cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

kvm.c (29483B)


      1/*
      2 * ARM implementation of KVM hooks
      3 *
      4 * Copyright Christoffer Dall 2009-2010
      5 *
      6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
      7 * See the COPYING file in the top-level directory.
      8 *
      9 */
     10
     11#include "qemu/osdep.h"
     12#include <sys/ioctl.h>
     13
     14#include <linux/kvm.h>
     15
     16#include "qemu-common.h"
     17#include "qemu/timer.h"
     18#include "qemu/error-report.h"
     19#include "qemu/main-loop.h"
     20#include "qom/object.h"
     21#include "qapi/error.h"
     22#include "sysemu/sysemu.h"
     23#include "sysemu/kvm.h"
     24#include "sysemu/kvm_int.h"
     25#include "kvm_arm.h"
     26#include "cpu.h"
     27#include "trace.h"
     28#include "internals.h"
     29#include "hw/pci/pci.h"
     30#include "exec/memattrs.h"
     31#include "exec/address-spaces.h"
     32#include "hw/boards.h"
     33#include "hw/irq.h"
     34#include "qemu/log.h"
     35
     36const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     37    KVM_CAP_LAST_INFO
     38};
     39
     40static bool cap_has_mp_state;
     41static bool cap_has_inject_serror_esr;
     42static bool cap_has_inject_ext_dabt;
     43
     44static ARMHostCPUFeatures arm_host_cpu_features;
     45
     46int kvm_arm_vcpu_init(CPUState *cs)
     47{
     48    ARMCPU *cpu = ARM_CPU(cs);
     49    struct kvm_vcpu_init init;
     50
     51    init.target = cpu->kvm_target;
     52    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
     53
     54    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
     55}
     56
     57int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
     58{
     59    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
     60}
     61
     62void kvm_arm_init_serror_injection(CPUState *cs)
     63{
     64    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
     65                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
     66}
     67
     68bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
     69                                      int *fdarray,
     70                                      struct kvm_vcpu_init *init)
     71{
     72    int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
     73    int max_vm_pa_size;
     74
     75    kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
     76    if (kvmfd < 0) {
     77        goto err;
     78    }
     79    max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
     80    if (max_vm_pa_size < 0) {
     81        max_vm_pa_size = 0;
     82    }
     83    vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
     84    if (vmfd < 0) {
     85        goto err;
     86    }
     87    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
     88    if (cpufd < 0) {
     89        goto err;
     90    }
     91
     92    if (!init) {
     93        /* Caller doesn't want the VCPU to be initialized, so skip it */
     94        goto finish;
     95    }
     96
     97    if (init->target == -1) {
     98        struct kvm_vcpu_init preferred;
     99
    100        ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
    101        if (!ret) {
    102            init->target = preferred.target;
    103        }
    104    }
    105    if (ret >= 0) {
    106        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
    107        if (ret < 0) {
    108            goto err;
    109        }
    110    } else if (cpus_to_try) {
    111        /* Old kernel which doesn't know about the
    112         * PREFERRED_TARGET ioctl: we know it will only support
    113         * creating one kind of guest CPU which is its preferred
    114         * CPU type.
    115         */
    116        struct kvm_vcpu_init try;
    117
    118        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
    119            try.target = *cpus_to_try++;
    120            memcpy(try.features, init->features, sizeof(init->features));
    121            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
    122            if (ret >= 0) {
    123                break;
    124            }
    125        }
    126        if (ret < 0) {
    127            goto err;
    128        }
    129        init->target = try.target;
    130    } else {
    131        /* Treat a NULL cpus_to_try argument the same as an empty
    132         * list, which means we will fail the call since this must
    133         * be an old kernel which doesn't support PREFERRED_TARGET.
    134         */
    135        goto err;
    136    }
    137
    138finish:
    139    fdarray[0] = kvmfd;
    140    fdarray[1] = vmfd;
    141    fdarray[2] = cpufd;
    142
    143    return true;
    144
    145err:
    146    if (cpufd >= 0) {
    147        close(cpufd);
    148    }
    149    if (vmfd >= 0) {
    150        close(vmfd);
    151    }
    152    if (kvmfd >= 0) {
    153        close(kvmfd);
    154    }
    155
    156    return false;
    157}
    158
    159void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
    160{
    161    int i;
    162
    163    for (i = 2; i >= 0; i--) {
    164        close(fdarray[i]);
    165    }
    166}
    167
    168void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
    169{
    170    CPUARMState *env = &cpu->env;
    171
    172    if (!arm_host_cpu_features.dtb_compatible) {
    173        if (!kvm_enabled() ||
    174            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
    175            /* We can't report this error yet, so flag that we need to
    176             * in arm_cpu_realizefn().
