cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

vfp_helper.c (41901B)


      1/*
      2 * ARM VFP floating-point operations
      3 *
      4 *  Copyright (c) 2003 Fabrice Bellard
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21#include "cpu.h"
     22#include "exec/helper-proto.h"
     23#include "internals.h"
     24#ifdef CONFIG_TCG
     25#include "qemu/log.h"
     26#include "fpu/softfloat.h"
     27#endif
     28
     29/* VFP support.  We follow the convention used for VFP instructions:
     30   Single precision routines have a "s" suffix, double precision a
     31   "d" suffix.  */
     32
     33#ifdef CONFIG_TCG
     34
     35/* Convert host exception flags to vfp form.  */
     36static inline int vfp_exceptbits_from_host(int host_bits)
     37{
     38    int target_bits = 0;
     39
     40    if (host_bits & float_flag_invalid) {
     41        target_bits |= 1;
     42    }
     43    if (host_bits & float_flag_divbyzero) {
     44        target_bits |= 2;
     45    }
     46    if (host_bits & float_flag_overflow) {
     47        target_bits |= 4;
     48    }
     49    if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
     50        target_bits |= 8;
     51    }
     52    if (host_bits & float_flag_inexact) {
     53        target_bits |= 0x10;
     54    }
     55    if (host_bits & float_flag_input_denormal) {
     56        target_bits |= 0x80;
     57    }
     58    return target_bits;
     59}
     60
     61/* Convert vfp exception flags to target form.  */
     62static inline int vfp_exceptbits_to_host(int target_bits)
     63{
     64    int host_bits = 0;
     65
     66    if (target_bits & 1) {
     67        host_bits |= float_flag_invalid;
     68    }
     69    if (target_bits & 2) {
     70        host_bits |= float_flag_divbyzero;
     71    }
     72    if (target_bits & 4) {
     73        host_bits |= float_flag_overflow;
     74    }
     75    if (target_bits & 8) {
     76        host_bits |= float_flag_underflow;
     77    }
     78    if (target_bits & 0x10) {
     79        host_bits |= float_flag_inexact;
     80    }
     81    if (target_bits & 0x80) {
     82        host_bits |= float_flag_input_denormal;
     83    }
     84    return host_bits;
     85}
     86
     87static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
     88{
     89    uint32_t i;
     90
     91    i = get_float_exception_flags(&env->vfp.fp_status);
     92    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
     93    /* FZ16 does not generate an input denormal exception.  */
     94    i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
     95          & ~float_flag_input_denormal);
     96    i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
     97          & ~float_flag_input_denormal);
     98    return vfp_exceptbits_from_host(i);
     99}
    100
    101static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
    102{
    103    int i;
    104    uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
    105
    106    changed ^= val;
    107    if (changed & (3 << 22)) {
    108        i = (val >> 22) & 3;
    109        switch (i) {
    110        case FPROUNDING_TIEEVEN:
    111            i = float_round_nearest_even;
    112            break;
    113        case FPROUNDING_POSINF:
    114            i = float_round_up;
    115            break;
    116        case FPROUNDING_NEGINF:
    117            i = float_round_down;
    118            break;
    119        case FPROUNDING_ZERO:
    120            i = float_round_to_zero;
    121            break;
    122        }
    123        set_float_rounding_mode(i, &env->vfp.fp_status);
    124        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
    125    }
    126    if (changed & FPCR_FZ16) {
    127        bool ftz_enabled = val & FPCR_FZ16;
    128        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
    129        set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
    130        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
    131        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
    132    }
    133    if (changed & FPCR_FZ) {
    134        bool ftz_enabled = val & FPCR_FZ;
    135        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
    136        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
    137    }
    138    if (changed & FPCR_DN) {
    139        bool dnan_enabled = val & FPCR_DN;
    140        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
    141        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
    142    }
    143
    144    /*
    145     * The exception flags are ORed together when we read fpscr so we
    146     * only need to preserve the current state in one of our
    147     * float_status values.
    148     */
    149    i = vfp_exceptbits_to_host(val);
    150    set_float_exception_flags(i, &env->vfp.fp_status);
    151    set_float_exception_flags(0, &env->vfp.fp_status_f16);
    152    set_float_exception_flags(0, &env->vfp.standard_fp_status);
    153    set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
    154}
    155
    156#else
    157
    158static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
    159{
    160    return 0;
    161}
    162
    163static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
    164{
    165}
    166
    167#endif
    168
    169uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
    170{
    171    uint32_t i, fpscr;
    172
    173    fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
    174            | (env->vfp.vec_len << 16)
    175            | (env->vfp.vec_stride << 20);
    176
    177    /*
    178     * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
    179     * two is not applicable to this CPU will always be zero.
    180     */
    181    fpscr |= env->v7m.ltpsize << 16;
    182
    183    fpscr |= vfp_get_fpscr_from_host(env);
    184
    185    i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
    186    fpscr |= i ? FPCR_QC : 0;
    187
    188    return fpscr;
    189}
    190
    191uint32_t vfp_get_fpscr(CPUARMState *env)
    192{
    193    return HELPER(vfp_get_fpscr)(env);
    194}
    195
    196void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
    197{
    198    ARMCPU *cpu = env_archcpu(env);
    199
    200    /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
    201    if (!cpu_isar_feature(any_fp16, cpu)) {
    202        val &= ~FPCR_FZ16;
    203    }
    204
    205    vfp_set_fpscr_to_host(env, val);
    206
    207    if (!arm_feature(env, ARM_FEATURE_M)) {
    208        /*
    209         * Short-vector length and stride; on M-profile these bits
    210         * are used for different purposes.
