126    { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
    127    { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
    128    { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
    129    { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
    130    { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
    131    { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
    132    { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
    133    { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
    134    { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
    135    { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
    136    { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
    137    { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
    138    { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
    139    { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
    140    { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
    141    { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
    142    { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
    143    { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
    144    { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
    145    { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
    146    { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
    147    { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
    148    { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
    149    { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
    150    { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
    151    { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
    152    { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
    153    { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
    154    { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
    155    { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
    156};
    157
    158struct hvf_sreg_match {
    159    int reg;
    160    uint32_t key;
    161    uint32_t cp_idx;
    162};
    163
    164static struct hvf_sreg_match hvf_sreg_match[] = {
    165    { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
    166    { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
    167    { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
    168    { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
    169
    170    { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
    171    { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
    172    { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
    173    { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
    174
    175    { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
    176    { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
    177    { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
    178    { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
    179
    180    { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
    181    { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
    182    { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
    183    { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
    184
    185    { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
    186    { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
    187    { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
    188    { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
    189
    190    { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
    191    { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
    192    { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
    193    { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
    194
    195    { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
    196    { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
    197    { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
    198    { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
    199
    200    { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
    201    { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
    202    { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
    203    { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
    204
    205    { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
    206    { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
    207    { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
    208    { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
    209
    210    { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
    211    { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
    212    { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
    213    { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
    214
    215    { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
    216    { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
    217    { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
    218    { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
    219
    220    { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
    221    { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
    222    { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
    223    { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
    224
    225    { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
    226    { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
    227    { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
    228    { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
    229
    230    { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
    231    { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
    232    { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
    233    { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
    234
    235    { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
    236    { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
    237    { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
    238    { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
    239
    240    { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
    241    { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
    242    { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
    243    { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
    244
    245#ifdef SYNC_NO_RAW_REGS
    246    /*
    247     * The registers below are manually synced on init because they are
    248     * marked as NO_RAW. We still list them to make number space sync easier.
    249     */
    250    { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
    251    { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
    252    { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
    253    { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
    254#endif
    255    { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
    256    { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
    257    { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
    258    { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
    259    { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
    260#ifdef SYNC_NO_MMFR0
    261    /* We keep the hardware MMFR0 around. HW limits are there anyway */
    262    { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
    263#endif
    264    { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
    265    { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
    266
    267    { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
    268    { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
    269    { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
    270    { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
    271    { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
    272    { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
    273
    274    { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
    275    { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
    276    { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
    277    { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
    278    { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
    279    { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
    280    { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
    281    { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
    282    { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
    283    { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
    284
