cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

internals.h (38441B)


      1/*
      2 * QEMU ARM CPU -- internal functions and types
      3 *
      4 * Copyright (c) 2014 Linaro Ltd
      5 *
      6 * This program is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU General Public License
      8 * as published by the Free Software Foundation; either version 2
      9 * of the License, or (at your option) any later version.
     10 *
     11 * This program is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 * GNU General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU General Public License
     17 * along with this program; if not, see
     18 * <http://www.gnu.org/licenses/gpl-2.0.html>
     19 *
     20 * This header defines functions, types, etc which need to be shared
     21 * between different source files within target/arm/ but which are
     22 * private to it and not required by the rest of QEMU.
     23 */
     24
     25#ifndef TARGET_ARM_INTERNALS_H
     26#define TARGET_ARM_INTERNALS_H
     27
     28#include "hw/registerfields.h"
     29#include "tcg/tcg-gvec-desc.h"
     30#include "syndrome.h"
     31
     32/* register banks for CPU modes */
     33#define BANK_USRSYS 0
     34#define BANK_SVC    1
     35#define BANK_ABT    2
     36#define BANK_UND    3
     37#define BANK_IRQ    4
     38#define BANK_FIQ    5
     39#define BANK_HYP    6
     40#define BANK_MON    7
     41
     42static inline bool excp_is_internal(int excp)
     43{
     44    /* Return true if this exception number represents a QEMU-internal
     45     * exception that will not be passed to the guest.
     46     */
     47    return excp == EXCP_INTERRUPT
     48        || excp == EXCP_HLT
     49        || excp == EXCP_DEBUG
     50        || excp == EXCP_HALTED
     51        || excp == EXCP_EXCEPTION_EXIT
     52        || excp == EXCP_KERNEL_TRAP
     53        || excp == EXCP_SEMIHOST;
     54}
     55
     56/* Scale factor for generic timers, ie number of ns per tick.
     57 * This gives a 62.5MHz timer.
     58 */
     59#define GTIMER_SCALE 16
     60
     61/* Bit definitions for the v7M CONTROL register */
     62FIELD(V7M_CONTROL, NPRIV, 0, 1)
     63FIELD(V7M_CONTROL, SPSEL, 1, 1)
     64FIELD(V7M_CONTROL, FPCA, 2, 1)
     65FIELD(V7M_CONTROL, SFPA, 3, 1)
     66
     67/* Bit definitions for v7M exception return payload */
     68FIELD(V7M_EXCRET, ES, 0, 1)
     69FIELD(V7M_EXCRET, RES0, 1, 1)
     70FIELD(V7M_EXCRET, SPSEL, 2, 1)
     71FIELD(V7M_EXCRET, MODE, 3, 1)
     72FIELD(V7M_EXCRET, FTYPE, 4, 1)
     73FIELD(V7M_EXCRET, DCRS, 5, 1)
     74FIELD(V7M_EXCRET, S, 6, 1)
     75FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
     76
     77/* Minimum value which is a magic number for exception return */
     78#define EXC_RETURN_MIN_MAGIC 0xff000000
     79/* Minimum number which is a magic number for function or exception return
     80 * when using v8M security extension
     81 */
     82#define FNC_RETURN_MIN_MAGIC 0xfefffffe
     83
     84/* We use a few fake FSR values for internal purposes in M profile.
     85 * M profile cores don't have A/R format FSRs, but currently our
     86 * get_phys_addr() code assumes A/R profile and reports failures via
     87 * an A/R format FSR value. We then translate that into the proper
     88 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
     89 * Mostly the FSR values we use for this are those defined for v7PMSA,
     90 * since we share some of that codepath. A few kinds of fault are
     91 * only for M profile and have no A/R equivalent, though, so we have
     92 * to pick a value from the reserved range (which we never otherwise
     93 * generate) to use for these.
     94 * These values will never be visible to the guest.
     95 */
     96#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
     97#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
     98
     99/**
    100 * raise_exception: Raise the specified exception.
    101 * Raise a guest exception with the specified value, syndrome register
    102 * and target exception level. This should be called from helper functions,
    103 * and never returns because we will longjump back up to the CPU main loop.
    104 */
    105void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
    106                                   uint32_t syndrome, uint32_t target_el);
    107
    108/*
    109 * Similarly, but also use unwinding to restore cpu state.
    110 */
    111void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
    112                                      uint32_t syndrome, uint32_t target_el,
    113                                      uintptr_t ra);
    114
    115/*
    116 * For AArch64, map a given EL to an index in the banked_spsr array.
    117 * Note that this mapping and the AArch32 mapping defined in bank_number()
    118 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
    119 * mandated mapping between each other.