    211         * We can't make this conditional be "if MVFR0.FPShVec != 0",
    212         * because in v7A no-short-vector-support cores still had to
    213         * allow Stride/Len to be written with the only effect that
    214         * some insns are required to UNDEF if the guest sets them.
    215         */
    216        env->vfp.vec_len = extract32(val, 16, 3);
    217        env->vfp.vec_stride = extract32(val, 20, 2);
    218    } else if (cpu_isar_feature(aa32_mve, cpu)) {
    219        env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
    220                                     FPCR_LTPSIZE_LENGTH);
    221    }
    222
    223    if (arm_feature(env, ARM_FEATURE_NEON) ||
    224        cpu_isar_feature(aa32_mve, cpu)) {
    225        /*
    226         * The bit we set within fpscr_q is arbitrary; the register as a
    227         * whole being zero/non-zero is what counts.
    228         * TODO: M-profile MVE also has a QC bit.
    229         */
    230        env->vfp.qc[0] = val & FPCR_QC;
    231        env->vfp.qc[1] = 0;
    232        env->vfp.qc[2] = 0;
    233        env->vfp.qc[3] = 0;
    234    }
    235
    236    /*
    237     * We don't implement trapped exception handling, so the
    238     * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
    239     *
    240     * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
    241     * fp_status; QC, Len and Stride are stored separately earlier.
    242     * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
    243     * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
    244     */
    245    env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
    246}
    247
    248void vfp_set_fpscr(CPUARMState *env, uint32_t val)
    249{
    250    HELPER(vfp_set_fpscr)(env, val);
    251}
    252
    253#ifdef CONFIG_TCG
    254
    255#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
    256
    257#define VFP_BINOP(name) \
    258dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
    259{ \
    260    float_status *fpst = fpstp; \
    261    return float16_ ## name(a, b, fpst); \
    262} \
    263float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
    264{ \
    265    float_status *fpst = fpstp; \
    266    return float32_ ## name(a, b, fpst); \
    267} \
    268float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
    269{ \
    270    float_status *fpst = fpstp; \
    271    return float64_ ## name(a, b, fpst); \
    272}
    273VFP_BINOP(add)
    274VFP_BINOP(sub)
    275VFP_BINOP(mul)
    276VFP_BINOP(div)
    277VFP_BINOP(min)
    278VFP_BINOP(max)
    279VFP_BINOP(minnum)
    280VFP_BINOP(maxnum)
    281#undef VFP_BINOP
    282
    283dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a)
    284{
    285    return float16_chs(a);
    286}
    287
    288float32 VFP_HELPER(neg, s)(float32 a)
    289{
    290    return float32_chs(a);
    291}
    292
    293float64 VFP_HELPER(neg, d)(float64 a)
    294{
    295    return float64_chs(a);
    296}
    297
    298dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a)
    299{
    300    return float16_abs(a);
    301}
    302
    303float32 VFP_HELPER(abs, s)(float32 a)
    304{
    305    return float32_abs(a);
    306}
    307
    308float64 VFP_HELPER(abs, d)(float64 a)
    309{
    310    return float64_abs(a);
    311}
    312
    313dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
    314{
    315    return float16_sqrt(a, &env->vfp.fp_status_f16);
    316}
    317
    318float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
    319{
    320    return float32_sqrt(a, &env->vfp.fp_status);
    321}
    322
    323float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
    324{
    325    return float64_sqrt(a, &env->vfp.fp_status);
    326}
    327
    328static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
    329{
    330    uint32_t flags;
    331    switch (cmp) {
    332    case float_relation_equal:
    333        flags = 0x6;
    334        break;
    335    case float_relation_less:
    336        flags = 0x8;
    337        break;
    338    case float_relation_greater:
    339        flags = 0x2;
    340        break;
    341    case float_relation_unordered:
    342        flags = 0x3;
    343        break;
    344    default:
    345        g_assert_not_reached();
    346    }
    347    env->vfp.xregs[ARM_VFP_FPSCR] =
    348        deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
    349}
    350
    351/* XXX: check quiet/signaling case */
    352#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
    353void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
    354{ \
    355    softfloat_to_vfp_compare(env, \
    356        FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
    357} \
    358void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
    359{ \
    360    softfloat_to_vfp_compare(env, \
    361        FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
    362}
    363DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
    364DO_VFP_cmp(s, float32, float32, fp_status)
    365DO_VFP_cmp(d, float64, float64, fp_status)
    366#undef DO_VFP_cmp
    367
    368/* Integer to float and float to integer conversions */
    369
    370#define CONV_ITOF(name, ftype, fsz, sign)                           \
    371ftype HELPER(name)(uint32_t x, void *fpstp)                         \
    372{                                                                   \
    373    float_status *fpst = fpstp;                                     \
    374    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
    375}
    376
    377#define CONV_FTOI(name, ftype, fsz, sign, round)                \
    378sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
    379{                                                               \
    380    float_status *fpst = fpstp;                                 \
    381    if (float##fsz##_is_any_nan(x)) {                           \
    382        float_raise(float_flag_invalid, fpst);                  \
    383        return 0;                                               \
    384    }                                                           \
    385    return float##fsz##_to_##sign##int32##round(x, fpst);       \
    386}
    387
    388#define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
    389    CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
    390    CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
    391    CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
    392
    393FLOAT_CONVS(si, h, uint32_t, 16, )
    394FLOAT_CONVS(si, s, float32, 32, )
    395FLOAT_CONVS(si, d, float64, 64, )
    396FLOAT_CONVS(ui, h, uint32_t, 16, u)
    397FLOAT_CONVS(ui, s, float32, 32, u)
    398FLOAT_CONVS(ui, d, float64, 64, u)
    399
    400#undef CONV_ITOF
    401#undef CONV_FTOI
    402#undef FLOAT_CONVS
    403
    404/* floating point conversion */
    405float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
    406{
    407    return float32_to_float64(x, &env->vfp.fp_status);
    408}
    409
    410float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
    411{
    412    return float64_to_float32(x, &env->vfp.fp_status);
    413}
    414
    415uint32_t HELPER(bfcvt)(float32 x, void *status)
    416{
    417    return float32_to_bfloat16(x, status);
    418}
    419
    420uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
    421{
    422    bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
    423    bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
    424    return deposit32(lo, 16, 16, hi);
    425}
    426
    427/*
    428 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
    429 * must always round-to-nearest; the AArch64 ones honour the FPSCR
    430 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
    431 * round-to-nearest so either helper will work.) AArch32 float-to-fix
    432 * must round-to-zero.
