cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

mte_helper.c (30488B)


      1/*
      2 * ARM v8.5-MemTag Operations
      3 *
      4 * Copyright (c) 2020 Linaro, Ltd.
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21#include "cpu.h"
     22#include "internals.h"
     23#include "exec/exec-all.h"
     24#include "exec/ram_addr.h"
     25#include "exec/cpu_ldst.h"
     26#include "exec/helper-proto.h"
     27#include "qapi/error.h"
     28#include "qemu/guest-random.h"
     29
     30
     31static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
     32{
     33    if (exclude == 0xffff) {
     34        return 0;
     35    }
     36    if (offset == 0) {
     37        while (exclude & (1 << tag)) {
     38            tag = (tag + 1) & 15;
     39        }
     40    } else {
     41        do {
     42            do {
     43                tag = (tag + 1) & 15;
     44            } while (exclude & (1 << tag));
     45        } while (--offset > 0);
     46    }
     47    return tag;
     48}
     49
     50/**
     51 * allocation_tag_mem:
     52 * @env: the cpu environment
     53 * @ptr_mmu_idx: the addressing regime to use for the virtual address
     54 * @ptr: the virtual address for which to look up tag memory
     55 * @ptr_access: the access to use for the virtual address
     56 * @ptr_size: the number of bytes in the normal memory access
     57 * @tag_access: the access to use for the tag memory
     58 * @tag_size: the number of bytes in the tag memory access
     59 * @ra: the return address for exception handling
     60 *
     61 * Our tag memory is formatted as a sequence of little-endian nibbles.
     62 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
     63 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
     64 * for the higher addr.
     65 *
     66 * Here, resolve the physical address from the virtual address, and return
     67 * a pointer to the corresponding tag byte.  Exit with exception if the
     68 * virtual address is not accessible for @ptr_access.
     69 *
     70 * The @ptr_size and @tag_size values may not have an obvious relation
     71 * due to the alignment of @ptr, and the number of tag checks required.
     72 *
     73 * If there is no tag storage corresponding to @ptr, return NULL.
     74 */
     75static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
     76                                   uint64_t ptr, MMUAccessType ptr_access,
     77                                   int ptr_size, MMUAccessType tag_access,
     78                                   int tag_size, uintptr_t ra)
     79{
     80#ifdef CONFIG_USER_ONLY
     81    uint64_t clean_ptr = useronly_clean_ptr(ptr);
     82    int flags = page_get_flags(clean_ptr);
     83    uint8_t *tags;
     84    uintptr_t index;
     85
     86    if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
     87        /* SIGSEGV */
     88        arm_cpu_tlb_fill(env_cpu(env), ptr, ptr_size, ptr_access,
     89                         ptr_mmu_idx, false, ra);
     90        g_assert_not_reached();
     91    }
     92
     93    /* Require both MAP_ANON and PROT_MTE for the page. */
     94    if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
     95        return NULL;
     96    }
     97
     98    tags = page_get_target_data(clean_ptr);
     99    if (tags == NULL) {
    100        size_t alloc_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
    101        tags = page_alloc_target_data(clean_ptr, alloc_size);
    102        assert(tags != NULL);
    103    }
    104
    105    index = extract32(ptr, LOG2_TAG_GRANULE + 1,
    106                      TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
    107    return tags + index;
    108#else
    109    uintptr_t index;
    110    CPUIOTLBEntry *iotlbentry;
    111    int in_page, flags;
    112    ram_addr_t ptr_ra;
    113    hwaddr ptr_paddr, tag_paddr, xlat;
    114    MemoryRegion *mr;
    115    ARMASIdx tag_asi;
    116    AddressSpace *tag_as;
    117    void *host;
    118
    119    /*
    120     * Probe the first byte of the virtual address.  This raises an
    121     * exception for inaccessible pages, and resolves the virtual address
    122     * into the softmmu tlb.
    123     *
    124     * When RA == 0, this is for mte_probe.  The page is expected to be
    125     * valid.  Indicate to probe_access_flags no-fault, then assert that
    126     * we received a valid page.
    127     */
    128    flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
    129                               ra == 0, &host, ra);
    130    assert(!(flags & TLB_INVALID_MASK));
    131
    132    /*
    133     * Find the iotlbentry for ptr.  This *must* be present in the TLB
    134     * because we just found the mapping.