    120 */
    121static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
    122{
    123    static const unsigned int map[4] = {
    124        [1] = BANK_SVC, /* EL1.  */
    125        [2] = BANK_HYP, /* EL2.  */
    126        [3] = BANK_MON, /* EL3.  */
    127    };
    128    assert(el >= 1 && el <= 3);
    129    return map[el];
    130}
    131
    132/* Map CPU modes onto saved register banks.  */
    133static inline int bank_number(int mode)
    134{
    135    switch (mode) {
    136    case ARM_CPU_MODE_USR:
    137    case ARM_CPU_MODE_SYS:
    138        return BANK_USRSYS;
    139    case ARM_CPU_MODE_SVC:
    140        return BANK_SVC;
    141    case ARM_CPU_MODE_ABT:
    142        return BANK_ABT;
    143    case ARM_CPU_MODE_UND:
    144        return BANK_UND;
    145    case ARM_CPU_MODE_IRQ:
    146        return BANK_IRQ;
    147    case ARM_CPU_MODE_FIQ:
    148        return BANK_FIQ;
    149    case ARM_CPU_MODE_HYP:
    150        return BANK_HYP;
    151    case ARM_CPU_MODE_MON:
    152        return BANK_MON;
    153    }
    154    g_assert_not_reached();
    155}
    156
    157/**
    158 * r14_bank_number: Map CPU mode onto register bank for r14
    159 *
    160 * Given an AArch32 CPU mode, return the index into the saved register
    161 * banks to use for the R14 (LR) in that mode. This is the same as
    162 * bank_number(), except for the special case of Hyp mode, where
    163 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
    164 * This should be used as the index into env->banked_r14[], and
    165 * bank_number() used for the index into env->banked_r13[] and
    166 * env->banked_spsr[].
    167 */
    168static inline int r14_bank_number(int mode)
    169{
    170    return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
    171}
    172
    173void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
    174void arm_translate_init(void);
    175
    176#ifdef CONFIG_TCG
    177void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
    178#endif /* CONFIG_TCG */
    179
    180/**
    181 * aarch64_sve_zcr_get_valid_len:
    182 * @cpu: cpu context
    183 * @start_len: maximum len to consider
    184 *
    185 * Return the maximum supported sve vector length <= @start_len.
    186 * Note that both @start_len and the return value are in units
    187 * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128.
    188 */
    189uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len);
    190
    191enum arm_fprounding {
    192    FPROUNDING_TIEEVEN,
    193    FPROUNDING_POSINF,
    194    FPROUNDING_NEGINF,
    195    FPROUNDING_ZERO,
    196    FPROUNDING_TIEAWAY,
    197    FPROUNDING_ODD
    198};
    199
    200int arm_rmode_to_sf(int rmode);
    201
    202static inline void aarch64_save_sp(CPUARMState *env, int el)
    203{
    204    if (env->pstate & PSTATE_SP) {
    205        env->sp_el[el] = env->xregs[31];
    206    } else {
    207        env->sp_el[0] = env->xregs[31];
    208    }
    209}
    210
    211static inline void aarch64_restore_sp(CPUARMState *env, int el)
    212{
    213    if (env->pstate & PSTATE_SP) {
    214        env->xregs[31] = env->sp_el[el];
    215    } else {
    216        env->xregs[31] = env->sp_el[0];
    217    }
    218}
    219
    220static inline void update_spsel(CPUARMState *env, uint32_t imm)
    221{
    222    unsigned int cur_el = arm_current_el(env);
    223    /* Update PSTATE SPSel bit; this requires us to update the
    224     * working stack pointer in xregs[31].
    225     */
    226    if (!((imm ^ env->pstate) & PSTATE_SP)) {
    227        return;
    228    }
    229    aarch64_save_sp(env, cur_el);
    230    env->pstate = deposit32(env->pstate, 0, 1, imm);
    231
    232    /* We rely on illegal updates to SPsel from EL0 to get trapped
    233     * at translation time.
    234     */
    235    assert(cur_el >= 1 && cur_el <= 3);
    236    aarch64_restore_sp(env, cur_el);
    237}
    238
    239/*
    240 * arm_pamax
    241 * @cpu: ARMCPU
    242 *
    243 * Returns the implementation defined bit-width of physical addresses.
    244 * The ARMv8 reference manuals refer to this as PAMax().
    245 */
    246static inline unsigned int arm_pamax(ARMCPU *cpu)
    247{
    248    static const unsigned int pamax_map[] = {
    249        [0] = 32,
    250        [1] = 36,
    251        [2] = 40,
    252        [3] = 42,
    253        [4] = 44,
    254        [5] = 48,
    255    };
    256    unsigned int parange =
    257        FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
    258
    259    /* id_aa64mmfr0 is a read-only register so values outside of the
    260     * supported mappings can be considered an implementation error.  */
    261    assert(parange < ARRAY_SIZE(pamax_map));
    262    return pamax_map[parange];
    263}
    264
    265/* Return true if extended addresses are enabled.
    266 * This is always the case if our translation regime is 64 bit,
    267 * but depends on TTBCR.EAE for 32 bit.
    268 */
    269static inline bool extended_addresses_enabled(CPUARMState *env)
    270{
    271    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
    272    return arm_el_is_aa64(env, 1) ||
    273           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
    274}
    275
    276/* Update a QEMU watchpoint based on the information the guest has set in the
    277 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
    278 */
    279void hw_watchpoint_update(ARMCPU *cpu, int n);
    280/* Update the QEMU watchpoints for every guest watchpoint. This does a
    281 * complete delete-and-reinstate of the QEMU watchpoint list and so is
    282 * suitable for use after migration or on reset.
    283 */
    284void hw_watchpoint_update_all(ARMCPU *cpu);
    285/* Update a QEMU breakpoint based on the information the guest has set in the
    286 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
    287 */
    288void hw_breakpoint_update(ARMCPU *cpu, int n);
    289/* Update the QEMU breakpoints for every guest breakpoint. This does a
    290 * complete delete-and-reinstate of the QEMU breakpoint list and so is
    291 * suitable for use after migration or on reset.
    292 */
    293void hw_breakpoint_update_all(ARMCPU *cpu);
    294
    295/* Callback function for checking if a breakpoint should trigger. */
    296bool arm_debug_check_breakpoint(CPUState *cs);
    297
    298/* Callback function for checking if a watchpoint should trigger. */
    299bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
    300
    301/* Adjust addresses (in BE32 mode) before testing against watchpoint
    302 * addresses.
