cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

macros.h (24368B)


      1/*
      2 *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
      3 *
      4 *  This program is free software; you can redistribute it and/or modify
      5 *  it under the terms of the GNU General Public License as published by
      6 *  the Free Software Foundation; either version 2 of the License, or
      7 *  (at your option) any later version.
      8 *
      9 *  This program is distributed in the hope that it will be useful,
     10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     12 *  GNU General Public License for more details.
     13 *
     14 *  You should have received a copy of the GNU General Public License
     15 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
     16 */
     17
     18#ifndef HEXAGON_MACROS_H
     19#define HEXAGON_MACROS_H
     20
     21#include "cpu.h"
     22#include "hex_regs.h"
     23#include "reg_fields.h"
     24
     25#ifdef QEMU_GENERATE
     26#define READ_REG(dest, NUM)              gen_read_reg(dest, NUM)
     27#else
     28#define READ_REG(NUM)                    (env->gpr[(NUM)])
     29#define READ_PREG(NUM)                   (env->pred[NUM])
     30
     31#define WRITE_RREG(NUM, VAL)             log_reg_write(env, NUM, VAL, slot)
     32#define WRITE_PREG(NUM, VAL)             log_pred_write(env, NUM, VAL)
     33#endif
     34
     35#define PCALIGN 4
     36#define PCALIGN_MASK (PCALIGN - 1)
     37
     38#define GET_FIELD(FIELD, REGIN) \
     39    fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
     40                   reg_field_info[FIELD].offset)
     41
     42#ifdef QEMU_GENERATE
     43#define GET_USR_FIELD(FIELD, DST) \
     44    tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
     45                       reg_field_info[FIELD].offset, \
     46                       reg_field_info[FIELD].width)
     47
     48#define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
     49#define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
     50#define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
     51
     52#define SET_USR_FIELD_FUNC(X) \
     53    __builtin_choose_expr(TYPE_INT(X), \
     54        gen_set_usr_fieldi, \
     55        __builtin_choose_expr(TYPE_TCGV(X), \
     56            gen_set_usr_field, (void)0))
     57#define SET_USR_FIELD(FIELD, VAL) \
     58    SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
     59#else
     60#define GET_USR_FIELD(FIELD) \
     61    fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
     62                   reg_field_info[FIELD].offset)
     63
     64#define SET_USR_FIELD(FIELD, VAL) \
     65    fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
     66                 reg_field_info[FIELD].offset, (VAL))
     67#endif
     68
     69#ifdef QEMU_GENERATE
     70/*
     71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
     72 *
     73 * Slot 1 store with slot 0 load
     74 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
     75 * The packet attribute :mem_noshuf inhibits the instruction reordering that
     76 * would otherwise be done by the assembler. For example:
     77 *     {
     78 *         memw(R5) = R2 // slot 1 store
     79 *         R3 = memh(R6) // slot 0 load
     80 *     }:mem_noshuf
     81 * Unlike most packetized operations, these memory operations are not executed
     82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
     83 * effectively executes first, followed by the load instruction in Slot 0. If
     84 * the addresses of the two operations are overlapping, the load will receive
     85 * the newly stored data. This feature is supported in processor versions
     86 * V65 or greater.
     87 *
     88 *
     89 * For qemu, we look for a load in slot 0 when there is  a store in slot 1
     90 * in the same packet.  When we see this, we call a helper that merges the
     91 * bytes from the store buffer with the value loaded from memory.