    135     * TODO: Perhaps there should be a cputlb helper that returns a
    136     * matching tlb entry + iotlb entry.
    137     */
    138    index = tlb_index(env, ptr_mmu_idx, ptr);
    139# ifdef CONFIG_DEBUG_TCG
    140    {
    141        CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
    142        target_ulong comparator = (ptr_access == MMU_DATA_LOAD
    143                                   ? entry->addr_read
    144                                   : tlb_addr_write(entry));
    145        g_assert(tlb_hit(comparator, ptr));
    146    }
    147# endif
    148    iotlbentry = &env_tlb(env)->d[ptr_mmu_idx].iotlb[index];
    149
    150    /* If the virtual page MemAttr != Tagged, access unchecked. */
    151    if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
    152        return NULL;
    153    }
    154
    155    /*
    156     * If not backed by host ram, there is no tag storage: access unchecked.
    157     * This is probably a guest os bug though, so log it.
    158     */
    159    if (unlikely(flags & TLB_MMIO)) {
    160        qemu_log_mask(LOG_GUEST_ERROR,
    161                      "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
    162                      "but is not backed by host ram\n", ptr);
    163        return NULL;
    164    }
    165
    166    /*
    167     * The Normal memory access can extend to the next page.  E.g. a single
    168     * 8-byte access to the last byte of a page will check only the last
    169     * tag on the first page.
    170     * Any page access exception has priority over tag check exception.
    171     */
    172    in_page = -(ptr | TARGET_PAGE_MASK);
    173    if (unlikely(ptr_size > in_page)) {
    174        void *ignore;
    175        flags |= probe_access_flags(env, ptr + in_page, ptr_access,
    176                                    ptr_mmu_idx, ra == 0, &ignore, ra);
    177        assert(!(flags & TLB_INVALID_MASK));
    178    }
    179
    180    /* Any debug exception has priority over a tag check exception. */
    181    if (unlikely(flags & TLB_WATCHPOINT)) {
    182        int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
    183        assert(ra != 0);
    184        cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
    185                             iotlbentry->attrs, wp, ra);
    186    }
    187
    188    /*
    189     * Find the physical address within the normal mem space.
    190     * The memory region lookup must succeed because TLB_MMIO was
    191     * not set in the cputlb lookup above.
    192     */
    193    mr = memory_region_from_host(host, &ptr_ra);
    194    tcg_debug_assert(mr != NULL);
    195    tcg_debug_assert(memory_region_is_ram(mr));
    196    ptr_paddr = ptr_ra;
    197    do {
    198        ptr_paddr += mr->addr;
    199        mr = mr->container;
    200    } while (mr);
    201
    202    /* Convert to the physical address in tag space.  */
    203    tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
    204
    205    /* Look up the address in tag space. */
    206    tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
    207    tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
    208    mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
    209                                 tag_access == MMU_DATA_STORE,
    210                                 iotlbentry->attrs);
    211
    212    /*
    213     * Note that @mr will never be NULL.  If there is nothing in the address
    214     * space at @tag_paddr, the translation will return the unallocated memory
    215     * region.  For our purposes, the result must be ram.
    216     */
    217    if (unlikely(!memory_region_is_ram(mr))) {
    218        /* ??? Failure is a board configuration error. */
    219        qemu_log_mask(LOG_UNIMP,
    220                      "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
    221                      "Normal Memory @ 0x%" HWADDR_PRIx "\n",
    222                      tag_paddr, ptr_paddr);
    223        return NULL;
    224    }
    225
    226    /*
    227     * Ensure the tag memory is dirty on write, for migration.
    228     * Tag memory can never contain code or display memory (vga).
    229     */
    230    if (tag_access == MMU_DATA_STORE) {
    231        ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
    232        cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
    233    }
    234
    235    return memory_region_get_ram_ptr(mr) + xlat;
    236#endif
    237}
    238
    239uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
    240{
    241    uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
    242    int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
    243    int start = extract32(env->cp15.rgsr_el1, 0, 4);
    244    int seed = extract32(env->cp15.rgsr_el1, 8, 16);
    245    int offset, i, rtag;
    246
    247    /*
    248     * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
    249     * deterministic algorithm.  Except that with RRND==1 the kernel is
    250     * not required to have set RGSR_EL1.SEED != 0, which is required for
    251     * the deterministic algorithm to function.  So we force a non-zero
    252     * SEED for that case.