    433 */
    434#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
    435ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
    436                                     void *fpstp) \
    437{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
    438
    439#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
    440    ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
    441                                                     uint32_t shift,   \
    442                                                     void *fpstp)      \
    443    {                                                                  \
    444        ftype ret;                                                     \
    445        float_status *fpst = fpstp;                                    \
    446        FloatRoundMode oldmode = fpst->float_rounding_mode;            \
    447        fpst->float_rounding_mode = float_round_nearest_even;          \
    448        ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp);      \
    449        fpst->float_rounding_mode = oldmode;                           \
    450        return ret;                                                    \
    451    }
    452
    453#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
    454uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
    455                                            void *fpst)                   \
    456{                                                                         \
    457    if (unlikely(float##fsz##_is_any_nan(x))) {                           \
    458        float_raise(float_flag_invalid, fpst);                            \
    459        return 0;                                                         \
    460    }                                                                     \
    461    return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
    462}
    463
    464#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
    465VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
    466VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
    467VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
    468                         float_round_to_zero, _round_to_zero)    \
    469VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
    470                         get_float_rounding_mode(fpst), )
    471
    472#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
    473VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
    474VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
    475                         get_float_rounding_mode(fpst), )
    476
    477VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
    478VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
    479VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
    480VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
    481VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
    482VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
    483VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
    484VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
    485VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
    486VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
    487VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
    488VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
    489VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
    490VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
    491VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
    492VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
    493VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
    494VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
    495
    496#undef VFP_CONV_FIX
    497#undef VFP_CONV_FIX_FLOAT
    498#undef VFP_CONV_FLOAT_FIX_ROUND
    499#undef VFP_CONV_FIX_A64
    500
    501/* Set the current fp rounding mode and return the old one.
    502 * The argument is a softfloat float_round_ value.
    503 */
    504uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
    505{
    506    float_status *fp_status = fpstp;
    507
    508    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    509    set_float_rounding_mode(rmode, fp_status);
    510
    511    return prev_rmode;
    512}
    513
    514/* Half precision conversions.  */
    515float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
    516{
    517    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
    518     * it would affect flushing input denormals.
    519     */
    520    float_status *fpst = fpstp;
    521    bool save = get_flush_inputs_to_zero(fpst);
    522    set_flush_inputs_to_zero(false, fpst);
    523    float32 r = float16_to_float32(a, !ahp_mode, fpst);
    524    set_flush_inputs_to_zero(save, fpst);
    525    return r;
    526}
    527
    528uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
    529{
    530    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
    531     * it would affect flushing output denormals.
    532     */
    533    float_status *fpst = fpstp;
    534    bool save = get_flush_to_zero(fpst);
    535    set_flush_to_zero(false, fpst);
    536    float16 r = float32_to_float16(a, !ahp_mode, fpst);
    537    set_flush_to_zero(save, fpst);
    538    return r;
    539}
    540
    541float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
    542{
    543    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
    544     * it would affect flushing input denormals.
    545     */
    546    float_status *fpst = fpstp;
    547    bool save = get_flush_inputs_to_zero(fpst);
    548    set_flush_inputs_to_zero(false, fpst);
    549    float64 r = float16_to_float64(a, !ahp_mode, fpst);
    550    set_flush_inputs_to_zero(save, fpst);
    551    return r;
    552}
    553
    554uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
    555{
    556    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
    557     * it would affect flushing output denormals.
    558     */
    559    float_status *fpst = fpstp;
    560    bool save = get_flush_to_zero(fpst);
    561    set_flush_to_zero(false, fpst);
    562    float16 r = float64_to_float16(a, !ahp_mode, fpst);
    563    set_flush_to_zero(save, fpst);
    564    return r;
    565}
    566
    567/* NEON helpers.  */
    568
    569/* Constants 256 and 512 are used in some helpers; we avoid relying on
    570 * int->float conversions at run-time.  */
    571#define float64_256 make_float64(0x4070000000000000LL)
    572#define float64_512 make_float64(0x4080000000000000LL)
    573#define float16_maxnorm make_float16(0x7bff)
    574#define float32_maxnorm make_float32(0x7f7fffff)
    575#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
    576
    577/* Reciprocal functions
    578 *
    579 * The algorithm that must be used to calculate the estimate
    580 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
    581 */
    582
    583/* See RecipEstimate()
    584 *
    585 * input is a 9 bit fixed point number
    586 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
    587 * result range 256 .. 511 for a number from 1.0 to 511/256.