    303 */
    304vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
    305
    306/* Callback function for when a watchpoint or breakpoint triggers. */
    307void arm_debug_excp_handler(CPUState *cs);
    308
    309#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
    310static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
    311{
    312    return false;
    313}
    314static inline void arm_handle_psci_call(ARMCPU *cpu)
    315{
    316    g_assert_not_reached();
    317}
    318#else
    319/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
    320bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
    321/* Actually handle a PSCI call */
    322void arm_handle_psci_call(ARMCPU *cpu);
    323#endif
    324
    325/**
    326 * arm_clear_exclusive: clear the exclusive monitor
    327 * @env: CPU env
    328 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
    329 */
    330static inline void arm_clear_exclusive(CPUARMState *env)
    331{
    332    env->exclusive_addr = -1;
    333}
    334
    335/**
    336 * ARMFaultType: type of an ARM MMU fault
    337 * This corresponds to the v8A pseudocode's Fault enumeration,
    338 * with extensions for QEMU internal conditions.
    339 */
    340typedef enum ARMFaultType {
    341    ARMFault_None,
    342    ARMFault_AccessFlag,
    343    ARMFault_Alignment,
    344    ARMFault_Background,
    345    ARMFault_Domain,
    346    ARMFault_Permission,
    347    ARMFault_Translation,
    348    ARMFault_AddressSize,
    349    ARMFault_SyncExternal,
    350    ARMFault_SyncExternalOnWalk,
    351    ARMFault_SyncParity,
    352    ARMFault_SyncParityOnWalk,
    353    ARMFault_AsyncParity,
    354    ARMFault_AsyncExternal,
    355    ARMFault_Debug,
    356    ARMFault_TLBConflict,
    357    ARMFault_Lockdown,
    358    ARMFault_Exclusive,
    359    ARMFault_ICacheMaint,
    360    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
    361    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
    362} ARMFaultType;
    363
    364/**
    365 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
    366 * @type: Type of fault
    367 * @level: Table walk level (for translation, access flag and permission faults)
    368 * @domain: Domain of the fault address (for non-LPAE CPUs only)
    369 * @s2addr: Address that caused a fault at stage 2
    370 * @stage2: True if we faulted at stage 2
    371 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
    372 * @s1ns: True if we faulted on a non-secure IPA while in secure state
    373 * @ea: True if we should set the EA (external abort type) bit in syndrome
    374 */
    375typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
    376struct ARMMMUFaultInfo {
    377    ARMFaultType type;
    378    target_ulong s2addr;
    379    int level;
    380    int domain;
    381    bool stage2;
    382    bool s1ptw;
    383    bool s1ns;
    384    bool ea;
    385};
    386
    387/**
    388 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
    389 * Compare pseudocode EncodeSDFSC(), though unlike that function
    390 * we set up a whole FSR-format code including domain field and
    391 * putting the high bit of the FSC into bit 10.
    392 */
    393static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
    394{
    395    uint32_t fsc;
    396
    397    switch (fi->type) {
    398    case ARMFault_None:
    399        return 0;
    400    case ARMFault_AccessFlag:
    401        fsc = fi->level == 1 ? 0x3 : 0x6;
    402        break;
    403    case ARMFault_Alignment:
    404        fsc = 0x1;
    405        break;
    406    case ARMFault_Permission:
    407        fsc = fi->level == 1 ? 0xd : 0xf;
    408        break;
    409    case ARMFault_Domain:
    410        fsc = fi->level == 1 ? 0x9 : 0xb;
    411        break;
    412    case ARMFault_Translation:
    413        fsc = fi->level == 1 ? 0x5 : 0x7;
    414        break;
    415    case ARMFault_SyncExternal:
    416        fsc = 0x8 | (fi->ea << 12);
    417        break;
    418    case ARMFault_SyncExternalOnWalk:
    419        fsc = fi->level == 1 ? 0xc : 0xe;
    420        fsc |= (fi->ea << 12);
    421        break;
    422    case ARMFault_SyncParity:
    423        fsc = 0x409;
    424        break;
    425    case ARMFault_SyncParityOnWalk:
    426        fsc = fi->level == 1 ? 0x40c : 0x40e;
    427        break;
    428    case ARMFault_AsyncParity:
    429        fsc = 0x408;
    430        break;
    431    case ARMFault_AsyncExternal:
    432        fsc = 0x406 | (fi->ea << 12);
    433        break;
    434    case ARMFault_Debug:
    435        fsc = 0x2;
    436        break;
    437    case ARMFault_TLBConflict:
    438        fsc = 0x400;
    439        break;
    440    case ARMFault_Lockdown:
    441        fsc = 0x404;
    442        break;
    443    case ARMFault_Exclusive:
    444        fsc = 0x405;
    445        break;
    446    case ARMFault_ICacheMaint:
    447        fsc = 0x4;
    448        break;
    449    case ARMFault_Background:
    450        fsc = 0x0;
    451        break;
    452    case ARMFault_QEMU_NSCExec:
    453        fsc = M_FAKE_FSR_NSC_EXEC;
    454        break;
    455    case ARMFault_QEMU_SFault:
    456        fsc = M_FAKE_FSR_SFAULT;
    457        break;
    458    default:
    459        /* Other faults can't occur in a context that requires a
    460         * short-format status code.