    285    { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
    286    { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
    287    { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
    288    { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
    289    { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
    290    { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
    291    { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
    292    { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
    293    { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
    294    { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
    295    { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
    296    { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
    297    { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
    298    { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
    299    { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
    300    { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
    301    { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
    302    { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
    303    { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
    304    { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
    305};
    306
    307int hvf_get_registers(CPUState *cpu)
    308{
    309    ARMCPU *arm_cpu = ARM_CPU(cpu);
    310    CPUARMState *env = &arm_cpu->env;
    311    hv_return_t ret;
    312    uint64_t val;
    313    hv_simd_fp_uchar16_t fpval;
    314    int i;
    315
    316    for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
    317        ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
    318        *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
    319        assert_hvf_ok(ret);
    320    }
    321
    322    for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
    323        ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
    324                                      &fpval);
    325        memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
    326        assert_hvf_ok(ret);
    327    }
    328
    329    val = 0;
    330    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
    331    assert_hvf_ok(ret);
    332    vfp_set_fpcr(env, val);
    333
    334    val = 0;
    335    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
    336    assert_hvf_ok(ret);
    337    vfp_set_fpsr(env, val);
    338
    339    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
    340    assert_hvf_ok(ret);
    341    pstate_write(env, val);
    342
    343    for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
    344        if (hvf_sreg_match[i].cp_idx == -1) {
    345            continue;
    346        }
    347
    348        ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
    349        assert_hvf_ok(ret);
    350
    351        arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
    352    }
    353    assert(write_list_to_cpustate(arm_cpu));
    354
    355    aarch64_restore_sp(env, arm_current_el(env));
    356
    357    return 0;
    358}
    359
    360int hvf_put_registers(CPUState *cpu)
    361{
    362    ARMCPU *arm_cpu = ARM_CPU(cpu);
    363    CPUARMState *env = &arm_cpu->env;
    364    hv_return_t ret;
    365    uint64_t val;
    366    hv_simd_fp_uchar16_t fpval;
    367    int i;
    368
    369    for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
    370        val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
    371        ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
    372        assert_hvf_ok(ret);
    373    }
    374
    375    for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
    376        memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
    377        ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
    378                                      fpval);
    379        assert_hvf_ok(ret);
    380    }
    381
    382    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
    383    assert_hvf_ok(ret);
    384
    385    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
    386    assert_hvf_ok(ret);
    387
    388    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
    389    assert_hvf_ok(ret);
    390
    391    aarch64_save_sp(env, arm_current_el(env));
    392
    393    assert(write_cpustate_to_list(arm_cpu, false));
    394    for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
    395        if (hvf_sreg_match[i].cp_idx == -1) {
    396            continue;
    397        }
    398
    399        val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
    400        ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
    401        assert_hvf_ok(ret);
    402    }
    403
    404    ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
    405    assert_hvf_ok(ret);
    406
    407    return 0;
    408}
    409
    410static void flush_cpu_state(CPUState *cpu)
    411{
    412    if (cpu->vcpu_dirty) {
    413        hvf_put_registers(cpu);
    414        cpu->vcpu_dirty = false;
    415    }
    416}
    417
    418static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
    419{
    420    hv_return_t r;
    421
    422    flush_cpu_state(cpu);
    423
    424    if (rt < 31) {
    425        r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
    426        assert_hvf_ok(r);
    427    }
    428}
    429
    430static uint64_t hvf_get_reg(CPUState *cpu, int rt)
    431{
    432    uint64_t val = 0;
    433    hv_return_t r;
    434
    435    flush_cpu_state(cpu);
    436
    437    if (rt < 31) {
    438        r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
    439        assert_hvf_ok(r);
    440    }
    441
    442    return val;
    443}
    444
    445static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
    446{
    447    ARMISARegisters host_isar = {};
    448    const struct isar_regs {
    449        int reg;
    450        uint64_t *val;
    451    } regs[] = {
    452        { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
    453        { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
    454        { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
    455        { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
    456        { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
    457        { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
    458        { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
    459        { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
    460        { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
    461    };
    462    hv_vcpu_t fd;
    463    hv_return_t r = HV_SUCCESS;
    464    hv_vcpu_exit_t *exit;
    465    int i;
    466
    467    ahcf->dtb_compatible = "arm,arm-v8";
    468    ahcf->features = (1ULL << ARM_FEATURE_V8) |
    469                     (1ULL << ARM_FEATURE_NEON) |
    470                     (1ULL << ARM_FEATURE_AARCH64) |
    471                     (1ULL << ARM_FEATURE_PMU) |
    472                     (1ULL << ARM_FEATURE_GENERIC_TIMER);
    473
    474    /* We set up a small vcpu to extract host registers */
    475
    476    if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
    477        return false;
    478    }
    479
    480    for (i = 0; i < ARRAY_SIZE(regs); i++) {
    481        r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
    482    }
    483    r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
    484    r |= hv_vcpu_destroy(fd);
    485
    486    ahcf->isar = host_isar;
    487
    488    /*
    489     * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
    490     * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
    491     */
    492    ahcf->reset_sctlr = 0x30100180;
    493    /*
    494     * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
    495     * let's disable it on boot and then allow guest software to turn it on by
    496     * setting it to 0.
    497     */
    498    ahcf->reset_sctlr |= 0x00800000;
    499
    500    /* Make sure we don't advertise AArch32 support for EL0/EL1 */
    501    if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
    502        return false;
    503    }
    504
    505    return r == HV_SUCCESS;
    506}
    507
    508void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
    509{
    510    if (!arm_host_cpu_features.dtb_compatible) {
    511        if (!hvf_enabled() ||
    512            !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
    513            /*
    514             * We can't report this error yet, so flag that we need to
    515             * in arm_cpu_realizefn().