    588 */
    589
    590static int recip_estimate(int input)
    591{
    592    int a, b, r;
    593    assert(256 <= input && input < 512);
    594    a = (input * 2) + 1;
    595    b = (1 << 19) / a;
    596    r = (b + 1) >> 1;
    597    assert(256 <= r && r < 512);
    598    return r;
    599}
    600
    601/*
    602 * Common wrapper to call recip_estimate
    603 *
    604 * The parameters are exponent and 64 bit fraction (without implicit
    605 * bit) where the binary point is nominally at bit 52. Returns a
    606 * float64 which can then be rounded to the appropriate size by the
    607 * callee.
    608 */
    609
    610static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
    611{
    612    uint32_t scaled, estimate;
    613    uint64_t result_frac;
    614    int result_exp;
    615
    616    /* Handle sub-normals */
    617    if (*exp == 0) {
    618        if (extract64(frac, 51, 1) == 0) {
    619            *exp = -1;
    620            frac <<= 2;
    621        } else {
    622            frac <<= 1;
    623        }
    624    }
    625
    626    /* scaled = UInt('1':fraction<51:44>) */
    627    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
    628    estimate = recip_estimate(scaled);
    629
    630    result_exp = exp_off - *exp;
    631    result_frac = deposit64(0, 44, 8, estimate);
    632    if (result_exp == 0) {
    633        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
    634    } else if (result_exp == -1) {
    635        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
    636        result_exp = 0;
    637    }
    638
    639    *exp = result_exp;
    640
    641    return result_frac;
    642}
    643
    644static bool round_to_inf(float_status *fpst, bool sign_bit)
    645{
    646    switch (fpst->float_rounding_mode) {
    647    case float_round_nearest_even: /* Round to Nearest */
    648        return true;
    649    case float_round_up: /* Round to +Inf */
    650        return !sign_bit;
    651    case float_round_down: /* Round to -Inf */
    652        return sign_bit;
    653    case float_round_to_zero: /* Round to Zero */
    654        return false;
    655    default:
    656        g_assert_not_reached();
    657    }
    658}
    659
    660uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
    661{
    662    float_status *fpst = fpstp;
    663    float16 f16 = float16_squash_input_denormal(input, fpst);
    664    uint32_t f16_val = float16_val(f16);
    665    uint32_t f16_sign = float16_is_neg(f16);
    666    int f16_exp = extract32(f16_val, 10, 5);
    667    uint32_t f16_frac = extract32(f16_val, 0, 10);
    668    uint64_t f64_frac;
    669
    670    if (float16_is_any_nan(f16)) {
    671        float16 nan = f16;
    672        if (float16_is_signaling_nan(f16, fpst)) {
    673            float_raise(float_flag_invalid, fpst);
    674            if (!fpst->default_nan_mode) {
    675                nan = float16_silence_nan(f16, fpst);
    676            }
    677        }
    678        if (fpst->default_nan_mode) {
    679            nan =  float16_default_nan(fpst);
    680        }
    681        return nan;
    682    } else if (float16_is_infinity(f16)) {
    683        return float16_set_sign(float16_zero, float16_is_neg(f16));
    684    } else if (float16_is_zero(f16)) {
    685        float_raise(float_flag_divbyzero, fpst);
    686        return float16_set_sign(float16_infinity, float16_is_neg(f16));
    687    } else if (float16_abs(f16) < (1 << 8)) {
    688        /* Abs(value) < 2.0^-16 */
    689        float_raise(float_flag_overflow | float_flag_inexact, fpst);
    690        if (round_to_inf(fpst, f16_sign)) {
    691            return float16_set_sign(float16_infinity, f16_sign);
    692        } else {
    693            return float16_set_sign(float16_maxnorm, f16_sign);
    694        }
    695    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
    696        float_raise(float_flag_underflow, fpst);
    697        return float16_set_sign(float16_zero, float16_is_neg(f16));
    698    }
    699
    700    f64_frac = call_recip_estimate(&f16_exp, 29,
    701                                   ((uint64_t) f16_frac) << (52 - 10));
    702
    703    /* result = sign : result_exp<4:0> : fraction<51:42> */
    704    f16_val = deposit32(0, 15, 1, f16_sign);
    705    f16_val = deposit32(f16_val, 10, 5, f16_exp);
    706    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
    707    return make_float16(f16_val);
    708}
    709
    710float32 HELPER(recpe_f32)(float32 input, void *fpstp)
    711{
    712    float_status *fpst = fpstp;
    713    float32 f32 = float32_squash_input_denormal(input, fpst);
    714    uint32_t f32_val = float32_val(f32);
    715    bool f32_sign = float32_is_neg(f32);
    716    int f32_exp = extract32(f32_val, 23, 8);
    717    uint32_t f32_frac = extract32(f32_val, 0, 23);
    718    uint64_t f64_frac;
    719
    720    if (float32_is_any_nan(f32)) {
    721        float32 nan = f32;
    722        if (float32_is_signaling_nan(f32, fpst)) {
    723            float_raise(float_flag_invalid, fpst);
    724            if (!fpst->default_nan_mode) {
    725                nan = float32_silence_nan(f32, fpst);
    726            }
    727        }
    728        if (fpst->default_nan_mode) {
    729            nan =  float32_default_nan(fpst);
    730        }
    731        return nan;
    732    } else if (float32_is_infinity(f32)) {
    733        return float32_set_sign(float32_zero, float32_is_neg(f32));