    253     */
    254    if (unlikely(seed == 0) && rrnd) {
    255        do {
    256            Error *err = NULL;
    257            uint16_t two;
    258
    259            if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
    260                /*
    261                 * Failed, for unknown reasons in the crypto subsystem.
    262                 * Best we can do is log the reason and use a constant seed.
    263                 */
    264                qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
    265                              error_get_pretty(err));
    266                error_free(err);
    267                two = 1;
    268            }
    269            seed = two;
    270        } while (seed == 0);
    271    }
    272
    273    /* RandomTag */
    274    for (i = offset = 0; i < 4; ++i) {
    275        /* NextRandomTagBit */
    276        int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
    277                   extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
    278        seed = (top << 15) | (seed >> 1);
    279        offset |= top << i;
    280    }
    281    rtag = choose_nonexcluded_tag(start, offset, exclude);
    282    env->cp15.rgsr_el1 = rtag | (seed << 8);
    283
    284    return address_with_allocation_tag(rn, rtag);
    285}
    286
    287uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
    288                         int32_t offset, uint32_t tag_offset)
    289{
    290    int start_tag = allocation_tag_from_addr(ptr);
    291    uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
    292    int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
    293
    294    return address_with_allocation_tag(ptr + offset, rtag);
    295}
    296
    297static int load_tag1(uint64_t ptr, uint8_t *mem)
    298{
    299    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    300    return extract32(*mem, ofs, 4);
    301}
    302
    303uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    304{
    305    int mmu_idx = cpu_mmu_index(env, false);
    306    uint8_t *mem;
    307    int rtag = 0;
    308
    309    /* Trap if accessing an invalid page.  */
    310    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
    311                             MMU_DATA_LOAD, 1, GETPC());
    312
    313    /* Load if page supports tags. */
    314    if (mem) {
    315        rtag = load_tag1(ptr, mem);
    316    }
    317
    318    return address_with_allocation_tag(xt, rtag);
    319}
    320
    321static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
    322{
    323    if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
    324        arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
    325                                    cpu_mmu_index(env, false), ra);
    326        g_assert_not_reached();
    327    }
    328}
    329
    330/* For use in a non-parallel context, store to the given nibble.  */
    331static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
    332{
    333    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    334    *mem = deposit32(*mem, ofs, 4, tag);
    335}
    336
    337/* For use in a parallel context, atomically store to the given nibble.  */
    338static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
    339{
    340    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    341    uint8_t old = qatomic_read(mem);
    342
    343    while (1) {
    344        uint8_t new = deposit32(old, ofs, 4, tag);
    345        uint8_t cmp = qatomic_cmpxchg(mem, old, new);
    346        if (likely(cmp == old)) {
    347            return;
    348        }
    349        old = cmp;
    350    }
    351}
    352
    353typedef void stg_store1(uint64_t, uint8_t *, int);
    354
    355static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
    356                          uintptr_t ra, stg_store1 store1)
    357{
    358    int mmu_idx = cpu_mmu_index(env, false);
    359    uint8_t *mem;
    360
    361    check_tag_aligned(env, ptr, ra);
    362
    363    /* Trap if accessing an invalid page.  */
    364    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
    365                             MMU_DATA_STORE, 1, ra);
    366
    367    /* Store if page supports tags. */
    368    if (mem) {
    369        store1(ptr, mem, allocation_tag_from_addr(xt));
    370    }
    371}
    372
    373void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    374{
    375    do_stg(env, ptr, xt, GETPC(), store_tag1);
    376}
    377
    378void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    379{
    380    do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
    381}
    382
    383void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
    384{
    385    int mmu_idx = cpu_mmu_index(env, false);
    386    uintptr_t ra = GETPC();
    387
    388    check_tag_aligned(env, ptr, ra);
    389    probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
    390}
    391
    392static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
    393                           uintptr_t ra, stg_store1 store1)
    394{
    395    int mmu_idx = cpu_mmu_index(env, false);
    396    int tag = allocation_tag_from_addr(xt);
    397    uint8_t *mem1, *mem2;
    398
    399    check_tag_aligned(env, ptr, ra);
    400
    401    /*
    402     * Trap if accessing an invalid page(s).