    516             */
    517            cpu->host_cpu_probe_failed = true;
    518            return;
    519        }
    520    }
    521
    522    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
    523    cpu->isar = arm_host_cpu_features.isar;
    524    cpu->env.features = arm_host_cpu_features.features;
    525    cpu->midr = arm_host_cpu_features.midr;
    526    cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
    527}
    528
    529void hvf_arch_vcpu_destroy(CPUState *cpu)
    530{
    531}
    532
    533int hvf_arch_init_vcpu(CPUState *cpu)
    534{
    535    ARMCPU *arm_cpu = ARM_CPU(cpu);
    536    CPUARMState *env = &arm_cpu->env;
    537    uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
    538    uint32_t sregs_cnt = 0;
    539    uint64_t pfr;
    540    hv_return_t ret;
    541    int i;
    542
    543    env->aarch64 = 1;
    544    asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
    545
    546    /* Allocate enough space for our sysreg sync */
    547    arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
    548                                     sregs_match_len);
    549    arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
    550                                    sregs_match_len);
    551    arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
    552                                             arm_cpu->cpreg_vmstate_indexes,
    553                                             sregs_match_len);
    554    arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
    555                                            arm_cpu->cpreg_vmstate_values,
    556                                            sregs_match_len);
    557
    558    memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
    559
    560    /* Populate cp list for all known sysregs */
    561    for (i = 0; i < sregs_match_len; i++) {
    562        const ARMCPRegInfo *ri;
    563        uint32_t key = hvf_sreg_match[i].key;
    564
    565        ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
    566        if (ri) {
    567            assert(!(ri->type & ARM_CP_NO_RAW));
    568            hvf_sreg_match[i].cp_idx = sregs_cnt;
    569            arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
    570        } else {
    571            hvf_sreg_match[i].cp_idx = -1;
    572        }
    573    }
    574    arm_cpu->cpreg_array_len = sregs_cnt;
    575    arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
    576
    577    assert(write_cpustate_to_list(arm_cpu, false));
    578
    579    /* Set CP_NO_RAW system registers on init */
    580    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
    581                              arm_cpu->midr);
    582    assert_hvf_ok(ret);
    583
    584    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
    585                              arm_cpu->mp_affinity);
    586    assert_hvf_ok(ret);
    587
    588    ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
    589    assert_hvf_ok(ret);
    590    pfr |= env->gicv3state ? (1 << 24) : 0;
    591    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
    592    assert_hvf_ok(ret);
    593
    594    /* We're limited to underlying hardware caps, override internal versions */
    595    ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
    596                              &arm_cpu->isar.id_aa64mmfr0);
    597    assert_hvf_ok(ret);
    598
    599    return 0;
    600}
    601
    602void hvf_kick_vcpu_thread(CPUState *cpu)
    603{
    604    cpus_kick_thread(cpu);
    605    hv_vcpus_exit(&cpu->hvf->fd, 1);
    606}
    607
    608static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
    609                                uint32_t syndrome)
    610{
    611    ARMCPU *arm_cpu = ARM_CPU(cpu);
    612    CPUARMState *env = &arm_cpu->env;
    613
    614    cpu->exception_index = excp;
    615    env->exception.target_el = 1;
    616    env->exception.syndrome = syndrome;
    617
    618    arm_cpu_do_interrupt(cpu);
    619}
    620
    621static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
    622{
    623    int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
    624    assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
    625}
    626
    627/*
    628 * Handle a PSCI call.
