cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

helper.c (9934B)


      1/*
      2 * QEMU AVR CPU helpers
      3 *
      4 * Copyright (c) 2016-2020 Michael Rolnik
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see
     18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
     19 */
     20
     21#include "qemu/osdep.h"
     22#include "cpu.h"
     23#include "hw/core/tcg-cpu-ops.h"
     24#include "exec/exec-all.h"
     25#include "exec/address-spaces.h"
     26#include "exec/helper-proto.h"
     27
     28bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
     29{
     30    bool ret = false;
     31    CPUClass *cc = CPU_GET_CLASS(cs);
     32    AVRCPU *cpu = AVR_CPU(cs);
     33    CPUAVRState *env = &cpu->env;
     34
     35    if (interrupt_request & CPU_INTERRUPT_RESET) {
     36        if (cpu_interrupts_enabled(env)) {
     37            cs->exception_index = EXCP_RESET;
     38            cc->tcg_ops->do_interrupt(cs);
     39
     40            cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
     41
     42            ret = true;
     43        }
     44    }
     45    if (interrupt_request & CPU_INTERRUPT_HARD) {
     46        if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
     47            int index = ctz32(env->intsrc);
     48            cs->exception_index = EXCP_INT(index);
     49            cc->tcg_ops->do_interrupt(cs);
     50
     51            env->intsrc &= env->intsrc - 1; /* clear the interrupt */
     52            if (!env->intsrc) {
     53                cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
     54            }
     55
     56            ret = true;
     57        }
     58    }
     59    return ret;
     60}
     61
     62void avr_cpu_do_interrupt(CPUState *cs)
     63{
     64    AVRCPU *cpu = AVR_CPU(cs);
     65    CPUAVRState *env = &cpu->env;
     66
     67    uint32_t ret = env->pc_w;
     68    int vector = 0;
     69    int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
     70    int base = 0;
     71
     72    if (cs->exception_index == EXCP_RESET) {
     73        vector = 0;
     74    } else if (env->intsrc != 0) {
     75        vector = ctz32(env->intsrc) + 1;
     76    }
     77
     78    if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
     79        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
     80        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
     81        cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
     82    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
     83        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
     84        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
     85    } else {
     86        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
     87    }
     88
     89    env->pc_w = base + vector * size;
     90    env->sregI = 0; /* clear Global Interrupt Flag */
     91
     92    cs->exception_index = -1;
     93}
     94
     95int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
     96                            int len, bool is_write)
     97{
     98    return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
     99}
    100
    101hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
    102{
    103    return addr; /* I assume 1:1 address correspondence */
    104}
    105
    106bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
    107                      MMUAccessType access_type, int mmu_idx,
    108                      bool probe, uintptr_t retaddr)
    109{
    110    int prot = 0;
    111    MemTxAttrs attrs = {};
    112    uint32_t paddr;
    113
    114    address &= TARGET_PAGE_MASK;
    115
    116    if (mmu_idx == MMU_CODE_IDX) {
    117        /* access to code in flash */
    118        paddr = OFFSET_CODE + address;
    119        prot = PAGE_READ | PAGE_EXEC;
    120        if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
    121            error_report("execution left flash memory");
    122            abort();
    123        }
    124    } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
    125        /*
    126         * access to CPU registers, exit and rebuilt this TB to use full access
    127         * incase it touches specially handled registers like SREG or SP
    128         */
    129        AVRCPU *cpu = AVR_CPU(cs);
    130        CPUAVRState *env = &cpu->env;
    131        env->fullacc = 1;
    132        cpu_loop_exit_restore(cs, retaddr);
    133    } else {
    134        /* access to memory. nothing special */
    135        paddr = OFFSET_DATA + address;
    136        prot = PAGE_READ | PAGE_WRITE;
    137    }
    138
    139    tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
    140                            mmu_idx, TARGET_PAGE_SIZE);
    141
    142    return true;
    143}
    144
    145/*
    146 *  helpers
    147 */
    148
    149void helper_sleep(CPUAVRState *env)
    150{
    151    CPUState *cs = env_cpu(env);
    152
    153    cs->exception_index = EXCP_HLT;
    154    cpu_loop_exit(cs);
    155}
    156
    157void helper_unsupported(CPUAVRState *env)
    158{
    159    CPUState *cs = env_cpu(env);
    160
    161    /*
    162     *  I count not find what happens on the real platform, so
    163     *  it's EXCP_DEBUG for meanwhile
    164     */
    165    cs->exception_index = EXCP_DEBUG;
    166    if (qemu_loglevel_mask(LOG_UNIMP)) {
    167        qemu_log("UNSUPPORTED\n");
    168        cpu_dump_state(cs, stderr, 0);
    169    }
    170    cpu_loop_exit(cs);
    171}
    172
    173void helper_debug(CPUAVRState *env)
    174{
    175    CPUState *cs = env_cpu(env);
    176
    177    cs->exception_index = EXCP_DEBUG;
    178    cpu_loop_exit(cs);
    179}
    180
    181void helper_break(CPUAVRState *env)
    182{
    183    CPUState *cs = env_cpu(env);
    184
    185    cs->exception_index = EXCP_DEBUG;
    186    cpu_loop_exit(cs);
    187}
    188
    189void helper_wdr(CPUAVRState *env)
    190{
    191    qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
    192}
    193
    194/*
    195 * This function implements IN instruction
    196 *
    197 * It does the following
    198 * a.  if an IO register belongs to CPU, its value is read and returned
    199 * b.  otherwise io address is translated to mem address and physical memory
    200 *     is read.