    403     * This takes priority over !allocation_tag_access_enabled.
    404     */
    405    if (ptr & TAG_GRANULE) {
    406        /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
    407        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
    408                                  TAG_GRANULE, MMU_DATA_STORE, 1, ra);
    409        mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
    410                                  MMU_DATA_STORE, TAG_GRANULE,
    411                                  MMU_DATA_STORE, 1, ra);
    412
    413        /* Store if page(s) support tags. */
    414        if (mem1) {
    415            store1(TAG_GRANULE, mem1, tag);
    416        }
    417        if (mem2) {
    418            store1(0, mem2, tag);
    419        }
    420    } else {
    421        /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
    422        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
    423                                  2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
    424        if (mem1) {
    425            tag |= tag << 4;
    426            qatomic_set(mem1, tag);
    427        }
    428    }
    429}
    430
    431void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    432{
    433    do_st2g(env, ptr, xt, GETPC(), store_tag1);
    434}
    435
    436void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
    437{
    438    do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
    439}
    440
    441void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
    442{
    443    int mmu_idx = cpu_mmu_index(env, false);
    444    uintptr_t ra = GETPC();
    445    int in_page = -(ptr | TARGET_PAGE_MASK);
    446
    447    check_tag_aligned(env, ptr, ra);
    448
    449    if (likely(in_page >= 2 * TAG_GRANULE)) {
    450        probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
    451    } else {
    452        probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
    453        probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
    454    }
    455}
    456
    457#define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
    458
    459uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
    460{
    461    int mmu_idx = cpu_mmu_index(env, false);
    462    uintptr_t ra = GETPC();
    463    void *tag_mem;
    464
    465    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
    466
    467    /* Trap if accessing an invalid page.  */
    468    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
    469                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
    470                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
    471
    472    /* The tag is squashed to zero if the page does not support tags.  */
    473    if (!tag_mem) {
    474        return 0;
    475    }
    476
    477    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
    478    /*
    479     * We are loading 64-bits worth of tags.  The ordering of elements
    480     * within the word corresponds to a 64-bit little-endian operation.
    481     */
    482    return ldq_le_p(tag_mem);
    483}
    484
    485void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
    486{
    487    int mmu_idx = cpu_mmu_index(env, false);
    488    uintptr_t ra = GETPC();
    489    void *tag_mem;
    490
    491    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
    492
    493    /* Trap if accessing an invalid page.  */
    494    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
    495                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
    496                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
    497
    498    /*
    499     * Tag store only happens if the page support tags,
    500     * and if the OS has enabled access to the tags.
    501     */
    502    if (!tag_mem) {
    503        return;
    504    }
    505
    506    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
    507    /*
    508     * We are storing 64-bits worth of tags.  The ordering of elements
    509     * within the word corresponds to a 64-bit little-endian operation.
    510     */
    511    stq_le_p(tag_mem, val);
    512}
    513
    514void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
    515{
    516    uintptr_t ra = GETPC();
    517    int mmu_idx = cpu_mmu_index(env, false);
    518    int log2_dcz_bytes, log2_tag_bytes;
    519    intptr_t dcz_bytes, tag_bytes;
    520    uint8_t *mem;
    521
    522    /*
    523     * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
    524     * i.e. 32 bytes, which is an unreasonably small dcz anyway,
    525     * to make sure that we can access one complete tag byte here.