    461         */
    462        g_assert_not_reached();
    463    }
    464
    465    fsc |= (fi->domain << 4);
    466    return fsc;
    467}
    468
    469/**
    470 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
    471 * Compare pseudocode EncodeLDFSC(), though unlike that function
    472 * we fill in also the LPAE bit 9 of a DFSR format.
    473 */
    474static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
    475{
    476    uint32_t fsc;
    477
    478    switch (fi->type) {
    479    case ARMFault_None:
    480        return 0;
    481    case ARMFault_AddressSize:
    482        fsc = fi->level & 3;
    483        break;
    484    case ARMFault_AccessFlag:
    485        fsc = (fi->level & 3) | (0x2 << 2);
    486        break;
    487    case ARMFault_Permission:
    488        fsc = (fi->level & 3) | (0x3 << 2);
    489        break;
    490    case ARMFault_Translation:
    491        fsc = (fi->level & 3) | (0x1 << 2);
    492        break;
    493    case ARMFault_SyncExternal:
    494        fsc = 0x10 | (fi->ea << 12);
    495        break;
    496    case ARMFault_SyncExternalOnWalk:
    497        fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
    498        break;
    499    case ARMFault_SyncParity:
    500        fsc = 0x18;
    501        break;
    502    case ARMFault_SyncParityOnWalk:
    503        fsc = (fi->level & 3) | (0x7 << 2);
    504        break;
    505    case ARMFault_AsyncParity:
    506        fsc = 0x19;
    507        break;
    508    case ARMFault_AsyncExternal:
    509        fsc = 0x11 | (fi->ea << 12);
    510        break;
    511    case ARMFault_Alignment:
    512        fsc = 0x21;
    513        break;
    514    case ARMFault_Debug:
    515        fsc = 0x22;
    516        break;
    517    case ARMFault_TLBConflict:
    518        fsc = 0x30;
    519        break;
    520    case ARMFault_Lockdown:
    521        fsc = 0x34;
    522        break;
    523    case ARMFault_Exclusive:
    524        fsc = 0x35;
    525        break;
    526    default:
    527        /* Other faults can't occur in a context that requires a
    528         * long-format status code.
    529         */
    530        g_assert_not_reached();
    531    }
    532
    533    fsc |= 1 << 9;
    534    return fsc;
    535}
    536
    537static inline bool arm_extabort_type(MemTxResult result)
    538{
    539    /* The EA bit in syndromes and fault status registers is an
    540     * IMPDEF classification of external aborts. ARM implementations
    541     * usually use this to indicate AXI bus Decode error (0) or
    542     * Slave error (1); in QEMU we follow that.
    543     */
    544    return result != MEMTX_DECODE_ERROR;
    545}
    546
    547bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
    548                      MMUAccessType access_type, int mmu_idx,
    549                      bool probe, uintptr_t retaddr);
    550
    551static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
    552{
    553    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
    554}
    555
    556static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
    557{
    558    if (arm_feature(env, ARM_FEATURE_M)) {
    559        return mmu_idx | ARM_MMU_IDX_M;
    560    } else {
    561        return mmu_idx | ARM_MMU_IDX_A;
    562    }
    563}
    564
    565static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
    566{
    567    /* AArch64 is always a-profile. */
    568    return mmu_idx | ARM_MMU_IDX_A;
    569}
    570
    571int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
    572
    573/*
    574 * Return the MMU index for a v7M CPU with all relevant information
    575 * manually specified.
    576 */
    577ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
    578                              bool secstate, bool priv, bool negpri);
    579
    580/*
    581 * Return the MMU index for a v7M CPU in the specified security and
    582 * privilege state.
    583 */
    584ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
    585                                                bool secstate, bool priv);
    586
    587/* Return the MMU index for a v7M CPU in the specified security state */
    588ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
    589
    590/* Return true if the stage 1 translation regime is using LPAE format page
    591 * tables */
    592bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
    593
    594/* Raise a data fault alignment exception for the specified virtual address */
    595void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
    596                                 MMUAccessType access_type,
    597                                 int mmu_idx, uintptr_t retaddr) QEMU_NORETURN;
    598
    599/* arm_cpu_do_transaction_failed: handle a memory system error response
    600 * (eg "no device/memory present at address") by raising an external abort
    601 * exception
    602 */
    603void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
    604                                   vaddr addr, unsigned size,
    605                                   MMUAccessType access_type,
    606                                   int mmu_idx, MemTxAttrs attrs,
    607                                   MemTxResult response, uintptr_t retaddr);