    629 *
    630 * Returns 0 on success
    631 *         -1 when the PSCI call is unknown,
    632 */
    633static bool hvf_handle_psci_call(CPUState *cpu)
    634{
    635    ARMCPU *arm_cpu = ARM_CPU(cpu);
    636    CPUARMState *env = &arm_cpu->env;
    637    uint64_t param[4] = {
    638        env->xregs[0],
    639        env->xregs[1],
    640        env->xregs[2],
    641        env->xregs[3]
    642    };
    643    uint64_t context_id, mpidr;
    644    bool target_aarch64 = true;
    645    CPUState *target_cpu_state;
    646    ARMCPU *target_cpu;
    647    target_ulong entry;
    648    int target_el = 1;
    649    int32_t ret = 0;
    650
    651    trace_hvf_psci_call(param[0], param[1], param[2], param[3],
    652                        arm_cpu->mp_affinity);
    653
    654    switch (param[0]) {
    655    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
    656        ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
    657        break;
    658    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
    659        ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
    660        break;
    661    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
    662    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
    663        mpidr = param[1];
    664
    665        switch (param[2]) {
    666        case 0:
    667            target_cpu_state = arm_get_cpu_by_id(mpidr);
    668            if (!target_cpu_state) {
    669                ret = QEMU_PSCI_RET_INVALID_PARAMS;
    670                break;
    671            }
    672            target_cpu = ARM_CPU(target_cpu_state);
    673
    674            ret = target_cpu->power_state;
    675            break;
    676        default:
    677            /* Everything above affinity level 0 is always on. */
    678            ret = 0;
    679        }
    680        break;
    681    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
    682        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
    683        /*
    684         * QEMU reset and shutdown are async requests, but PSCI
    685         * mandates that we never return from the reset/shutdown
    686         * call, so power the CPU off now so it doesn't execute
    687         * anything further.
    688         */
    689        hvf_psci_cpu_off(arm_cpu);
    690        break;
    691    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
    692        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
    693        hvf_psci_cpu_off(arm_cpu);
    694        break;
    695    case QEMU_PSCI_0_1_FN_CPU_ON:
    696    case QEMU_PSCI_0_2_FN_CPU_ON:
    697    case QEMU_PSCI_0_2_FN64_CPU_ON:
    698        mpidr = param[1];
    699        entry = param[2];
    700        context_id = param[3];
    701        ret = arm_set_cpu_on(mpidr, entry, context_id,
    702                             target_el, target_aarch64);
    703        break;
    704    case QEMU_PSCI_0_1_FN_CPU_OFF:
    705    case QEMU_PSCI_0_2_FN_CPU_OFF:
    706        hvf_psci_cpu_off(arm_cpu);
    707        break;
    708    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
    709    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
    710    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
    711        /* Affinity levels are not supported in QEMU */
    712        if (param[1] & 0xfffe0000) {
    713            ret = QEMU_PSCI_RET_INVALID_PARAMS;
    714            break;
    715        }
    716        /* Powerdown is not supported, we always go into WFI */
    717        env->xregs[0] = 0;
    718        hvf_wfi(cpu);
    719        break;
    720    case QEMU_PSCI_0_1_FN_MIGRATE:
    721    case QEMU_PSCI_0_2_FN_MIGRATE:
    722        ret = QEMU_PSCI_RET_NOT_SUPPORTED;
    723        break;
    724    default:
    725        return false;
    726    }
    727
    728    env->xregs[0] = ret;
    729    return true;
    730}
    731
    732static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
    733{
    734    ARMCPU *arm_cpu = ARM_CPU(cpu);
    735    CPUARMState *env = &arm_cpu->env;
    736    uint64_t val = 0;
    737
    738    switch (reg) {
    739    case SYSREG_CNTPCT_EL0:
    740        val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
    741              gt_cntfrq_period_ns(arm_cpu);
    742        break;
    743    case SYSREG_PMCR_EL0:
    744        val = env->cp15.c9_pmcr;
    745        break;
    746    case SYSREG_PMCCNTR_EL0:
    747        pmu_op_start(env);
    748        val = env->cp15.c15_ccnt;
    749        pmu_op_finish(env);
    750        break;
    751    case SYSREG_PMCNTENCLR_EL0:
    752        val = env->cp15.c9_pmcnten;
    753        break;