    177             */
    178            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
    179            cpu->host_cpu_probe_failed = true;
    180            return;
    181        }
    182    }
    183
    184    cpu->kvm_target = arm_host_cpu_features.target;
    185    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
    186    cpu->isar = arm_host_cpu_features.isar;
    187    env->features = arm_host_cpu_features.features;
    188}
    189
    190static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
    191{
    192    return !ARM_CPU(obj)->kvm_adjvtime;
    193}
    194
    195static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
    196{
    197    ARM_CPU(obj)->kvm_adjvtime = !value;
    198}
    199
    200static bool kvm_steal_time_get(Object *obj, Error **errp)
    201{
    202    return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
    203}
    204
    205static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
    206{
    207    ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
    208}
    209
    210/* KVM VCPU properties should be prefixed with "kvm-". */
    211void kvm_arm_add_vcpu_properties(Object *obj)
    212{
    213    ARMCPU *cpu = ARM_CPU(obj);
    214    CPUARMState *env = &cpu->env;
    215
    216    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
    217        cpu->kvm_adjvtime = true;
    218        object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
    219                                 kvm_no_adjvtime_set);
    220        object_property_set_description(obj, "kvm-no-adjvtime",
    221                                        "Set on to disable the adjustment of "
    222                                        "the virtual counter. VM stopped time "
    223                                        "will be counted.");
    224    }
    225
    226    cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
    227    object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
    228                             kvm_steal_time_set);
    229    object_property_set_description(obj, "kvm-steal-time",
    230                                    "Set off to disable KVM steal time.");
    231}
    232
    233bool kvm_arm_pmu_supported(void)
    234{
    235    return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
    236}
    237
    238int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
    239{
    240    KVMState *s = KVM_STATE(ms->accelerator);
    241    int ret;
    242
    243    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
    244    *fixed_ipa = ret <= 0;
    245
    246    return ret > 0 ? ret : 40;
    247}
    248
    249int kvm_arch_init(MachineState *ms, KVMState *s)
    250{
    251    int ret = 0;
    252    /* For ARM interrupt delivery is always asynchronous,
    253     * whether we are using an in-kernel VGIC or not.
    254     */
    255    kvm_async_interrupts_allowed = true;
    256
    257    /*
    258     * PSCI wakes up secondary cores, so we always need to
    259     * have vCPUs waiting in kernel space
    260     */
    261    kvm_halt_in_kernel_allowed = true;
    262
    263    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
    264
    265    if (ms->smp.cpus > 256 &&
    266        !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
    267        error_report("Using more than 256 vcpus requires a host kernel "
    268                     "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
    269        ret = -EINVAL;
    270    }
    271
    272    if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
    273        if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
    274            error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
    275        } else {
    276            /* Set status for supporting the external dabt injection */
    277            cap_has_inject_ext_dabt = kvm_check_extension(s,
    278                                    KVM_CAP_ARM_INJECT_EXT_DABT);
    279        }
    280    }
    281
    282    return ret;
    283}
    284
    285unsigned long kvm_arch_vcpu_id(CPUState *cpu)
    286{
    287    return cpu->cpu_index;
    288}
    289
    290/* We track all the KVM devices which need their memory addresses
    291 * passing to the kernel in a list of these structures.
    292 * When board init is complete we run through the list and
    293 * tell the kernel the base addresses of the memory regions.
    294 * We use a MemoryListener to track mapping and unmapping of
    295 * the regions during board creation, so the board models don't
    296 * need to do anything special for the KVM case.
    297 *
    298 * Sometimes the address must be OR'ed with some other fields
    299 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
    300 * @kda_addr_ormask aims at storing the value of those fields.