    526     */
    527    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
    528    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
    529    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
    530    tag_bytes = (intptr_t)1 << log2_tag_bytes;
    531    ptr &= -dcz_bytes;
    532
    533    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
    534                             MMU_DATA_STORE, tag_bytes, ra);
    535    if (mem) {
    536        int tag_pair = (val & 0xf) * 0x11;
    537        memset(mem, tag_pair, tag_bytes);
    538    }
    539}
    540
    541static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
    542                                uint64_t dirty_ptr, uintptr_t ra)
    543{
    544    int is_write, syn;
    545
    546    env->exception.vaddress = dirty_ptr;
    547
    548    is_write = FIELD_EX32(desc, MTEDESC, WRITE);
    549    syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
    550                                0x11);
    551    raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
    552    g_assert_not_reached();
    553}
    554
    555static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
    556                                 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
    557{
    558    int select;
    559
    560    if (regime_has_2_ranges(arm_mmu_idx)) {
    561        select = extract64(dirty_ptr, 55, 1);
    562    } else {
    563        select = 0;
    564    }
    565    env->cp15.tfsr_el[el] |= 1 << select;
    566#ifdef CONFIG_USER_ONLY
    567    /*
    568     * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
    569     * which then sends a SIGSEGV when the thread is next scheduled.
    570     * This cpu will return to the main loop at the end of the TB,
    571     * which is rather sooner than "normal".  But the alternative
    572     * is waiting until the next syscall.
    573     */
    574    qemu_cpu_kick(env_cpu(env));
    575#endif
    576}
    577
    578/* Record a tag check failure.  */
    579static void mte_check_fail(CPUARMState *env, uint32_t desc,
    580                           uint64_t dirty_ptr, uintptr_t ra)
    581{
    582    int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    583    ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
    584    int el, reg_el, tcf;
    585    uint64_t sctlr;
    586
    587    reg_el = regime_el(env, arm_mmu_idx);
    588    sctlr = env->cp15.sctlr_el[reg_el];
    589
    590    switch (arm_mmu_idx) {
    591    case ARMMMUIdx_E10_0:
    592    case ARMMMUIdx_E20_0:
    593        el = 0;
    594        tcf = extract64(sctlr, 38, 2);
    595        break;
    596    default:
    597        el = reg_el;
    598        tcf = extract64(sctlr, 40, 2);
    599    }
    600
    601    switch (tcf) {
    602    case 1:
    603        /* Tag check fail causes a synchronous exception. */
    604        mte_sync_check_fail(env, desc, dirty_ptr, ra);
    605        break;
    606
    607    case 0:
    608        /*
    609         * Tag check fail does not affect the PE.
    610         * We eliminate this case by not setting MTE_ACTIVE
    611         * in tb_flags, so that we never make this runtime call.
    612         */
    613        g_assert_not_reached();
    614
    615    case 2:
    616        /* Tag check fail causes asynchronous flag set.  */
    617        mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
    618        break;
    619
    620    case 3:
    621        /*
    622         * Tag check fail causes asynchronous flag set for stores, or
    623         * a synchronous exception for loads.
    624         */
    625        if (FIELD_EX32(desc, MTEDESC, WRITE)) {
    626            mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
    627        } else {
    628            mte_sync_check_fail(env, desc, dirty_ptr, ra);
    629        }
    630        break;
    631    }
    632}
    633
    634/**
    635 * checkN:
    636 * @tag: tag memory to test
    637 * @odd: true to begin testing at tags at odd nibble
    638 * @cmp: the tag to compare against
    639 * @count: number of tags to test
    640 *
    641 * Return the number of successful tests.
    642 * Thus a return value < @count indicates a failure.
    643 *
    644 * A note about sizes: count is expected to be small.
    645 *
    646 * The most common use will be LDP/STP of two integer registers,
    647 * which means 16 bytes of memory touching at most 2 tags, but
    648 * often the access is aligned and thus just 1 tag.
    649 *
    650 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
    651 * touching at most 5 tags.  SVE LDR/STR (vector) with the default
    652 * vector length is also 64 bytes; the maximum architectural length
    653 * is 256 bytes touching at most 9 tags.
    654 *
    655 * The loop below uses 7 logical operations and 1 memory operation
    656 * per tag pair.  An implementation that loads an aligned word and
    657 * uses masking to ignore adjacent tags requires 18 logical operations
    658 * and thus does not begin to pay off until 6 tags.
    659 * Which, according to the survey above, is unlikely to be common.