    608
    609/* Call any registered EL change hooks */
    610static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
    611{
    612    ARMELChangeHook *hook, *next;
    613    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
    614        hook->hook(cpu, hook->opaque);
    615    }
    616}
    617static inline void arm_call_el_change_hook(ARMCPU *cpu)
    618{
    619    ARMELChangeHook *hook, *next;
    620    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
    621        hook->hook(cpu, hook->opaque);
    622    }
    623}
    624
    625/* Return true if this address translation regime has two ranges.  */
    626static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
    627{
    628    switch (mmu_idx) {
    629    case ARMMMUIdx_Stage1_E0:
    630    case ARMMMUIdx_Stage1_E1:
    631    case ARMMMUIdx_Stage1_E1_PAN:
    632    case ARMMMUIdx_Stage1_SE0:
    633    case ARMMMUIdx_Stage1_SE1:
    634    case ARMMMUIdx_Stage1_SE1_PAN:
    635    case ARMMMUIdx_E10_0:
    636    case ARMMMUIdx_E10_1:
    637    case ARMMMUIdx_E10_1_PAN:
    638    case ARMMMUIdx_E20_0:
    639    case ARMMMUIdx_E20_2:
    640    case ARMMMUIdx_E20_2_PAN:
    641    case ARMMMUIdx_SE10_0:
    642    case ARMMMUIdx_SE10_1:
    643    case ARMMMUIdx_SE10_1_PAN:
    644    case ARMMMUIdx_SE20_0:
    645    case ARMMMUIdx_SE20_2:
    646    case ARMMMUIdx_SE20_2_PAN:
    647        return true;
    648    default:
    649        return false;
    650    }
    651}
    652
    653/* Return true if this address translation regime is secure */
    654static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
    655{
    656    switch (mmu_idx) {
    657    case ARMMMUIdx_E10_0:
    658    case ARMMMUIdx_E10_1:
    659    case ARMMMUIdx_E10_1_PAN:
    660    case ARMMMUIdx_E20_0:
    661    case ARMMMUIdx_E20_2:
    662    case ARMMMUIdx_E20_2_PAN:
    663    case ARMMMUIdx_Stage1_E0:
    664    case ARMMMUIdx_Stage1_E1:
    665    case ARMMMUIdx_Stage1_E1_PAN:
    666    case ARMMMUIdx_E2:
    667    case ARMMMUIdx_Stage2:
    668    case ARMMMUIdx_MPrivNegPri:
    669    case ARMMMUIdx_MUserNegPri:
    670    case ARMMMUIdx_MPriv:
    671    case ARMMMUIdx_MUser:
    672        return false;
    673    case ARMMMUIdx_SE3:
    674    case ARMMMUIdx_SE10_0:
    675    case ARMMMUIdx_SE10_1:
    676    case ARMMMUIdx_SE10_1_PAN:
    677    case ARMMMUIdx_SE20_0:
    678    case ARMMMUIdx_SE20_2:
    679    case ARMMMUIdx_SE20_2_PAN:
    680    case ARMMMUIdx_Stage1_SE0:
    681    case ARMMMUIdx_Stage1_SE1:
    682    case ARMMMUIdx_Stage1_SE1_PAN:
    683    case ARMMMUIdx_SE2:
    684    case ARMMMUIdx_Stage2_S:
    685    case ARMMMUIdx_MSPrivNegPri:
    686    case ARMMMUIdx_MSUserNegPri:
    687    case ARMMMUIdx_MSPriv:
    688    case ARMMMUIdx_MSUser:
    689        return true;
    690    default:
    691        g_assert_not_reached();
    692    }
    693}
    694
    695static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
    696{
    697    switch (mmu_idx) {
    698    case ARMMMUIdx_Stage1_E1_PAN:
    699    case ARMMMUIdx_Stage1_SE1_PAN:
    700    case ARMMMUIdx_E10_1_PAN:
    701    case ARMMMUIdx_E20_2_PAN:
    702    case ARMMMUIdx_SE10_1_PAN:
    703    case ARMMMUIdx_SE20_2_PAN:
    704        return true;
    705    default:
    706        return false;
    707    }
    708}
    709
    710/* Return the exception level which controls this address translation regime */
    711static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
    712{
    713    switch (mmu_idx) {
    714    case ARMMMUIdx_SE20_0:
    715    case ARMMMUIdx_SE20_2:
    716    case ARMMMUIdx_SE20_2_PAN:
    717    case ARMMMUIdx_E20_0:
    718    case ARMMMUIdx_E20_2:
    719    case ARMMMUIdx_E20_2_PAN:
    720    case ARMMMUIdx_Stage2:
    721    case ARMMMUIdx_Stage2_S:
    722    case ARMMMUIdx_SE2:
    723    case ARMMMUIdx_E2:
    724        return 2;
    725    case ARMMMUIdx_SE3:
    726        return 3;
    727    case ARMMMUIdx_SE10_0:
    728    case ARMMMUIdx_Stage1_SE0:
    729        return arm_el_is_aa64(env, 3) ? 1 : 3;
    730    case ARMMMUIdx_SE10_1:
    731    case ARMMMUIdx_SE10_1_PAN:
    732    case ARMMMUIdx_Stage1_E0:
    733    case ARMMMUIdx_Stage1_E1:
    734    case ARMMMUIdx_Stage1_E1_PAN:
    735    case ARMMMUIdx_Stage1_SE1:
    736    case ARMMMUIdx_Stage1_SE1_PAN:
    737    case ARMMMUIdx_E10_0:
    738    case ARMMMUIdx_E10_1:
    739    case ARMMMUIdx_E10_1_PAN:
    740    case ARMMMUIdx_MPrivNegPri:
    741    case ARMMMUIdx_MUserNegPri:
    742    case ARMMMUIdx_MPriv:
    743    case ARMMMUIdx_MUser:
    744    case ARMMMUIdx_MSPrivNegPri:
    745    case ARMMMUIdx_MSUserNegPri:
    746    case ARMMMUIdx_MSPriv:
    747    case ARMMMUIdx_MSUser:
    748        return 1;
    749    default:
    750        g_assert_not_reached();
    751    }
    752}
    753
    754/* Return the TCR controlling this translation regime */
    755static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
    756{
    757    if (mmu_idx == ARMMMUIdx_Stage2) {
    758        return &env->cp15.vtcr_el2;
    759    }
    760    if (mmu_idx == ARMMMUIdx_Stage2_S) {
    761        /*
    762         * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
    763         * those are not currently used by QEMU, so just return VSTCR_EL2.