    201 * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
    202 *
    203 */
    204target_ulong helper_inb(CPUAVRState *env, uint32_t port)
    205{
    206    target_ulong data = 0;
    207
    208    switch (port) {
    209    case 0x38: /* RAMPD */
    210        data = 0xff & (env->rampD >> 16);
    211        break;
    212    case 0x39: /* RAMPX */
    213        data = 0xff & (env->rampX >> 16);
    214        break;
    215    case 0x3a: /* RAMPY */
    216        data = 0xff & (env->rampY >> 16);
    217        break;
    218    case 0x3b: /* RAMPZ */
    219        data = 0xff & (env->rampZ >> 16);
    220        break;
    221    case 0x3c: /* EIND */
    222        data = 0xff & (env->eind >> 16);
    223        break;
    224    case 0x3d: /* SPL */
    225        data = env->sp & 0x00ff;
    226        break;
    227    case 0x3e: /* SPH */
    228        data = env->sp >> 8;
    229        break;
    230    case 0x3f: /* SREG */
    231        data = cpu_get_sreg(env);
    232        break;
    233    default:
    234        /* not a special register, pass to normal memory access */
    235        data = address_space_ldub(&address_space_memory,
    236                                  OFFSET_IO_REGISTERS + port,
    237                                  MEMTXATTRS_UNSPECIFIED, NULL);
    238    }
    239
    240    return data;
    241}
    242
    243/*
    244 *  This function implements OUT instruction
    245 *
    246 *  It does the following
    247 *  a.  if an IO register belongs to CPU, its value is written into the register
    248 *  b.  otherwise io address is translated to mem address and physical memory
    249 *      is written.
    250 *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
    251 *
    252 */
    253void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
    254{
    255    data &= 0x000000ff;
    256
    257    switch (port) {
    258    case 0x38: /* RAMPD */
    259        if (avr_feature(env, AVR_FEATURE_RAMPD)) {
    260            env->rampD = (data & 0xff) << 16;
    261        }
    262        break;
    263    case 0x39: /* RAMPX */
    264        if (avr_feature(env, AVR_FEATURE_RAMPX)) {
    265            env->rampX = (data & 0xff) << 16;
    266        }
    267        break;
    268    case 0x3a: /* RAMPY */
    269        if (avr_feature(env, AVR_FEATURE_RAMPY)) {
    270            env->rampY = (data & 0xff) << 16;
    271        }
    272        break;
    273    case 0x3b: /* RAMPZ */
    274        if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
    275            env->rampZ = (data & 0xff) << 16;
    276        }
    277        break;
    278    case 0x3c: /* EIDN */
    279        env->eind = (data & 0xff) << 16;
    280        break;
    281    case 0x3d: /* SPL */
    282        env->sp = (env->sp & 0xff00) | (data);
    283        break;
    284    case 0x3e: /* SPH */
    285        if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
    286            env->sp = (env->sp & 0x00ff) | (data << 8);
    287        }
    288        break;
    289    case 0x3f: /* SREG */
    290        cpu_set_sreg(env, data);
    291        break;
    292    default:
    293        /* not a special register, pass to normal memory access */
    294        address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
    295                          data, MEMTXATTRS_UNSPECIFIED, NULL);
    296    }
    297}
    298
    299/*
    300 *  this function implements LD instruction when there is a possibility to read
    301 *  from a CPU register
    302 */
    303target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
    304{
    305    uint8_t data;
    306
    307    env->fullacc = false;
    308
    309    if (addr < NUMBER_OF_CPU_REGISTERS) {
    310        /* CPU registers */
    311        data = env->r[addr];
    312    } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
    313        /* IO registers */
    314        data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
    315    } else {
    316        /* memory */
    317        data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
    318                                  MEMTXATTRS_UNSPECIFIED, NULL);
    319    }
    320    return data;
    321}
    322
    323/*
    324 *  this function implements ST instruction when there is a possibility to write
    325 *  into a CPU register
    326 */
    327void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
    328{
    329    env->fullacc = false;
    330
    331    /* Following logic assumes this: */
    332    assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
    333    assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
    334                                  NUMBER_OF_CPU_REGISTERS);
    335
    336    if (addr < NUMBER_OF_CPU_REGISTERS) {
    337        /* CPU registers */
    338        env->r[addr] = data;
    339    } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
    340        /* IO registers */
    341        helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
    342    } else {
    343        /* memory */
    344        address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
    345                          MEMTXATTRS_UNSPECIFIED, NULL);
    346    }
    347}