    301 */
    302typedef struct KVMDevice {
    303    struct kvm_arm_device_addr kda;
    304    struct kvm_device_attr kdattr;
    305    uint64_t kda_addr_ormask;
    306    MemoryRegion *mr;
    307    QSLIST_ENTRY(KVMDevice) entries;
    308    int dev_fd;
    309} KVMDevice;
    310
    311static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
    312
    313static void kvm_arm_devlistener_add(MemoryListener *listener,
    314                                    MemoryRegionSection *section)
    315{
    316    KVMDevice *kd;
    317
    318    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
    319        if (section->mr == kd->mr) {
    320            kd->kda.addr = section->offset_within_address_space;
    321        }
    322    }
    323}
    324
    325static void kvm_arm_devlistener_del(MemoryListener *listener,
    326                                    MemoryRegionSection *section)
    327{
    328    KVMDevice *kd;
    329
    330    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
    331        if (section->mr == kd->mr) {
    332            kd->kda.addr = -1;
    333        }
    334    }
    335}
    336
    337static MemoryListener devlistener = {
    338    .name = "kvm-arm",
    339    .region_add = kvm_arm_devlistener_add,
    340    .region_del = kvm_arm_devlistener_del,
    341};
    342
    343static void kvm_arm_set_device_addr(KVMDevice *kd)
    344{
    345    struct kvm_device_attr *attr = &kd->kdattr;
    346    int ret;
    347
    348    /* If the device control API is available and we have a device fd on the
    349     * KVMDevice struct, let's use the newer API
    350     */
    351    if (kd->dev_fd >= 0) {
    352        uint64_t addr = kd->kda.addr;
    353
    354        addr |= kd->kda_addr_ormask;
    355        attr->addr = (uintptr_t)&addr;
    356        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
    357    } else {
    358        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
    359    }
    360
    361    if (ret < 0) {
    362        fprintf(stderr, "Failed to set device address: %s\n",
    363                strerror(-ret));
    364        abort();
    365    }
    366}
    367
    368static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
    369{
    370    KVMDevice *kd, *tkd;
    371
    372    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
    373        if (kd->kda.addr != -1) {
    374            kvm_arm_set_device_addr(kd);
    375        }
    376        memory_region_unref(kd->mr);
    377        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
    378        g_free(kd);
    379    }
    380    memory_listener_unregister(&devlistener);
    381}
    382
    383static Notifier notify = {
    384    .notify = kvm_arm_machine_init_done,
    385};
    386
    387void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
    388                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
    389{
    390    KVMDevice *kd;
    391
    392    if (!kvm_irqchip_in_kernel()) {
    393        return;
    394    }
    395
    396    if (QSLIST_EMPTY(&kvm_devices_head)) {
    397        memory_listener_register(&devlistener, &address_space_memory);
    398        qemu_add_machine_init_done_notifier(&notify);
    399    }
    400    kd = g_new0(KVMDevice, 1);
    401    kd->mr = mr;
    402    kd->kda.id = devid;
    403    kd->kda.addr = -1;
    404    kd->kdattr.flags = 0;
    405    kd->kdattr.group = group;
    406    kd->kdattr.attr = attr;
    407    kd->dev_fd = dev_fd;
    408    kd->kda_addr_ormask = addr_ormask;
    409    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
    410    memory_region_ref(kd->mr);
    411}
    412
    413static int compare_u64(const void *a, const void *b)
    414{
    415    if (*(uint64_t *)a > *(uint64_t *)b) {
    416        return 1;
    417    }
    418    if (*(uint64_t *)a < *(uint64_t *)b) {
    419        return -1;
    420    }
    421    return 0;
    422}
    423
    424/*
    425 * cpreg_values are sorted in ascending order by KVM register ID
    426 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
    427 * the storage for a KVM register by ID with a binary search.
    428 */
    429static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
    430{
    431    uint64_t *res;
    432
    433    res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
    434                  sizeof(uint64_t), compare_u64);
    435    assert(res);
    436
    437    return &cpu->cpreg_values[res - cpu->cpreg_indexes];
    438}
    439
    440/* Initialize the ARMCPU cpreg list according to the kernel's
    441 * definition of what CPU registers it knows about (and throw away
    442 * the previous TCG-created cpreg list).
    443 */
    444int kvm_arm_init_cpreg_list(ARMCPU *cpu)
    445{
    446    struct kvm_reg_list rl;
    447    struct kvm_reg_list *rlp;
    448    int i, ret, arraylen;
    449    CPUState *cs = CPU(cpu);
    450
    451    rl.n = 0;
    452    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
    453    if (ret != -E2BIG) {
    454        return ret;
    455    }
    456    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
    457    rlp->n = rl.n;
    458    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
    459    if (ret) {
    460        goto out;
    461    }
    462    /* Sort the list we get back from the kernel, since cpreg_tuples
    463     * must be in strictly ascending order.