    754    case SYSREG_PMOVSCLR_EL0:
    755        val = env->cp15.c9_pmovsr;
    756        break;
    757    case SYSREG_PMSELR_EL0:
    758        val = env->cp15.c9_pmselr;
    759        break;
    760    case SYSREG_PMINTENCLR_EL1:
    761        val = env->cp15.c9_pminten;
    762        break;
    763    case SYSREG_PMCCFILTR_EL0:
    764        val = env->cp15.pmccfiltr_el0;
    765        break;
    766    case SYSREG_PMCNTENSET_EL0:
    767        val = env->cp15.c9_pmcnten;
    768        break;
    769    case SYSREG_PMUSERENR_EL0:
    770        val = env->cp15.c9_pmuserenr;
    771        break;
    772    case SYSREG_PMCEID0_EL0:
    773    case SYSREG_PMCEID1_EL0:
    774        /* We can't really count anything yet, declare all events invalid */
    775        val = 0;
    776        break;
    777    case SYSREG_OSLSR_EL1:
    778        val = env->cp15.oslsr_el1;
    779        break;
    780    case SYSREG_OSDLR_EL1:
    781        /* Dummy register */
    782        break;
    783    default:
    784        cpu_synchronize_state(cpu);
    785        trace_hvf_unhandled_sysreg_read(env->pc, reg,
    786                                        (reg >> 20) & 0x3,
    787                                        (reg >> 14) & 0x7,
    788                                        (reg >> 10) & 0xf,
    789                                        (reg >> 1) & 0xf,
    790                                        (reg >> 17) & 0x7);
    791        hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
    792        return 1;
    793    }
    794
    795    trace_hvf_sysreg_read(reg,
    796                          (reg >> 20) & 0x3,
    797                          (reg >> 14) & 0x7,
    798                          (reg >> 10) & 0xf,
    799                          (reg >> 1) & 0xf,
    800                          (reg >> 17) & 0x7,
    801                          val);
    802    hvf_set_reg(cpu, rt, val);
    803
    804    return 0;
    805}
    806
    807static void pmu_update_irq(CPUARMState *env)
    808{
    809    ARMCPU *cpu = env_archcpu(env);
    810    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
    811            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
    812}
    813
    814static bool pmu_event_supported(uint16_t number)
    815{
    816    return false;
    817}
    818
    819/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
    820 * the current EL, security state, and register configuration.
    821 */
    822static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
    823{
    824    uint64_t filter;
    825    bool enabled, filtered = true;
    826    int el = arm_current_el(env);
    827
    828    enabled = (env->cp15.c9_pmcr & PMCRE) &&
    829              (env->cp15.c9_pmcnten & (1 << counter));
    830
    831    if (counter == 31) {
    832        filter = env->cp15.pmccfiltr_el0;
    833    } else {
    834        filter = env->cp15.c14_pmevtyper[counter];
    835    }
    836
    837    if (el == 0) {
    838        filtered = filter & PMXEVTYPER_U;
    839    } else if (el == 1) {
    840        filtered = filter & PMXEVTYPER_P;
    841    }
    842
    843    if (counter != 31) {
    844        /*
    845         * If not checking PMCCNTR, ensure the counter is setup to an event we
    846         * support
    847         */
    848        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
    849        if (!pmu_event_supported(event)) {
    850            return false;
    851        }
    852    }
    853
    854    return enabled && !filtered;
    855}
    856
    857static void pmswinc_write(CPUARMState *env, uint64_t value)
    858{
    859    unsigned int i;
    860    for (i = 0; i < pmu_num_counters(env); i++) {
    861        /* Increment a counter's count iff: */
    862        if ((value & (1 << i)) && /* counter's bit is set */
    863                /* counter is enabled and not filtered */
    864                pmu_counter_enabled(env, i) &&
    865                /* counter is SW_INCR */
    866                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
    867            /*
    868             * Detect if this write causes an overflow since we can't predict
    869             * PMSWINC overflows like we can for other events
    870             */
    871            uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
    872
    873            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
    874                env->cp15.c9_pmovsr |= (1 << i);
    875                pmu_update_irq(env);
    876            }
    877
    878            env->cp15.c14_pmevcntr[i] = new_pmswinc;
    879        }
    880    }
    881}
    882
    883static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