    734    } else if (float32_is_zero(f32)) {
    735        float_raise(float_flag_divbyzero, fpst);
    736        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    737    } else if (float32_abs(f32) < (1ULL << 21)) {
    738        /* Abs(value) < 2.0^-128 */
    739        float_raise(float_flag_overflow | float_flag_inexact, fpst);
    740        if (round_to_inf(fpst, f32_sign)) {
    741            return float32_set_sign(float32_infinity, f32_sign);
    742        } else {
    743            return float32_set_sign(float32_maxnorm, f32_sign);
    744        }
    745    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
    746        float_raise(float_flag_underflow, fpst);
    747        return float32_set_sign(float32_zero, float32_is_neg(f32));
    748    }
    749
    750    f64_frac = call_recip_estimate(&f32_exp, 253,
    751                                   ((uint64_t) f32_frac) << (52 - 23));
    752
    753    /* result = sign : result_exp<7:0> : fraction<51:29> */
    754    f32_val = deposit32(0, 31, 1, f32_sign);
    755    f32_val = deposit32(f32_val, 23, 8, f32_exp);
    756    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
    757    return make_float32(f32_val);
    758}
    759
    760float64 HELPER(recpe_f64)(float64 input, void *fpstp)
    761{
    762    float_status *fpst = fpstp;
    763    float64 f64 = float64_squash_input_denormal(input, fpst);
    764    uint64_t f64_val = float64_val(f64);
    765    bool f64_sign = float64_is_neg(f64);
    766    int f64_exp = extract64(f64_val, 52, 11);
    767    uint64_t f64_frac = extract64(f64_val, 0, 52);
    768
    769    /* Deal with any special cases */
    770    if (float64_is_any_nan(f64)) {
    771        float64 nan = f64;
    772        if (float64_is_signaling_nan(f64, fpst)) {
    773            float_raise(float_flag_invalid, fpst);
    774            if (!fpst->default_nan_mode) {
    775                nan = float64_silence_nan(f64, fpst);
    776            }
    777        }
    778        if (fpst->default_nan_mode) {
    779            nan =  float64_default_nan(fpst);
    780        }
    781        return nan;
    782    } else if (float64_is_infinity(f64)) {
    783        return float64_set_sign(float64_zero, float64_is_neg(f64));
    784    } else if (float64_is_zero(f64)) {
    785        float_raise(float_flag_divbyzero, fpst);
    786        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    787    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
    788        /* Abs(value) < 2.0^-1024 */
    789        float_raise(float_flag_overflow | float_flag_inexact, fpst);
    790        if (round_to_inf(fpst, f64_sign)) {
    791            return float64_set_sign(float64_infinity, f64_sign);
    792        } else {
    793            return float64_set_sign(float64_maxnorm, f64_sign);
    794        }
    795    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
    796        float_raise(float_flag_underflow, fpst);
    797        return float64_set_sign(float64_zero, float64_is_neg(f64));
    798    }
    799
    800    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
    801
    802    /* result = sign : result_exp<10:0> : fraction<51:0>; */
    803    f64_val = deposit64(0, 63, 1, f64_sign);
    804    f64_val = deposit64(f64_val, 52, 11, f64_exp);
    805    f64_val = deposit64(f64_val, 0, 52, f64_frac);
    806    return make_float64(f64_val);
    807}
    808
    809/* The algorithm that must be used to calculate the estimate
    810 * is specified by the ARM ARM.
    811 */
    812
    813static int do_recip_sqrt_estimate(int a)
    814{
    815    int b, estimate;
    816
    817    assert(128 <= a && a < 512);
    818    if (a < 256) {
    819        a = a * 2 + 1;
    820    } else {
    821        a = (a >> 1) << 1;
    822        a = (a + 1) * 2;
    823    }
    824    b = 512;
    825    while (a * (b + 1) * (b + 1) < (1 << 28)) {
    826        b += 1;
    827    }
    828    estimate = (b + 1) / 2;
    829    assert(256 <= estimate && estimate < 512);
    830
    831    return estimate;
    832}
    833
    834
    835static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
    836{
    837    int estimate;
    838    uint32_t scaled;
    839
    840    if (*exp == 0) {
    841        while (extract64(frac, 51, 1) == 0) {
    842            frac = frac << 1;
    843            *exp -= 1;
    844        }
    845        frac = extract64(frac, 0, 51) << 1;
    846    }
    847
    848    if (*exp & 1) {
    849        /* scaled = UInt('01':fraction<51:45>) */
    850        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
    851    } else {
    852        /* scaled = UInt('1':fraction<51:44>) */
    853        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
    854    }
    855    estimate = do_recip_sqrt_estimate(scaled);
    856
    857    *exp = (exp_off - *exp) / 2;
    858    return extract64(estimate, 0, 8) << 44;
    859}
    860
    861uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
    862{
    863    float_status *s = fpstp;
    864    float16 f16 = float16_squash_input_denormal(input, s);
    865    uint16_t val = float16_val(f16);
    866    bool f16_sign = float16_is_neg(f16);
    867    int f16_exp = extract32(val, 10, 5);
    868    uint16_t f16_frac = extract32(val, 0, 10);
    869    uint64_t f64_frac;
    870
    871    if (float16_is_any_nan(f16)) {
    872        float16 nan = f16;
    873        if (float16_is_signaling_nan(f16, s)) {