    464     */
    465    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
    466
    467    for (i = 0, arraylen = 0; i < rlp->n; i++) {
    468        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
    469            continue;
    470        }
    471        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
    472        case KVM_REG_SIZE_U32:
    473        case KVM_REG_SIZE_U64:
    474            break;
    475        default:
    476            fprintf(stderr, "Can't handle size of register in kernel list\n");
    477            ret = -EINVAL;
    478            goto out;
    479        }
    480
    481        arraylen++;
    482    }
    483
    484    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
    485    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
    486    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
    487                                         arraylen);
    488    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
    489                                        arraylen);
    490    cpu->cpreg_array_len = arraylen;
    491    cpu->cpreg_vmstate_array_len = arraylen;
    492
    493    for (i = 0, arraylen = 0; i < rlp->n; i++) {
    494        uint64_t regidx = rlp->reg[i];
    495        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
    496            continue;
    497        }
    498        cpu->cpreg_indexes[arraylen] = regidx;
    499        arraylen++;
    500    }
    501    assert(cpu->cpreg_array_len == arraylen);
    502
    503    if (!write_kvmstate_to_list(cpu)) {
    504        /* Shouldn't happen unless kernel is inconsistent about
    505         * what registers exist.
    506         */
    507        fprintf(stderr, "Initial read of kernel register state failed\n");
    508        ret = -EINVAL;
    509        goto out;
    510    }
    511
    512out:
    513    g_free(rlp);
    514    return ret;
    515}
    516
    517bool write_kvmstate_to_list(ARMCPU *cpu)
    518{
    519    CPUState *cs = CPU(cpu);
    520    int i;
    521    bool ok = true;
    522
    523    for (i = 0; i < cpu->cpreg_array_len; i++) {
    524        struct kvm_one_reg r;
    525        uint64_t regidx = cpu->cpreg_indexes[i];
    526        uint32_t v32;
    527        int ret;
    528
    529        r.id = regidx;
    530
    531        switch (regidx & KVM_REG_SIZE_MASK) {
    532        case KVM_REG_SIZE_U32:
    533            r.addr = (uintptr_t)&v32;
    534            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    535            if (!ret) {
    536                cpu->cpreg_values[i] = v32;
    537            }
    538            break;
    539        case KVM_REG_SIZE_U64:
    540            r.addr = (uintptr_t)(cpu->cpreg_values + i);
    541            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    542            break;
    543        default:
    544            abort();
    545        }
    546        if (ret) {
    547            ok = false;
    548        }
    549    }
    550    return ok;
    551}
    552
    553bool write_list_to_kvmstate(ARMCPU *cpu, int level)
    554{
    555    CPUState *cs = CPU(cpu);
    556    int i;
    557    bool ok = true;
    558
    559    for (i = 0; i < cpu->cpreg_array_len; i++) {
    560        struct kvm_one_reg r;
    561        uint64_t regidx = cpu->cpreg_indexes[i];
    562        uint32_t v32;
    563        int ret;
    564
    565        if (kvm_arm_cpreg_level(regidx) > level) {
    566            continue;
    567        }
    568
    569        r.id = regidx;
    570        switch (regidx & KVM_REG_SIZE_MASK) {
    571        case KVM_REG_SIZE_U32:
    572            v32 = cpu->cpreg_values[i];
    573            r.addr = (uintptr_t)&v32;
    574            break;
    575        case KVM_REG_SIZE_U64:
    576            r.addr = (uintptr_t)(cpu->cpreg_values + i);
    577            break;
    578        default:
    579            abort();
    580        }
    581        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    582        if (ret) {
    583            /* We might fail for "unknown register" and also for
    584             * "you tried to set a register which is constant with
    585             * a different value from what it actually contains".
    586             */
    587            ok = false;
    588        }
    589    }
    590    return ok;
    591}
    592
    593void kvm_arm_cpu_pre_save(ARMCPU *cpu)
    594{
    595    /* KVM virtual time adjustment */
    596    if (cpu->kvm_vtime_dirty) {
    597        *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
    598    }
    599}
    600
    601void kvm_arm_cpu_post_load(ARMCPU *cpu)
    602{
    603    /* KVM virtual time adjustment */
    604    if (cpu->kvm_adjvtime) {
    605        cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
    606        cpu->kvm_vtime_dirty = true;
    607    }
    608}
    609
    610void kvm_arm_reset_vcpu(ARMCPU *cpu)
    611{
    612    int ret;
    613
    614    /* Re-init VCPU so that all registers are set to
    615     * their respective reset values.