    884{
    885    ARMCPU *arm_cpu = ARM_CPU(cpu);
    886    CPUARMState *env = &arm_cpu->env;
    887
    888    trace_hvf_sysreg_write(reg,
    889                           (reg >> 20) & 0x3,
    890                           (reg >> 14) & 0x7,
    891                           (reg >> 10) & 0xf,
    892                           (reg >> 1) & 0xf,
    893                           (reg >> 17) & 0x7,
    894                           val);
    895
    896    switch (reg) {
    897    case SYSREG_PMCCNTR_EL0:
    898        pmu_op_start(env);
    899        env->cp15.c15_ccnt = val;
    900        pmu_op_finish(env);
    901        break;
    902    case SYSREG_PMCR_EL0:
    903        pmu_op_start(env);
    904
    905        if (val & PMCRC) {
    906            /* The counter has been reset */
    907            env->cp15.c15_ccnt = 0;
    908        }
    909
    910        if (val & PMCRP) {
    911            unsigned int i;
    912            for (i = 0; i < pmu_num_counters(env); i++) {
    913                env->cp15.c14_pmevcntr[i] = 0;
    914            }
    915        }
    916
    917        env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
    918        env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK);
    919
    920        pmu_op_finish(env);
    921        break;
    922    case SYSREG_PMUSERENR_EL0:
    923        env->cp15.c9_pmuserenr = val & 0xf;
    924        break;
    925    case SYSREG_PMCNTENSET_EL0:
    926        env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
    927        break;
    928    case SYSREG_PMCNTENCLR_EL0:
    929        env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
    930        break;
    931    case SYSREG_PMINTENCLR_EL1:
    932        pmu_op_start(env);
    933        env->cp15.c9_pminten |= val;
    934        pmu_op_finish(env);
    935        break;
    936    case SYSREG_PMOVSCLR_EL0:
    937        pmu_op_start(env);
    938        env->cp15.c9_pmovsr &= ~val;
    939        pmu_op_finish(env);
    940        break;
    941    case SYSREG_PMSWINC_EL0:
    942        pmu_op_start(env);
    943        pmswinc_write(env, val);
    944        pmu_op_finish(env);
    945        break;
    946    case SYSREG_PMSELR_EL0:
    947        env->cp15.c9_pmselr = val & 0x1f;
    948        break;
    949    case SYSREG_PMCCFILTR_EL0:
    950        pmu_op_start(env);
    951        env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
    952        pmu_op_finish(env);
    953        break;
    954    case SYSREG_OSLAR_EL1:
    955        env->cp15.oslsr_el1 = val & 1;
    956        break;
    957    case SYSREG_OSDLR_EL1:
    958        /* Dummy register */
    959        break;
    960    default:
    961        cpu_synchronize_state(cpu);
    962        trace_hvf_unhandled_sysreg_write(env->pc, reg,
    963                                         (reg >> 20) & 0x3,
    964                                         (reg >> 14) & 0x7,
    965                                         (reg >> 10) & 0xf,
    966                                         (reg >> 1) & 0xf,
    967                                         (reg >> 17) & 0x7);
    968        hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
    969        return 1;
    970    }
    971
    972    return 0;
    973}
    974
    975static int hvf_inject_interrupts(CPUState *cpu)
    976{
    977    if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
    978        trace_hvf_inject_fiq();
    979        hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
    980                                      true);
    981    }
    982
    983    if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
    984        trace_hvf_inject_irq();
    985        hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
    986                                      true);
    987    }
    988
    989    return 0;
    990}
    991
    992static uint64_t hvf_vtimer_val_raw(void)
    993{
    994    /*
    995     * mach_absolute_time() returns the vtimer value without the VM
    996     * offset that we define. Add our own offset on top.
    997     */
    998    return mach_absolute_time() - hvf_state->vtimer_offset;
    999}
   1000
   1001static uint64_t hvf_vtimer_val(void)
   1002{
   1003    if (!runstate_is_running()) {
   1004        /* VM is paused, the vtimer value is in vtimer.vtimer_val */
   1005        return vtimer.vtimer_val;
   1006    }
   1007
   1008    return hvf_vtimer_val_raw();
   1009}
   1010
   1011static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
   1012{
   1013    /*
   1014     * Use pselect to sleep so that other threads can IPI us while we're
   1015     * sleeping.