    874            float_raise(float_flag_invalid, s);
    875            if (!s->default_nan_mode) {
    876                nan = float16_silence_nan(f16, fpstp);
    877            }
    878        }
    879        if (s->default_nan_mode) {
    880            nan =  float16_default_nan(s);
    881        }
    882        return nan;
    883    } else if (float16_is_zero(f16)) {
    884        float_raise(float_flag_divbyzero, s);
    885        return float16_set_sign(float16_infinity, f16_sign);
    886    } else if (f16_sign) {
    887        float_raise(float_flag_invalid, s);
    888        return float16_default_nan(s);
    889    } else if (float16_is_infinity(f16)) {
    890        return float16_zero;
    891    }
    892
    893    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
    894     * preserving the parity of the exponent.  */
    895
    896    f64_frac = ((uint64_t) f16_frac) << (52 - 10);
    897
    898    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
    899
    900    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
    901    val = deposit32(0, 15, 1, f16_sign);
    902    val = deposit32(val, 10, 5, f16_exp);
    903    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
    904    return make_float16(val);
    905}
    906
    907float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
    908{
    909    float_status *s = fpstp;
    910    float32 f32 = float32_squash_input_denormal(input, s);
    911    uint32_t val = float32_val(f32);
    912    uint32_t f32_sign = float32_is_neg(f32);
    913    int f32_exp = extract32(val, 23, 8);
    914    uint32_t f32_frac = extract32(val, 0, 23);
    915    uint64_t f64_frac;
    916
    917    if (float32_is_any_nan(f32)) {
    918        float32 nan = f32;
    919        if (float32_is_signaling_nan(f32, s)) {
    920            float_raise(float_flag_invalid, s);
    921            if (!s->default_nan_mode) {
    922                nan = float32_silence_nan(f32, fpstp);
    923            }
    924        }
    925        if (s->default_nan_mode) {
    926            nan =  float32_default_nan(s);
    927        }
    928        return nan;
    929    } else if (float32_is_zero(f32)) {
    930        float_raise(float_flag_divbyzero, s);
    931        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    932    } else if (float32_is_neg(f32)) {
    933        float_raise(float_flag_invalid, s);
    934        return float32_default_nan(s);
    935    } else if (float32_is_infinity(f32)) {
    936        return float32_zero;
    937    }
    938
    939    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
    940     * preserving the parity of the exponent.  */
    941
    942    f64_frac = ((uint64_t) f32_frac) << 29;
    943
    944    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
    945
    946    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
    947    val = deposit32(0, 31, 1, f32_sign);
    948    val = deposit32(val, 23, 8, f32_exp);
    949    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
    950    return make_float32(val);
    951}
    952
    953float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
    954{
    955    float_status *s = fpstp;
    956    float64 f64 = float64_squash_input_denormal(input, s);
    957    uint64_t val = float64_val(f64);
    958    bool f64_sign = float64_is_neg(f64);
    959    int f64_exp = extract64(val, 52, 11);
    960    uint64_t f64_frac = extract64(val, 0, 52);
    961
    962    if (float64_is_any_nan(f64)) {
    963        float64 nan = f64;
    964        if (float64_is_signaling_nan(f64, s)) {
    965            float_raise(float_flag_invalid, s);
    966            if (!s->default_nan_mode) {
    967                nan = float64_silence_nan(f64, fpstp);
    968            }
    969        }
    970        if (s->default_nan_mode) {
    971            nan =  float64_default_nan(s);
    972        }
    973        return nan;
    974    } else if (float64_is_zero(f64)) {
    975        float_raise(float_flag_divbyzero, s);
    976        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    977    } else if (float64_is_neg(f64)) {
    978        float_raise(float_flag_invalid, s);
    979        return float64_default_nan(s);
    980    } else if (float64_is_infinity(f64)) {
    981        return float64_zero;
    982    }
    983
    984    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
    985
    986    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
    987    val = deposit64(0, 61, 1, f64_sign);
    988    val = deposit64(val, 52, 11, f64_exp);
    989    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
    990    return make_float64(val);
    991}
    992
    993uint32_t HELPER(recpe_u32)(uint32_t a)
    994{
    995    int input, estimate;
    996
    997    if ((a & 0x80000000) == 0) {
    998        return 0xffffffff;
    999    }
   1000
   1001    input = extract32(a, 23, 9);
   1002    estimate = recip_estimate(input);
   1003
   1004    return deposit32(0, (32 - 9), 9, estimate);
   1005}
   1006
   1007uint32_t HELPER(rsqrte_u32)(uint32_t a)
   1008{
   1009    int estimate;
   1010
   1011    if ((a & 0xc0000000) == 0) {
   1012        return 0xffffffff;
   1013    }
   1014
   1015    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
   1016
   1017    return deposit32(0, 23, 9, estimate);
   1018}
   1019
   1020/* VFPv4 fused multiply-accumulate */
   1021dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