    764         */
    765        return &env->cp15.vstcr_el2;
    766    }
    767    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
    768}
    769
    770/* Return the FSR value for a debug exception (watchpoint, hardware
    771 * breakpoint or BKPT insn) targeting the specified exception level.
    772 */
    773static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
    774{
    775    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
    776    int target_el = arm_debug_target_el(env);
    777    bool using_lpae = false;
    778
    779    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
    780        using_lpae = true;
    781    } else {
    782        if (arm_feature(env, ARM_FEATURE_LPAE) &&
    783            (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
    784            using_lpae = true;
    785        }
    786    }
    787
    788    if (using_lpae) {
    789        return arm_fi_to_lfsc(&fi);
    790    } else {
    791        return arm_fi_to_sfsc(&fi);
    792    }
    793}
    794
    795/**
    796 * arm_num_brps: Return number of implemented breakpoints.
    797 * Note that the ID register BRPS field is "number of bps - 1",
    798 * and we return the actual number of breakpoints.
    799 */
    800static inline int arm_num_brps(ARMCPU *cpu)
    801{
    802    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
    803        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
    804    } else {
    805        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
    806    }
    807}
    808
    809/**
    810 * arm_num_wrps: Return number of implemented watchpoints.
    811 * Note that the ID register WRPS field is "number of wps - 1",
    812 * and we return the actual number of watchpoints.
    813 */
    814static inline int arm_num_wrps(ARMCPU *cpu)
    815{
    816    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
    817        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
    818    } else {
    819        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
    820    }
    821}
    822
    823/**
    824 * arm_num_ctx_cmps: Return number of implemented context comparators.
    825 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
    826 * and we return the actual number of comparators.
    827 */
    828static inline int arm_num_ctx_cmps(ARMCPU *cpu)
    829{
    830    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
    831        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
    832    } else {
    833        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
    834    }
    835}
    836
    837/**
    838 * v7m_using_psp: Return true if using process stack pointer
    839 * Return true if the CPU is currently using the process stack
    840 * pointer, or false if it is using the main stack pointer.
    841 */
    842static inline bool v7m_using_psp(CPUARMState *env)
    843{
    844    /* Handler mode always uses the main stack; for thread mode
    845     * the CONTROL.SPSEL bit determines the answer.
    846     * Note that in v7M it is not possible to be in Handler mode with
    847     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
    848     */
    849    return !arm_v7m_is_handler_mode(env) &&
    850        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
    851}
    852
    853/**
    854 * v7m_sp_limit: Return SP limit for current CPU state
    855 * Return the SP limit value for the current CPU security state
    856 * and stack pointer.
    857 */
    858static inline uint32_t v7m_sp_limit(CPUARMState *env)
    859{
    860    if (v7m_using_psp(env)) {
    861        return env->v7m.psplim[env->v7m.secure];
    862    } else {
    863        return env->v7m.msplim[env->v7m.secure];
    864    }
    865}
    866
    867/**
    868 * v7m_cpacr_pass:
    869 * Return true if the v7M CPACR permits access to the FPU for the specified
    870 * security state and privilege level.
    871 */
    872static inline bool v7m_cpacr_pass(CPUARMState *env,
    873                                  bool is_secure, bool is_priv)
    874{
    875    switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
    876    case 0:
    877    case 2: /* UNPREDICTABLE: we treat like 0 */
    878        return false;
    879    case 1:
    880        return is_priv;
    881    case 3:
    882        return true;
    883    default:
    884        g_assert_not_reached();
    885    }
    886}
    887
    888/**
    889 * aarch32_mode_name(): Return name of the AArch32 CPU mode
    890 * @psr: Program Status Register indicating CPU mode
    891 *
    892 * Returns, for debug logging purposes, a printable representation
    893 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
    894 * the low bits of the specified PSR.
    895 */
    896static inline const char *aarch32_mode_name(uint32_t psr)
    897{
    898    static const char cpu_mode_names[16][4] = {
    899        "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
    900        "???", "???", "hyp", "und", "???", "???", "???", "sys"
    901    };
    902
    903    return cpu_mode_names[psr & 0xf];
    904}
    905
    906/**
    907 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
    908 *
    909 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
    910 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
    911 * Must be called with the iothread lock held.
    912 */
    913void arm_cpu_update_virq(ARMCPU *cpu);
    914
    915/**
    916 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
    917 *
    918 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
    919 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
    920 * Must be called with the iothread lock held.
    921 */
    922void arm_cpu_update_vfiq(ARMCPU *cpu);
    923
    924/**
    925 * arm_mmu_idx_el:
    926 * @env: The cpu environment
    927 * @el: The EL to use.
    928 *
    929 * Return the full ARMMMUIdx for the translation regime for EL.
    930 */
    931ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
    932
    933/**
    934 * arm_mmu_idx:
    935 * @env: The cpu environment
    936 *
    937 * Return the full ARMMMUIdx for the current translation regime.
    938 */
    939ARMMMUIdx arm_mmu_idx(CPUARMState *env);
    940
    941/**
    942 * arm_stage1_mmu_idx:
    943 * @env: The cpu environment
    944 *
    945 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
    946 */
    947#ifdef CONFIG_USER_ONLY
    948static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
    949{
    950    return ARMMMUIdx_Stage1_E0;
    951}
    952#else
    953ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
    954#endif
    955
    956/**
    957 * arm_mmu_idx_is_stage1_of_2:
    958 * @mmu_idx: The ARMMMUIdx to test
    959 *
    960 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
    961 * first stage of a two stage regime.