    660 */
    661static int checkN(uint8_t *mem, int odd, int cmp, int count)
    662{
    663    int n = 0, diff;
    664
    665    /* Replicate the test tag and compare.  */
    666    cmp *= 0x11;
    667    diff = *mem++ ^ cmp;
    668
    669    if (odd) {
    670        goto start_odd;
    671    }
    672
    673    while (1) {
    674        /* Test even tag. */
    675        if (unlikely((diff) & 0x0f)) {
    676            break;
    677        }
    678        if (++n == count) {
    679            break;
    680        }
    681
    682    start_odd:
    683        /* Test odd tag. */
    684        if (unlikely((diff) & 0xf0)) {
    685            break;
    686        }
    687        if (++n == count) {
    688            break;
    689        }
    690
    691        diff = *mem++ ^ cmp;
    692    }
    693    return n;
    694}
    695
    696/**
    697 * mte_probe_int() - helper for mte_probe and mte_check
    698 * @env: CPU environment
    699 * @desc: MTEDESC descriptor
    700 * @ptr: virtual address of the base of the access
    701 * @fault: return virtual address of the first check failure
    702 *
    703 * Internal routine for both mte_probe and mte_check.
    704 * Return zero on failure, filling in *fault.
    705 * Return negative on trivial success for tbi disabled.
    706 * Return positive on success with tbi enabled.
    707 */
    708static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
    709                         uintptr_t ra, uint64_t *fault)
    710{
    711    int mmu_idx, ptr_tag, bit55;
    712    uint64_t ptr_last, prev_page, next_page;
    713    uint64_t tag_first, tag_last;
    714    uint64_t tag_byte_first, tag_byte_last;
    715    uint32_t sizem1, tag_count, tag_size, n, c;
    716    uint8_t *mem1, *mem2;
    717    MMUAccessType type;
    718
    719    bit55 = extract64(ptr, 55, 1);
    720    *fault = ptr;
    721
    722    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
    723    if (unlikely(!tbi_check(desc, bit55))) {
    724        return -1;
    725    }
    726
    727    ptr_tag = allocation_tag_from_addr(ptr);
    728
    729    if (tcma_check(desc, bit55, ptr_tag)) {
    730        return 1;
    731    }
    732
    733    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    734    type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
    735    sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
    736
    737    /* Find the addr of the end of the access */
    738    ptr_last = ptr + sizem1;
    739
    740    /* Round the bounds to the tag granule, and compute the number of tags. */
    741    tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
    742    tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
    743    tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
    744
    745    /* Round the bounds to twice the tag granule, and compute the bytes. */
    746    tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
    747    tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
    748
    749    /* Locate the page boundaries. */
    750    prev_page = ptr & TARGET_PAGE_MASK;
    751    next_page = prev_page + TARGET_PAGE_SIZE;
    752
    753    if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
    754        /* Memory access stays on one page. */
    755        tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
    756        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
    757                                  MMU_DATA_LOAD, tag_size, ra);
    758        if (!mem1) {
    759            return 1;
    760        }
    761        /* Perform all of the comparisons. */
    762        n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
    763    } else {
    764        /* Memory access crosses to next page. */
    765        tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
    766        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
    767                                  MMU_DATA_LOAD, tag_size, ra);
    768
    769        tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
    770        mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
    771                                  ptr_last - next_page + 1,
    772                                  MMU_DATA_LOAD, tag_size, ra);
    773
    774        /*
    775         * Perform all of the comparisons.
    776         * Note the possible but unlikely case of the operation spanning
    777         * two pages that do not both have tagging enabled.
    778         */
    779        n = c = (next_page - tag_first) / TAG_GRANULE;
    780        if (mem1) {
    781            n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
    782        }
    783        if (n == c) {
    784            if (!mem2) {
    785                return 1;
    786            }
    787            n += checkN(mem2, 0, ptr_tag, tag_count - c);
    788        }
    789    }
    790
    791    if (likely(n == tag_count)) {
    792        return 1;
    793    }
    794
    795    /*
    796     * If we failed, we know which granule.  For the first granule, the
    797     * failure address is @ptr, the first byte accessed.  Otherwise the
    798     * failure address is the first byte of the nth granule.