   1022                                   dh_ctype_f16 c, void *fpstp)
   1023{
   1024    float_status *fpst = fpstp;
   1025    return float16_muladd(a, b, c, 0, fpst);
   1026}
   1027
   1028float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
   1029{
   1030    float_status *fpst = fpstp;
   1031    return float32_muladd(a, b, c, 0, fpst);
   1032}
   1033
   1034float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
   1035{
   1036    float_status *fpst = fpstp;
   1037    return float64_muladd(a, b, c, 0, fpst);
   1038}
   1039
   1040/* ARMv8 round to integral */
   1041dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
   1042{
   1043    return float16_round_to_int(x, fp_status);
   1044}
   1045
   1046float32 HELPER(rints_exact)(float32 x, void *fp_status)
   1047{
   1048    return float32_round_to_int(x, fp_status);
   1049}
   1050
   1051float64 HELPER(rintd_exact)(float64 x, void *fp_status)
   1052{
   1053    return float64_round_to_int(x, fp_status);
   1054}
   1055
   1056dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
   1057{
   1058    int old_flags = get_float_exception_flags(fp_status), new_flags;
   1059    float16 ret;
   1060
   1061    ret = float16_round_to_int(x, fp_status);
   1062
   1063    /* Suppress any inexact exceptions the conversion produced */
   1064    if (!(old_flags & float_flag_inexact)) {
   1065        new_flags = get_float_exception_flags(fp_status);
   1066        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
   1067    }
   1068
   1069    return ret;
   1070}
   1071
   1072float32 HELPER(rints)(float32 x, void *fp_status)
   1073{
   1074    int old_flags = get_float_exception_flags(fp_status), new_flags;
   1075    float32 ret;
   1076
   1077    ret = float32_round_to_int(x, fp_status);
   1078
   1079    /* Suppress any inexact exceptions the conversion produced */
   1080    if (!(old_flags & float_flag_inexact)) {
   1081        new_flags = get_float_exception_flags(fp_status);
   1082        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
   1083    }
   1084
   1085    return ret;
   1086}
   1087
   1088float64 HELPER(rintd)(float64 x, void *fp_status)
   1089{
   1090    int old_flags = get_float_exception_flags(fp_status), new_flags;
   1091    float64 ret;
   1092
   1093    ret = float64_round_to_int(x, fp_status);
   1094
   1095    new_flags = get_float_exception_flags(fp_status);
   1096
   1097    /* Suppress any inexact exceptions the conversion produced */
   1098    if (!(old_flags & float_flag_inexact)) {
   1099        new_flags = get_float_exception_flags(fp_status);
   1100        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
   1101    }
   1102
   1103    return ret;
   1104}
   1105
   1106/* Convert ARM rounding mode to softfloat */
   1107int arm_rmode_to_sf(int rmode)
   1108{
   1109    switch (rmode) {
   1110    case FPROUNDING_TIEAWAY:
   1111        rmode = float_round_ties_away;
   1112        break;
   1113    case FPROUNDING_ODD:
   1114        /* FIXME: add support for TIEAWAY and ODD */
   1115        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
   1116                      rmode);
   1117        /* fall through for now */
   1118    case FPROUNDING_TIEEVEN:
   1119    default:
   1120        rmode = float_round_nearest_even;
   1121        break;
   1122    case FPROUNDING_POSINF:
   1123        rmode = float_round_up;
   1124        break;
   1125    case FPROUNDING_NEGINF:
   1126        rmode = float_round_down;
   1127        break;
   1128    case FPROUNDING_ZERO:
   1129        rmode = float_round_to_zero;
   1130        break;
   1131    }
   1132    return rmode;
   1133}
   1134
   1135/*
   1136 * Implement float64 to int32_t conversion without saturation;
   1137 * the result is supplied modulo 2^32.
   1138 */
   1139uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
   1140{
   1141    float_status *status = vstatus;
   1142    uint32_t exp, sign;
   1143    uint64_t frac;
   1144    uint32_t inexact = 1; /* !Z */
   1145
   1146    sign = extract64(value, 63, 1);
   1147    exp = extract64(value, 52, 11);
   1148    frac = extract64(value, 0, 52);
   1149
   1150    if (exp == 0) {
   1151        /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript.  */
   1152        inexact = sign;
   1153        if (frac != 0) {
   1154            if (status->flush_inputs_to_zero) {
   1155                float_raise(float_flag_input_denormal, status);
   1156            } else {
   1157                float_raise(float_flag_inexact, status);
   1158                inexact = 1;
   1159            }
   1160        }
   1161        frac = 0;
   1162    } else if (exp == 0x7ff) {
   1163        /* This operation raises Invalid for both NaN and overflow (Inf).  */
   1164        float_raise(float_flag_invalid, status);
   1165        frac = 0;
   1166    } else {
   1167        int true_exp = exp - 1023;
   1168        int shift = true_exp - 52;
   1169
   1170        /* Restore implicit bit.  */
   1171        frac |= 1ull << 52;
   1172
   1173        /* Shift the fraction into place.  */
   1174        if (shift >= 0) {
   1175            /* The number is so large we must shift the fraction left.  */
   1176            if (shift >= 64) {
   1177                /* The fraction is shifted out entirely.  */
   1178                frac = 0;
   1179            } else {
   1180                frac <<= shift;
   1181            }
   1182        } else if (shift > -64) {