    616     */
    617    ret = kvm_arm_vcpu_init(CPU(cpu));
    618    if (ret < 0) {
    619        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
    620        abort();
    621    }
    622    if (!write_kvmstate_to_list(cpu)) {
    623        fprintf(stderr, "write_kvmstate_to_list failed\n");
    624        abort();
    625    }
    626    /*
    627     * Sync the reset values also into the CPUState. This is necessary
    628     * because the next thing we do will be a kvm_arch_put_registers()
    629     * which will update the list values from the CPUState before copying
    630     * the list values back to KVM. It's OK to ignore failure returns here
    631     * for the same reason we do so in kvm_arch_get_registers().
    632     */
    633    write_list_to_cpustate(cpu);
    634}
    635
    636/*
    637 * Update KVM's MP_STATE based on what QEMU thinks it is
    638 */
    639int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
    640{
    641    if (cap_has_mp_state) {
    642        struct kvm_mp_state mp_state = {
    643            .mp_state = (cpu->power_state == PSCI_OFF) ?
    644            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
    645        };
    646        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
    647        if (ret) {
    648            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
    649                    __func__, ret, strerror(-ret));
    650            return -1;
    651        }
    652    }
    653
    654    return 0;
    655}
    656
    657/*
    658 * Sync the KVM MP_STATE into QEMU
    659 */
    660int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
    661{
    662    if (cap_has_mp_state) {
    663        struct kvm_mp_state mp_state;
    664        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
    665        if (ret) {
    666            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
    667                    __func__, ret, strerror(-ret));
    668            abort();
    669        }
    670        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
    671            PSCI_OFF : PSCI_ON;
    672    }
    673
    674    return 0;
    675}
    676
    677void kvm_arm_get_virtual_time(CPUState *cs)
    678{
    679    ARMCPU *cpu = ARM_CPU(cs);
    680    struct kvm_one_reg reg = {
    681        .id = KVM_REG_ARM_TIMER_CNT,
    682        .addr = (uintptr_t)&cpu->kvm_vtime,
    683    };
    684    int ret;
    685
    686    if (cpu->kvm_vtime_dirty) {
    687        return;
    688    }
    689
    690    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    691    if (ret) {
    692        error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
    693        abort();
    694    }
    695
    696    cpu->kvm_vtime_dirty = true;
    697}
    698
    699void kvm_arm_put_virtual_time(CPUState *cs)
    700{
    701    ARMCPU *cpu = ARM_CPU(cs);
    702    struct kvm_one_reg reg = {
    703        .id = KVM_REG_ARM_TIMER_CNT,
    704        .addr = (uintptr_t)&cpu->kvm_vtime,
    705    };
    706    int ret;
    707
    708    if (!cpu->kvm_vtime_dirty) {
    709        return;
    710    }
    711
    712    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    713    if (ret) {
    714        error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
    715        abort();
    716    }
    717
    718    cpu->kvm_vtime_dirty = false;
    719}
    720
    721int kvm_put_vcpu_events(ARMCPU *cpu)
    722{
    723    CPUARMState *env = &cpu->env;
    724    struct kvm_vcpu_events events;
    725    int ret;
    726
    727    if (!kvm_has_vcpu_events()) {
    728        return 0;
    729    }
    730
    731    memset(&events, 0, sizeof(events));
    732    events.exception.serror_pending = env->serror.pending;
    733
    734    /* Inject SError to guest with specified syndrome if host kernel
    735     * supports it, otherwise inject SError without syndrome.