    799     */
    800    if (n > 0) {
    801        *fault = tag_first + n * TAG_GRANULE;
    802    }
    803    return 0;
    804}
    805
    806uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
    807{
    808    uint64_t fault;
    809    int ret = mte_probe_int(env, desc, ptr, ra, &fault);
    810
    811    if (unlikely(ret == 0)) {
    812        mte_check_fail(env, desc, fault, ra);
    813    } else if (ret < 0) {
    814        return ptr;
    815    }
    816    return useronly_clean_ptr(ptr);
    817}
    818
    819uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
    820{
    821    return mte_check(env, desc, ptr, GETPC());
    822}
    823
    824/*
    825 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
    826 * Returns false if the access is Checked and the check failed.  This
    827 * is only intended to probe the tag -- the validity of the page must
    828 * be checked beforehand.
    829 */
    830bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
    831{
    832    uint64_t fault;
    833    int ret = mte_probe_int(env, desc, ptr, 0, &fault);
    834
    835    return ret != 0;
    836}
    837
    838/*
    839 * Perform an MTE checked access for DC_ZVA.
    840 */
    841uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
    842{
    843    uintptr_t ra = GETPC();
    844    int log2_dcz_bytes, log2_tag_bytes;
    845    int mmu_idx, bit55;
    846    intptr_t dcz_bytes, tag_bytes, i;
    847    void *mem;
    848    uint64_t ptr_tag, mem_tag, align_ptr;
    849
    850    bit55 = extract64(ptr, 55, 1);
    851
    852    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
    853    if (unlikely(!tbi_check(desc, bit55))) {
    854        return ptr;
    855    }
    856
    857    ptr_tag = allocation_tag_from_addr(ptr);
    858
    859    if (tcma_check(desc, bit55, ptr_tag)) {
    860        goto done;
    861    }
    862
    863    /*
    864     * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
    865     * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
    866     * sure that we can access one complete tag byte here.
    867     */
    868    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
    869    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
    870    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
    871    tag_bytes = (intptr_t)1 << log2_tag_bytes;
    872    align_ptr = ptr & -dcz_bytes;
    873
    874    /*
    875     * Trap if accessing an invalid page.  DC_ZVA requires that we supply
    876     * the original pointer for an invalid page.  But watchpoints require
    877     * that we probe the actual space.  So do both.
    878     */
    879    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    880    (void) probe_write(env, ptr, 1, mmu_idx, ra);
    881    mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
    882                             dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
    883    if (!mem) {
    884        goto done;
    885    }
    886
    887    /*
    888     * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
    889     * it is quite easy to perform all of the comparisons at once without
    890     * any extra masking.
    891     *
    892     * The most common zva block size is 64; some of the thunderx cpus use
    893     * a block size of 128.  For user-only, aarch64_max_initfn will set the
    894     * block size to 512.  Fill out the other cases for future-proofing.
    895     *
    896     * In order to be able to find the first miscompare later, we want the
    897     * tag bytes to be in little-endian order.
    898     */
    899    switch (log2_tag_bytes) {
    900    case 0: /* zva_blocksize 32 */
    901        mem_tag = *(uint8_t *)mem;
    902        ptr_tag *= 0x11u;
    903        break;
    904    case 1: /* zva_blocksize 64 */
    905        mem_tag = cpu_to_le16(*(uint16_t *)mem);
    906        ptr_tag *= 0x1111u;
    907        break;
    908    case 2: /* zva_blocksize 128 */
    909        mem_tag = cpu_to_le32(*(uint32_t *)mem);
    910        ptr_tag *= 0x11111111u;
    911        break;
    912    case 3: /* zva_blocksize 256 */
    913        mem_tag = cpu_to_le64(*(uint64_t *)mem);
    914        ptr_tag *= 0x1111111111111111ull;
    915        break;
    916
    917    default: /* zva_blocksize 512, 1024, 2048 */
    918        ptr_tag *= 0x1111111111111111ull;
    919        i = 0;
    920        do {
    921            mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
    922            if (unlikely(mem_tag != ptr_tag)) {
    923                goto fail;
    924            }
    925            i += 8;
    926            align_ptr += 16 * TAG_GRANULE;
    927        } while (i < tag_bytes);
    928        goto done;
    929    }
    930
    931    if (likely(mem_tag == ptr_tag)) {
    932        goto done;
    933    }
    934
    935 fail:
    936    /* Locate the first nibble that differs. */
    937    i = ctz64(mem_tag ^ ptr_tag) >> 4;
    938    mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
    939
    940 done:
    941    return useronly_clean_ptr(ptr);
    942}