   1016     */
   1017    qatomic_mb_set(&cpu->thread_kicked, false);
   1018    qemu_mutex_unlock_iothread();
   1019    pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
   1020    qemu_mutex_lock_iothread();
   1021}
   1022
   1023static void hvf_wfi(CPUState *cpu)
   1024{
   1025    ARMCPU *arm_cpu = ARM_CPU(cpu);
   1026    struct timespec ts;
   1027    hv_return_t r;
   1028    uint64_t ctl;
   1029    uint64_t cval;
   1030    int64_t ticks_to_sleep;
   1031    uint64_t seconds;
   1032    uint64_t nanos;
   1033    uint32_t cntfrq;
   1034
   1035    if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
   1036        /* Interrupt pending, no need to wait */
   1037        return;
   1038    }
   1039
   1040    r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
   1041    assert_hvf_ok(r);
   1042
   1043    if (!(ctl & 1) || (ctl & 2)) {
   1044        /* Timer disabled or masked, just wait for an IPI. */
   1045        hvf_wait_for_ipi(cpu, NULL);
   1046        return;
   1047    }
   1048
   1049    r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
   1050    assert_hvf_ok(r);
   1051
   1052    ticks_to_sleep = cval - hvf_vtimer_val();
   1053    if (ticks_to_sleep < 0) {
   1054        return;
   1055    }
   1056
   1057    cntfrq = gt_cntfrq_period_ns(arm_cpu);
   1058    seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
   1059    ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
   1060    nanos = ticks_to_sleep * cntfrq;
   1061
   1062    /*
   1063     * Don't sleep for less than the time a context switch would take,
   1064     * so that we can satisfy fast timer requests on the same CPU.
   1065     * Measurements on M1 show the sweet spot to be ~2ms.
   1066     */
   1067    if (!seconds && nanos < (2 * SCALE_MS)) {
   1068        return;
   1069    }
   1070
   1071    ts = (struct timespec) { seconds, nanos };
   1072    hvf_wait_for_ipi(cpu, &ts);
   1073}
   1074
   1075static void hvf_sync_vtimer(CPUState *cpu)
   1076{
   1077    ARMCPU *arm_cpu = ARM_CPU(cpu);
   1078    hv_return_t r;
   1079    uint64_t ctl;
   1080    bool irq_state;
   1081
   1082    if (!cpu->hvf->vtimer_masked) {
   1083        /* We will get notified on vtimer changes by hvf, nothing to do */
   1084        return;
   1085    }
   1086
   1087    r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
   1088    assert_hvf_ok(r);
   1089
   1090    irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
   1091                (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
   1092    qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
   1093
   1094    if (!irq_state) {
   1095        /* Timer no longer asserting, we can unmask it */
   1096        hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
   1097        cpu->hvf->vtimer_masked = false;
   1098    }
   1099}
   1100
   1101int hvf_vcpu_exec(CPUState *cpu)
   1102{
   1103    ARMCPU *arm_cpu = ARM_CPU(cpu);
   1104    CPUARMState *env = &arm_cpu->env;
   1105    hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
   1106    hv_return_t r;
   1107    bool advance_pc = false;
   1108
   1109    if (hvf_inject_interrupts(cpu)) {
   1110        return EXCP_INTERRUPT;
   1111    }
   1112
   1113    if (cpu->halted) {
   1114        return EXCP_HLT;
   1115    }
   1116
   1117    flush_cpu_state(cpu);
   1118
   1119    qemu_mutex_unlock_iothread();
   1120    assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
   1121
   1122    /* handle VMEXIT */
   1123    uint64_t exit_reason = hvf_exit->reason;
   1124    uint64_t syndrome = hvf_exit->exception.syndrome;
   1125    uint32_t ec = syn_get_ec(syndrome);
   1126
   1127    qemu_mutex_lock_iothread();
   1128    switch (exit_reason) {
   1129    case HV_EXIT_REASON_EXCEPTION:
   1130        /* This is the main one, handle below. */
   1131        break;
   1132    case HV_EXIT_REASON_VTIMER_ACTIVATED:
   1133        qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
   1134        cpu->hvf->vtimer_masked = true;
   1135        return 0;
   1136    case HV_EXIT_REASON_CANCELED:
   1137        /* we got kicked, no exit to process */
   1138        return 0;
   1139    default:
   1140        assert(0);
   1141    }
   1142
   1143    hvf_sync_vtimer(cpu);
   1144
   1145    switch (ec) {
   1146    case EC_DATAABORT: {
   1147        bool isv = syndrome & ARM_EL_ISV;
   1148        bool iswrite = (syndrome >> 6) & 1;
   1149        bool s1ptw = (syndrome >> 7) & 1;
   1150        uint32_t sas = (syndrome >> 22) & 3;
   1151        uint32_t len = 1 << sas;
   1152        uint32_t srt = (syndrome >> 16) & 0x1f;