    736     */
    737    if (cap_has_inject_serror_esr) {
    738        events.exception.serror_has_esr = env->serror.has_esr;
    739        events.exception.serror_esr = env->serror.esr;
    740    }
    741
    742    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
    743    if (ret) {
    744        error_report("failed to put vcpu events");
    745    }
    746
    747    return ret;
    748}
    749
    750int kvm_get_vcpu_events(ARMCPU *cpu)
    751{
    752    CPUARMState *env = &cpu->env;
    753    struct kvm_vcpu_events events;
    754    int ret;
    755
    756    if (!kvm_has_vcpu_events()) {
    757        return 0;
    758    }
    759
    760    memset(&events, 0, sizeof(events));
    761    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
    762    if (ret) {
    763        error_report("failed to get vcpu events");
    764        return ret;
    765    }
    766
    767    env->serror.pending = events.exception.serror_pending;
    768    env->serror.has_esr = events.exception.serror_has_esr;
    769    env->serror.esr = events.exception.serror_esr;
    770
    771    return 0;
    772}
    773
    774void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
    775{
    776    ARMCPU *cpu = ARM_CPU(cs);
    777    CPUARMState *env = &cpu->env;
    778
    779    if (unlikely(env->ext_dabt_raised)) {
    780        /*
    781         * Verifying that the ext DABT has been properly injected,
    782         * otherwise risking indefinitely re-running the faulting instruction
    783         * Covering a very narrow case for kernels 5.5..5.5.4
    784         * when injected abort was misconfigured to be
    785         * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
    786         */
    787        if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
    788            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
    789
    790            error_report("Data abort exception with no valid ISS generated by "
    791                   "guest memory access. KVM unable to emulate faulting "
    792                   "instruction. Failed to inject an external data abort "
    793                   "into the guest.");
    794            abort();
    795       }
    796       /* Clear the status */
    797       env->ext_dabt_raised = 0;
    798    }
    799}
    800
    801MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
    802{
    803    ARMCPU *cpu;
    804    uint32_t switched_level;
    805
    806    if (kvm_irqchip_in_kernel()) {
    807        /*
    808         * We only need to sync timer states with user-space interrupt
    809         * controllers, so return early and save cycles if we don't.
    810         */
    811        return MEMTXATTRS_UNSPECIFIED;
    812    }
    813
    814    cpu = ARM_CPU(cs);
    815
    816    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
    817    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
    818        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
    819
    820        qemu_mutex_lock_iothread();
    821
    822        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
    823            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
    824                         !!(run->s.regs.device_irq_level &
    825                            KVM_ARM_DEV_EL1_VTIMER));
    826            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
    827        }
    828
    829        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
    830            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
    831                         !!(run->s.regs.device_irq_level &
    832                            KVM_ARM_DEV_EL1_PTIMER));
    833            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
    834        }
    835
    836        if (switched_level & KVM_ARM_DEV_PMU) {
    837            qemu_set_irq(cpu->pmu_interrupt,
    838                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
    839            switched_level &= ~KVM_ARM_DEV_PMU;
    840        }
    841
    842        if (switched_level) {
    843            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
    844                          __func__, switched_level);
    845        }
    846
    847        /* We also mark unknown levels as processed to not waste cycles */
    848        cpu->device_irq_level = run->s.regs.device_irq_level;
    849        qemu_mutex_unlock_iothread();
    850    }
    851
    852    return MEMTXATTRS_UNSPECIFIED;
    853}
    854
    855void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
    856{
    857    CPUState *cs = opaque;
    858    ARMCPU *cpu = ARM_CPU(cs);
    859
    860    if (running) {
    861        if (cpu->kvm_adjvtime) {
    862            kvm_arm_put_virtual_time(cs);
    863        }
    864    } else {
    865        if (cpu->kvm_adjvtime) {
    866            kvm_arm_get_virtual_time(cs);
    867        }
    868    }
    869}
    870
    871/**
    872 * kvm_arm_handle_dabt_nisv:
    873 * @cs: CPUState
    874 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
    875 *           ISV bit set to '0b0' -> no valid instruction syndrome
    876 * @fault_ipa: faulting address for the synchronous data abort
    877 *
    878 * Returns: 0 if the exception has been handled, < 0 otherwise
    879 */
    880static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
    881                                    uint64_t fault_ipa)
    882{
    883    ARMCPU *cpu = ARM_CPU(cs);
    884    CPUARMState *env = &cpu->env;
    885    /*
    886     * Request KVM to inject the external data abort into the guest
    887     */
    888    if (cap_has_inject_ext_dabt) {
    889        struct kvm_vcpu_events events = { };
    890        /*
    891         * The external data abort event will be handled immediately by KVM
    892         * using the address fault that triggered the exit on given VCPU.
    893         * Requesting injection of the external data abort does not rely
    894         * on any other VCPU state. Therefore, in this particular case, the VCPU
    895         * synchronization can be exceptionally skipped.