    962 */
    963static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
    964{
    965    switch (mmu_idx) {
    966    case ARMMMUIdx_Stage1_E0:
    967    case ARMMMUIdx_Stage1_E1:
    968    case ARMMMUIdx_Stage1_E1_PAN:
    969    case ARMMMUIdx_Stage1_SE0:
    970    case ARMMMUIdx_Stage1_SE1:
    971    case ARMMMUIdx_Stage1_SE1_PAN:
    972        return true;
    973    default:
    974        return false;
    975    }
    976}
    977
    978static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
    979                                               const ARMISARegisters *id)
    980{
    981    uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
    982
    983    if ((features >> ARM_FEATURE_V4T) & 1) {
    984        valid |= CPSR_T;
    985    }
    986    if ((features >> ARM_FEATURE_V5) & 1) {
    987        valid |= CPSR_Q; /* V5TE in reality*/
    988    }
    989    if ((features >> ARM_FEATURE_V6) & 1) {
    990        valid |= CPSR_E | CPSR_GE;
    991    }
    992    if ((features >> ARM_FEATURE_THUMB2) & 1) {
    993        valid |= CPSR_IT;
    994    }
    995    if (isar_feature_aa32_jazelle(id)) {
    996        valid |= CPSR_J;
    997    }
    998    if (isar_feature_aa32_pan(id)) {
    999        valid |= CPSR_PAN;
   1000    }
   1001    if (isar_feature_aa32_dit(id)) {
   1002        valid |= CPSR_DIT;
   1003    }
   1004    if (isar_feature_aa32_ssbs(id)) {
   1005        valid |= CPSR_SSBS;
   1006    }
   1007
   1008    return valid;
   1009}
   1010
   1011static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
   1012{
   1013    uint32_t valid;
   1014
   1015    valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
   1016    if (isar_feature_aa64_bti(id)) {
   1017        valid |= PSTATE_BTYPE;
   1018    }
   1019    if (isar_feature_aa64_pan(id)) {
   1020        valid |= PSTATE_PAN;
   1021    }
   1022    if (isar_feature_aa64_uao(id)) {
   1023        valid |= PSTATE_UAO;
   1024    }
   1025    if (isar_feature_aa64_dit(id)) {
   1026        valid |= PSTATE_DIT;
   1027    }
   1028    if (isar_feature_aa64_ssbs(id)) {
   1029        valid |= PSTATE_SSBS;
   1030    }
   1031    if (isar_feature_aa64_mte(id)) {
   1032        valid |= PSTATE_TCO;
   1033    }
   1034
   1035    return valid;
   1036}
   1037
   1038/*
   1039 * Parameters of a given virtual address, as extracted from the
   1040 * translation control register (TCR) for a given regime.
   1041 */
   1042typedef struct ARMVAParameters {
   1043    unsigned tsz    : 8;
   1044    unsigned select : 1;
   1045    bool tbi        : 1;
   1046    bool epd        : 1;
   1047    bool hpd        : 1;
   1048    bool using16k   : 1;
   1049    bool using64k   : 1;
   1050} ARMVAParameters;
   1051
   1052ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
   1053                                   ARMMMUIdx mmu_idx, bool data);
   1054
   1055static inline int exception_target_el(CPUARMState *env)
   1056{
   1057    int target_el = MAX(1, arm_current_el(env));
   1058
   1059    /*
   1060     * No such thing as secure EL1 if EL3 is aarch32,
   1061     * so update the target EL to EL3 in this case.
   1062     */
   1063    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
   1064        target_el = 3;
   1065    }
   1066
   1067    return target_el;
   1068}
   1069
   1070/* Determine if allocation tags are available.  */
   1071static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
   1072                                                 uint64_t sctlr)
   1073{
   1074    if (el < 3
   1075        && arm_feature(env, ARM_FEATURE_EL3)
   1076        && !(env->cp15.scr_el3 & SCR_ATA)) {
   1077        return false;
   1078    }
   1079    if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
   1080        uint64_t hcr = arm_hcr_el2_eff(env);
   1081        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
   1082            return false;
   1083        }
   1084    }
   1085    sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
   1086    return sctlr != 0;
   1087}
   1088
   1089#ifndef CONFIG_USER_ONLY
   1090
   1091/* Security attributes for an address, as returned by v8m_security_lookup. */
   1092typedef struct V8M_SAttributes {
   1093    bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
   1094    bool ns;
   1095    bool nsc;
   1096    uint8_t sregion;
   1097    bool srvalid;
   1098    uint8_t iregion;
   1099    bool irvalid;
   1100} V8M_SAttributes;
   1101
   1102void v8m_security_lookup(CPUARMState *env, uint32_t address,
   1103                         MMUAccessType access_type, ARMMMUIdx mmu_idx,
   1104                         V8M_SAttributes *sattrs);
   1105
   1106bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
   1107                       MMUAccessType access_type, ARMMMUIdx mmu_idx,
   1108                       hwaddr *phys_ptr, MemTxAttrs *txattrs,
   1109                       int *prot, bool *is_subpage,
   1110                       ARMMMUFaultInfo *fi, uint32_t *mregion);
   1111
   1112/* Cacheability and shareability attributes for a memory access */
   1113typedef struct ARMCacheAttrs {
   1114    unsigned int attrs:8; /* as in the MAIR register encoding */
   1115    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
   1116} ARMCacheAttrs;
   1117
   1118bool get_phys_addr(CPUARMState *env, target_ulong address,
   1119                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
   1120                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
   1121                   target_ulong *page_size,
   1122                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
   1123    __attribute__((nonnull));
   1124
   1125void arm_log_exception(int idx);
   1126
   1127#endif /* !CONFIG_USER_ONLY */
   1128
   1129/*
   1130 * The log2 of the words in the tag block, for GMID_EL1.BS.