   1153        uint64_t val = 0;
   1154
   1155        trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
   1156                             hvf_exit->exception.physical_address, isv,
   1157                             iswrite, s1ptw, len, srt);
   1158
   1159        assert(isv);
   1160
   1161        if (iswrite) {
   1162            val = hvf_get_reg(cpu, srt);
   1163            address_space_write(&address_space_memory,
   1164                                hvf_exit->exception.physical_address,
   1165                                MEMTXATTRS_UNSPECIFIED, &val, len);
   1166        } else {
   1167            address_space_read(&address_space_memory,
   1168                               hvf_exit->exception.physical_address,
   1169                               MEMTXATTRS_UNSPECIFIED, &val, len);
   1170            hvf_set_reg(cpu, srt, val);
   1171        }
   1172
   1173        advance_pc = true;
   1174        break;
   1175    }
   1176    case EC_SYSTEMREGISTERTRAP: {
   1177        bool isread = (syndrome >> 0) & 1;
   1178        uint32_t rt = (syndrome >> 5) & 0x1f;
   1179        uint32_t reg = syndrome & SYSREG_MASK;
   1180        uint64_t val;
   1181        int ret = 0;
   1182
   1183        if (isread) {
   1184            ret = hvf_sysreg_read(cpu, reg, rt);
   1185        } else {
   1186            val = hvf_get_reg(cpu, rt);
   1187            ret = hvf_sysreg_write(cpu, reg, val);
   1188        }
   1189
   1190        advance_pc = !ret;
   1191        break;
   1192    }
   1193    case EC_WFX_TRAP:
   1194        advance_pc = true;
   1195        if (!(syndrome & WFX_IS_WFE)) {
   1196            hvf_wfi(cpu);
   1197        }
   1198        break;
   1199    case EC_AA64_HVC:
   1200        cpu_synchronize_state(cpu);
   1201        if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
   1202            if (!hvf_handle_psci_call(cpu)) {
   1203                trace_hvf_unknown_hvc(env->xregs[0]);
   1204                /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
   1205                env->xregs[0] = -1;
   1206            }
   1207        } else {
   1208            trace_hvf_unknown_hvc(env->xregs[0]);
   1209            hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
   1210        }
   1211        break;
   1212    case EC_AA64_SMC:
   1213        cpu_synchronize_state(cpu);
   1214        if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
   1215            advance_pc = true;
   1216
   1217            if (!hvf_handle_psci_call(cpu)) {
   1218                trace_hvf_unknown_smc(env->xregs[0]);
   1219                /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
   1220                env->xregs[0] = -1;
   1221            }
   1222        } else {
   1223            trace_hvf_unknown_smc(env->xregs[0]);
   1224            hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
   1225        }
   1226        break;
   1227    default:
   1228        cpu_synchronize_state(cpu);
   1229        trace_hvf_exit(syndrome, ec, env->pc);
   1230        error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
   1231    }
   1232
   1233    if (advance_pc) {
   1234        uint64_t pc;
   1235
   1236        flush_cpu_state(cpu);
   1237
   1238        r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
   1239        assert_hvf_ok(r);
   1240        pc += 4;
   1241        r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
   1242        assert_hvf_ok(r);
   1243    }
   1244
   1245    return 0;
   1246}
   1247
   1248static const VMStateDescription vmstate_hvf_vtimer = {
   1249    .name = "hvf-vtimer",
   1250    .version_id = 1,
   1251    .minimum_version_id = 1,
   1252    .fields = (VMStateField[]) {
   1253        VMSTATE_UINT64(vtimer_val, HVFVTimer),
   1254        VMSTATE_END_OF_LIST()
   1255    },
   1256};
   1257
   1258static void hvf_vm_state_change(void *opaque, bool running, RunState state)
   1259{
   1260    HVFVTimer *s = opaque;
   1261
   1262    if (running) {
   1263        /* Update vtimer offset on all CPUs */
   1264        hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
   1265        cpu_synchronize_all_states();
   1266    } else {
   1267        /* Remember vtimer value on every pause */
   1268        s->vtimer_val = hvf_vtimer_val_raw();
   1269    }
   1270}
   1271
   1272int hvf_arch_init(void)
   1273{
   1274    hvf_state->vtimer_offset = mach_absolute_time();
   1275    vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
   1276    qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
   1277    return 0;
   1278}