    896         */
    897        events.exception.ext_dabt_pending = 1;
    898        /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
    899        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
    900            env->ext_dabt_raised = 1;
    901            return 0;
    902        }
    903    } else {
    904        error_report("Data abort exception triggered by guest memory access "
    905                     "at physical address: 0x"  TARGET_FMT_lx,
    906                     (target_ulong)fault_ipa);
    907        error_printf("KVM unable to emulate faulting instruction.\n");
    908    }
    909    return -1;
    910}
    911
    912int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
    913{
    914    int ret = 0;
    915
    916    switch (run->exit_reason) {
    917    case KVM_EXIT_DEBUG:
    918        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
    919            ret = EXCP_DEBUG;
    920        } /* otherwise return to guest */
    921        break;
    922    case KVM_EXIT_ARM_NISV:
    923        /* External DABT with no valid iss to decode */
    924        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
    925                                       run->arm_nisv.fault_ipa);
    926        break;
    927    default:
    928        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
    929                      __func__, run->exit_reason);
    930        break;
    931    }
    932    return ret;
    933}
    934
    935bool kvm_arch_stop_on_emulation_error(CPUState *cs)
    936{
    937    return true;
    938}
    939
    940int kvm_arch_process_async_events(CPUState *cs)
    941{
    942    return 0;
    943}
    944
    945void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
    946{
    947    if (kvm_sw_breakpoints_active(cs)) {
    948        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    949    }
    950    if (kvm_arm_hw_debug_active(cs)) {
    951        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
    952        kvm_arm_copy_hw_debug_data(&dbg->arch);
    953    }
    954}
    955
    956void kvm_arch_init_irq_routing(KVMState *s)
    957{
    958}
    959
    960int kvm_arch_irqchip_create(KVMState *s)
    961{
    962    if (kvm_kernel_irqchip_split()) {
    963        perror("-machine kernel_irqchip=split is not supported on ARM.");
    964        exit(1);
    965    }
    966
    967    /* If we can create the VGIC using the newer device control API, we
    968     * let the device do this when it initializes itself, otherwise we
    969     * fall back to the old API */
    970    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
    971}
    972
    973int kvm_arm_vgic_probe(void)
    974{
    975    int val = 0;
    976
    977    if (kvm_create_device(kvm_state,
    978                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
    979        val |= KVM_ARM_VGIC_V3;
    980    }
    981    if (kvm_create_device(kvm_state,
    982                          KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
    983        val |= KVM_ARM_VGIC_V2;
    984    }
    985    return val;
    986}
    987
    988int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
    989{
    990    int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
    991    int cpu_idx1 = cpu % 256;
    992    int cpu_idx2 = cpu / 256;
    993
    994    kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
    995               (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
    996
    997    return kvm_set_irq(kvm_state, kvm_irq, !!level);
    998}
    999
   1000int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
   1001                             uint64_t address, uint32_t data, PCIDevice *dev)
   1002{
   1003    AddressSpace *as = pci_device_iommu_address_space(dev);
   1004    hwaddr xlat, len, doorbell_gpa;
   1005    MemoryRegionSection mrs;
   1006    MemoryRegion *mr;
   1007
   1008    if (as == &address_space_memory) {
   1009        return 0;
   1010    }
   1011
   1012    /* MSI doorbell address is translated by an IOMMU */
   1013
   1014    RCU_READ_LOCK_GUARD();
   1015
   1016    mr = address_space_translate(as, address, &xlat, &len, true,
   1017                                 MEMTXATTRS_UNSPECIFIED);
   1018
   1019    if (!mr) {
   1020        return 1;
   1021    }
   1022
   1023    mrs = memory_region_find(mr, xlat, 1);
   1024
   1025    if (!mrs.mr) {
   1026        return 1;
   1027    }
   1028
   1029    doorbell_gpa = mrs.offset_within_address_space;
   1030    memory_region_unref(mrs.mr);
   1031
   1032    route->u.msi.address_lo = doorbell_gpa;
   1033    route->u.msi.address_hi = doorbell_gpa >> 32;
   1034
   1035    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
   1036
   1037    return 0;
   1038}
   1039
   1040int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
   1041                                int vector, PCIDevice *dev)
   1042{
   1043    return 0;
   1044}
   1045
   1046int kvm_arch_release_virq_post(int virq)
   1047{
   1048    return 0;
   1049}
   1050
   1051int kvm_arch_msi_data_to_gsi(uint32_t data)
   1052{
   1053    return (data - 32) & 0xffff;
   1054}
   1055
   1056bool kvm_arch_cpu_check_are_resettable(void)
   1057{
   1058    return true;
   1059}