   1183            /* Normal case -- shift right and notice if bits shift out.  */
   1184            inexact = (frac << (64 + shift)) != 0;
   1185            frac >>= -shift;
   1186        } else {
   1187            /* The fraction is shifted out entirely.  */
   1188            frac = 0;
   1189        }
   1190
   1191        /* Notice overflow or inexact exceptions.  */
   1192        if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
   1193            /* Overflow, for which this operation raises invalid.  */
   1194            float_raise(float_flag_invalid, status);
   1195            inexact = 1;
   1196        } else if (inexact) {
   1197            float_raise(float_flag_inexact, status);
   1198        }
   1199
   1200        /* Honor the sign.  */
   1201        if (sign) {
   1202            frac = -frac;
   1203        }
   1204    }
   1205
   1206    /* Pack the result and the env->ZF representation of Z together.  */
   1207    return deposit64(frac, 32, 32, inexact);
   1208}
   1209
   1210uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
   1211{
   1212    uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
   1213    uint32_t result = pair;
   1214    uint32_t z = (pair >> 32) == 0;
   1215
   1216    /* Store Z, clear NCV, in FPSCR.NZCV.  */
   1217    env->vfp.xregs[ARM_VFP_FPSCR]
   1218        = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
   1219
   1220    return result;
   1221}
   1222
   1223/* Round a float32 to an integer that fits in int32_t or int64_t.  */
   1224static float32 frint_s(float32 f, float_status *fpst, int intsize)
   1225{
   1226    int old_flags = get_float_exception_flags(fpst);
   1227    uint32_t exp = extract32(f, 23, 8);
   1228
   1229    if (unlikely(exp == 0xff)) {
   1230        /* NaN or Inf.  */
   1231        goto overflow;
   1232    }
   1233
   1234    /* Round and re-extract the exponent.  */
   1235    f = float32_round_to_int(f, fpst);
   1236    exp = extract32(f, 23, 8);
   1237
   1238    /* Validate the range of the result.  */
   1239    if (exp < 126 + intsize) {
   1240        /* abs(F) <= INT{N}_MAX */
   1241        return f;
   1242    }
   1243    if (exp == 126 + intsize) {
   1244        uint32_t sign = extract32(f, 31, 1);
   1245        uint32_t frac = extract32(f, 0, 23);
   1246        if (sign && frac == 0) {
   1247            /* F == INT{N}_MIN */
   1248            return f;
   1249        }
   1250    }
   1251
   1252 overflow:
   1253    /*
   1254     * Raise Invalid and return INT{N}_MIN as a float.  Revert any
   1255     * inexact exception float32_round_to_int may have raised.
   1256     */
   1257    set_float_exception_flags(old_flags | float_flag_invalid, fpst);
   1258    return (0x100u + 126u + intsize) << 23;
   1259}
   1260
   1261float32 HELPER(frint32_s)(float32 f, void *fpst)
   1262{
   1263    return frint_s(f, fpst, 32);
   1264}
   1265
   1266float32 HELPER(frint64_s)(float32 f, void *fpst)
   1267{
   1268    return frint_s(f, fpst, 64);
   1269}
   1270
   1271/* Round a float64 to an integer that fits in int32_t or int64_t.  */
   1272static float64 frint_d(float64 f, float_status *fpst, int intsize)
   1273{
   1274    int old_flags = get_float_exception_flags(fpst);
   1275    uint32_t exp = extract64(f, 52, 11);
   1276
   1277    if (unlikely(exp == 0x7ff)) {
   1278        /* NaN or Inf.  */
   1279        goto overflow;
   1280    }
   1281
   1282    /* Round and re-extract the exponent.  */
   1283    f = float64_round_to_int(f, fpst);
   1284    exp = extract64(f, 52, 11);
   1285
   1286    /* Validate the range of the result.  */
   1287    if (exp < 1022 + intsize) {
   1288        /* abs(F) <= INT{N}_MAX */
   1289        return f;
   1290    }
   1291    if (exp == 1022 + intsize) {
   1292        uint64_t sign = extract64(f, 63, 1);
   1293        uint64_t frac = extract64(f, 0, 52);
   1294        if (sign && frac == 0) {
   1295            /* F == INT{N}_MIN */
   1296            return f;
   1297        }
   1298    }
   1299
   1300 overflow:
   1301    /*
   1302     * Raise Invalid and return INT{N}_MIN as a float.  Revert any
   1303     * inexact exception float64_round_to_int may have raised.
   1304     */
   1305    set_float_exception_flags(old_flags | float_flag_invalid, fpst);
   1306    return (uint64_t)(0x800 + 1022 + intsize) << 52;
   1307}
   1308
   1309float64 HELPER(frint32_d)(float64 f, void *fpst)
   1310{
   1311    return frint_d(f, fpst, 32);
   1312}
   1313
   1314float64 HELPER(frint64_d)(float64 f, void *fpst)
   1315{
   1316    return frint_d(f, fpst, 64);
   1317}
   1318
   1319void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
   1320{
   1321    uint32_t syndrome;
   1322
   1323    switch (reg) {
   1324    case ARM_VFP_MVFR0:
   1325    case ARM_VFP_MVFR1:
   1326    case ARM_VFP_MVFR2:
   1327        if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
   1328            return;
   1329        }
   1330        break;
   1331    case ARM_VFP_FPSID:
   1332        if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
   1333            return;
   1334        }
   1335        break;
   1336    default:
   1337        g_assert_not_reached();
   1338    }
   1339
   1340    syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
   1341                | ARM_EL_IL
   1342                | (1 << 24) | (0xe << 20) | (7 << 14)
   1343                | (reg << 10) | (rt << 5) | 1);
   1344
   1345    raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
   1346}
   1347
   1348#endif