   1131 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
   1132 */
   1133#define GMID_EL1_BS  6
   1134
   1135/* We associate one allocation tag per 16 bytes, the minimum.  */
   1136#define LOG2_TAG_GRANULE 4
   1137#define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
   1138
   1139/*
   1140 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
   1141 * the same simd_desc() encoding due to restrictions on size.
   1142 * Use these instead.
   1143 */
   1144FIELD(PREDDESC, OPRSZ, 0, 6)
   1145FIELD(PREDDESC, ESZ, 6, 2)
   1146FIELD(PREDDESC, DATA, 8, 24)
   1147
   1148/*
   1149 * The SVE simd_data field, for memory ops, contains either
   1150 * rd (5 bits) or a shift count (2 bits).
   1151 */
   1152#define SVE_MTEDESC_SHIFT 5
   1153
   1154/* Bits within a descriptor passed to the helper_mte_check* functions. */
   1155FIELD(MTEDESC, MIDX,  0, 4)
   1156FIELD(MTEDESC, TBI,   4, 2)
   1157FIELD(MTEDESC, TCMA,  6, 2)
   1158FIELD(MTEDESC, WRITE, 8, 1)
   1159FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
   1160
   1161bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
   1162uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
   1163
   1164static inline int allocation_tag_from_addr(uint64_t ptr)
   1165{
   1166    return extract64(ptr, 56, 4);
   1167}
   1168
   1169static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
   1170{
   1171    return deposit64(ptr, 56, 4, rtag);
   1172}
   1173
   1174/* Return true if tbi bits mean that the access is checked.  */
   1175static inline bool tbi_check(uint32_t desc, int bit55)
   1176{
   1177    return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
   1178}
   1179
   1180/* Return true if tcma bits mean that the access is unchecked.  */
   1181static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
   1182{
   1183    /*
   1184     * We had extracted bit55 and ptr_tag for other reasons, so fold
   1185     * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
   1186     */
   1187    bool match = ((ptr_tag + bit55) & 0xf) == 0;
   1188    bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
   1189    return tcma && match;
   1190}
   1191
   1192/*
   1193 * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
   1194 * for the tag to be present in the FAR_ELx register.  But for user-only
   1195 * mode, we do not have a TLB with which to implement this, so we must
   1196 * remove the top byte.
   1197 */
   1198static inline uint64_t useronly_clean_ptr(uint64_t ptr)
   1199{
   1200#ifdef CONFIG_USER_ONLY
   1201    /* TBI0 is known to be enabled, while TBI1 is disabled. */
   1202    ptr &= sextract64(ptr, 0, 56);
   1203#endif
   1204    return ptr;
   1205}
   1206
   1207static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
   1208{
   1209#ifdef CONFIG_USER_ONLY
   1210    int64_t clean_ptr = sextract64(ptr, 0, 56);
   1211    if (tbi_check(desc, clean_ptr < 0)) {
   1212        ptr = clean_ptr;
   1213    }
   1214#endif
   1215    return ptr;
   1216}
   1217
   1218/* Values for M-profile PSR.ECI for MVE insns */
   1219enum MVEECIState {
   1220    ECI_NONE = 0, /* No completed beats */
   1221    ECI_A0 = 1, /* Completed: A0 */
   1222    ECI_A0A1 = 2, /* Completed: A0, A1 */
   1223    /* 3 is reserved */
   1224    ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
   1225    ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
   1226    /* All other values reserved */
   1227};
   1228
   1229/* Definitions for the PMU registers */
   1230#define PMCRN_MASK  0xf800
   1231#define PMCRN_SHIFT 11
   1232#define PMCRLC  0x40
   1233#define PMCRDP  0x20
   1234#define PMCRX   0x10
   1235#define PMCRD   0x8
   1236#define PMCRC   0x4
   1237#define PMCRP   0x2
   1238#define PMCRE   0x1
   1239/*
   1240 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
   1241 * which can be written as 1 to trigger behaviour but which stay RAZ).
   1242 */
   1243#define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
   1244
   1245#define PMXEVTYPER_P          0x80000000
   1246#define PMXEVTYPER_U          0x40000000
   1247#define PMXEVTYPER_NSK        0x20000000
   1248#define PMXEVTYPER_NSU        0x10000000
   1249#define PMXEVTYPER_NSH        0x08000000
   1250#define PMXEVTYPER_M          0x04000000
   1251#define PMXEVTYPER_MT         0x02000000
   1252#define PMXEVTYPER_EVTCOUNT   0x0000ffff
   1253#define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
   1254                               PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
   1255                               PMXEVTYPER_M | PMXEVTYPER_MT | \
   1256                               PMXEVTYPER_EVTCOUNT)
   1257
   1258#define PMCCFILTR             0xf8000000
   1259#define PMCCFILTR_M           PMXEVTYPER_M
   1260#define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
   1261
   1262static inline uint32_t pmu_num_counters(CPUARMState *env)
   1263{
   1264  return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
   1265}
   1266
   1267/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
   1268static inline uint64_t pmu_counter_mask(CPUARMState *env)
   1269{
   1270  return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
   1271}
   1272
   1273#ifdef TARGET_AARCH64
   1274int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
   1275int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
   1276int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
   1277int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
   1278#endif
   1279
   1280#endif