tlb_helper.c (7385B)
1/* 2 * ARM TLB (Translation lookaside buffer) helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8#include "qemu/osdep.h" 9#include "cpu.h" 10#include "internals.h" 11#include "exec/exec-all.h" 12 13static inline uint32_t merge_syn_data_abort(uint32_t template_syn, 14 unsigned int target_el, 15 bool same_el, bool ea, 16 bool s1ptw, bool is_write, 17 int fsc) 18{ 19 uint32_t syn; 20 21 /* 22 * ISV is only set for data aborts routed to EL2 and 23 * never for stage-1 page table walks faulting on stage 2. 24 * 25 * Furthermore, ISV is only set for certain kinds of load/stores. 26 * If the template syndrome does not have ISV set, we should leave 27 * it cleared. 28 * 29 * See ARMv8 specs, D7-1974: 30 * ISS encoding for an exception from a Data Abort, the 31 * ISV field. 32 */ 33 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { 34 syn = syn_data_abort_no_iss(same_el, 0, 35 ea, 0, s1ptw, is_write, fsc); 36 } else { 37 /* 38 * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template 39 * syndrome created at translation time. 40 * Now we create the runtime syndrome with the remaining fields. 41 */ 42 syn = syn_data_abort_with_iss(same_el, 43 0, 0, 0, 0, 0, 44 ea, 0, s1ptw, is_write, fsc, 45 true); 46 /* Merge the runtime syndrome with the template syndrome. */ 47 syn |= template_syn; 48 } 49 return syn; 50} 51 52static void QEMU_NORETURN arm_deliver_fault(ARMCPU *cpu, vaddr addr, 53 MMUAccessType access_type, 54 int mmu_idx, ARMMMUFaultInfo *fi) 55{ 56 CPUARMState *env = &cpu->env; 57 int target_el; 58 bool same_el; 59 uint32_t syn, exc, fsr, fsc; 60 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); 61 62 target_el = exception_target_el(env); 63 if (fi->stage2) { 64 target_el = 2; 65 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4; 66 if (arm_is_secure_below_el3(env) && fi->s1ns) { 67 env->cp15.hpfar_el2 |= HPFAR_NS; 68 } 69 } 70 same_el = (arm_current_el(env) == target_el); 71 72 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 73 arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { 74 /* 75 * LPAE format fault status register : bottom 6 bits are 76 * status code in the same form as needed for syndrome 77 */ 78 fsr = arm_fi_to_lfsc(fi); 79 fsc = extract32(fsr, 0, 6); 80 } else { 81 fsr = arm_fi_to_sfsc(fi); 82 /* 83 * Short format FSR : this fault will never actually be reported 84 * to an EL that uses a syndrome register. Use a (currently) 85 * reserved FSR code in case the constructed syndrome does leak 86 * into the guest somehow. 87 */ 88 fsc = 0x3f; 89 } 90 91 if (access_type == MMU_INST_FETCH) { 92 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc); 93 exc = EXCP_PREFETCH_ABORT; 94 } else { 95 syn = merge_syn_data_abort(env->exception.syndrome, target_el, 96 same_el, fi->ea, fi->s1ptw, 97 access_type == MMU_DATA_STORE, 98 fsc); 99 if (access_type == MMU_DATA_STORE 100 && arm_feature(env, ARM_FEATURE_V6)) { 101 fsr |= (1 << 11); 102 } 103 exc = EXCP_DATA_ABORT; 104 } 105 106 env->exception.vaddress = addr; 107 env->exception.fsr = fsr; 108 raise_exception(env, exc, syn, target_el); 109} 110 111/* Raise a data fault alignment exception for the specified virtual address */ 112void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 113 MMUAccessType access_type, 114 int mmu_idx, uintptr_t retaddr) 115{ 116 ARMCPU *cpu = ARM_CPU(cs); 117 ARMMMUFaultInfo fi = {}; 118 119 /* now we have a real cpu fault */ 120 cpu_restore_state(cs, retaddr, true); 121 122 fi.type = ARMFault_Alignment; 123 arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi); 124} 125 126#if !defined(CONFIG_USER_ONLY) 127 128/* 129 * arm_cpu_do_transaction_failed: handle a memory system error response 130 * (eg "no device/memory present at address") by raising an external abort 131 * exception 132 */ 133void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 134 vaddr addr, unsigned size, 135 MMUAccessType access_type, 136 int mmu_idx, MemTxAttrs attrs, 137 MemTxResult response, uintptr_t retaddr) 138{ 139 ARMCPU *cpu = ARM_CPU(cs); 140 ARMMMUFaultInfo fi = {}; 141 142 /* now we have a real cpu fault */ 143 cpu_restore_state(cs, retaddr, true); 144 145 fi.ea = arm_extabort_type(response); 146 fi.type = ARMFault_SyncExternal; 147 arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi); 148} 149 150#endif /* !defined(CONFIG_USER_ONLY) */ 151 152bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 153 MMUAccessType access_type, int mmu_idx, 154 bool probe, uintptr_t retaddr) 155{ 156 ARMCPU *cpu = ARM_CPU(cs); 157 ARMMMUFaultInfo fi = {}; 158 159#ifdef CONFIG_USER_ONLY 160 int flags = page_get_flags(useronly_clean_ptr(address)); 161 if (flags & PAGE_VALID) { 162 fi.type = ARMFault_Permission; 163 } else { 164 fi.type = ARMFault_Translation; 165 } 166 fi.level = 3; 167 168 /* now we have a real cpu fault */ 169 cpu_restore_state(cs, retaddr, true); 170 arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi); 171#else 172 hwaddr phys_addr; 173 target_ulong page_size; 174 int prot, ret; 175 MemTxAttrs attrs = {}; 176 ARMCacheAttrs cacheattrs = {}; 177 178 /* 179 * Walk the page table and (if the mapping exists) add the page 180 * to the TLB. On success, return true. Otherwise, if probing, 181 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault 182 * register format, and signal the fault. 183 */ 184 ret = get_phys_addr(&cpu->env, address, access_type, 185 core_to_arm_mmu_idx(&cpu->env, mmu_idx), 186 &phys_addr, &attrs, &prot, &page_size, 187 &fi, &cacheattrs); 188 if (likely(!ret)) { 189 /* 190 * Map a single [sub]page. Regions smaller than our declared 191 * target page size are handled specially, so for those we 192 * pass in the exact addresses. 193 */ 194 if (page_size >= TARGET_PAGE_SIZE) { 195 phys_addr &= TARGET_PAGE_MASK; 196 address &= TARGET_PAGE_MASK; 197 } 198 /* Notice and record tagged memory. */ 199 if (cpu_isar_feature(aa64_mte, cpu) && cacheattrs.attrs == 0xf0) { 200 arm_tlb_mte_tagged(&attrs) = true; 201 } 202 203 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 204 prot, mmu_idx, page_size); 205 return true; 206 } else if (probe) { 207 return false; 208 } else { 209 /* now we have a real cpu fault */ 210 cpu_restore_state(cs, retaddr, true); 211 arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi); 212 } 213#endif 214}