     92 */
     93#define CHECK_NOSHUF \
     94    do { \
     95        if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
     96            process_store(ctx, pkt, 1); \
     97        } \
     98    } while (0)
     99
    100#define MEM_LOAD1s(DST, VA) \
    101    do { \
    102        CHECK_NOSHUF; \
    103        tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
    104    } while (0)
    105#define MEM_LOAD1u(DST, VA) \
    106    do { \
    107        CHECK_NOSHUF; \
    108        tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
    109    } while (0)
    110#define MEM_LOAD2s(DST, VA) \
    111    do { \
    112        CHECK_NOSHUF; \
    113        tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
    114    } while (0)
    115#define MEM_LOAD2u(DST, VA) \
    116    do { \
    117        CHECK_NOSHUF; \
    118        tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
    119    } while (0)
    120#define MEM_LOAD4s(DST, VA) \
    121    do { \
    122        CHECK_NOSHUF; \
    123        tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
    124    } while (0)
    125#define MEM_LOAD4u(DST, VA) \
    126    do { \
    127        CHECK_NOSHUF; \
    128        tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
    129    } while (0)
    130#define MEM_LOAD8u(DST, VA) \
    131    do { \
    132        CHECK_NOSHUF; \
    133        tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
    134    } while (0)
    135
    136#define MEM_STORE1_FUNC(X) \
    137    __builtin_choose_expr(TYPE_INT(X), \
    138        gen_store1i, \
    139        __builtin_choose_expr(TYPE_TCGV(X), \
    140            gen_store1, (void)0))
    141#define MEM_STORE1(VA, DATA, SLOT) \
    142    MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
    143
    144#define MEM_STORE2_FUNC(X) \
    145    __builtin_choose_expr(TYPE_INT(X), \
    146        gen_store2i, \
    147        __builtin_choose_expr(TYPE_TCGV(X), \
    148            gen_store2, (void)0))
    149#define MEM_STORE2(VA, DATA, SLOT) \
    150    MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
    151
    152#define MEM_STORE4_FUNC(X) \
    153    __builtin_choose_expr(TYPE_INT(X), \
    154        gen_store4i, \
    155        __builtin_choose_expr(TYPE_TCGV(X), \
    156            gen_store4, (void)0))
    157#define MEM_STORE4(VA, DATA, SLOT) \
    158    MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
    159
    160#define MEM_STORE8_FUNC(X) \
    161    __builtin_choose_expr(TYPE_INT(X), \
    162        gen_store8i, \
    163        __builtin_choose_expr(TYPE_TCGV_I64(X), \
    164            gen_store8, (void)0))
    165#define MEM_STORE8(VA, DATA, SLOT) \
    166    MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
    167#else
    168#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
    169#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
    170#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
    171#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
    172#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
    173#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
    174#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
    175#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
    176
    177#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
    178#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
    179#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
    180#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
    181#endif
    182
    183#define CANCEL cancel_slot(env, slot)
    184
    185#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
    186
    187#ifdef QEMU_GENERATE
    188static inline void gen_pred_cancel(TCGv pred, int slot_num)
    189 {
    190    TCGv slot_mask = tcg_const_tl(1 << slot_num);
    191    TCGv tmp = tcg_temp_new();
    192    TCGv zero = tcg_constant_tl(0);
    193    tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
    194    tcg_gen_andi_tl(tmp, pred, 1);
    195    tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
    196                       slot_mask, hex_slot_cancelled);
    197    tcg_temp_free(slot_mask);
    198    tcg_temp_free(tmp);
    199}
    200#define PRED_LOAD_CANCEL(PRED, EA) \
    201    gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
    202#endif
    203
    204#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
    205
    206#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
    207
    208#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
    209
    210#define fABS(A) (((A) < 0) ? (-(A)) : (A))
    211#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
    212    REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
    213#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
    214    ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
    215#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
    216    (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
    217#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
    218    (((HIBIT) - (LOWBIT) + 1) ? \
    219        extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
    220        0LL)
    221#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
    222    do { \
    223        int width = ((HIBIT) - (LOWBIT) + 1); \
    224        INREG = (width >= 0 ? \
    225            deposit64((INREG), (LOWBIT), width, (INVAL)) : \
    226            INREG); \
    227    } while (0)
    228
    229#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
    230
    231#ifdef QEMU_GENERATE
    232#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
    233#else
    234#define fLSBOLD(VAL)  ((VAL) & 1)
    235#endif
    236
    237#ifdef QEMU_GENERATE
    238#define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
    239#define fLSBNEW0        tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
    240#define fLSBNEW1        tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
    241#else
    242#define fLSBNEW(PVAL)   ((PVAL) & 1)
    243#define fLSBNEW0        (env->new_pred_value[0] & 1)
    244#define fLSBNEW1        (env->new_pred_value[1] & 1)
    245#endif
    246
    247#ifdef QEMU_GENERATE
    248#define fLSBOLDNOT(VAL) \
    249    do { \
    250        tcg_gen_andi_tl(LSB, (VAL), 1); \
    251        tcg_gen_xori_tl(LSB, LSB, 1); \
    252    } while (0)
    253#define fLSBNEWNOT(PNUM) \
    254    do { \
    255        tcg_gen_andi_tl(LSB, (PNUM), 1); \
    256        tcg_gen_xori_tl(LSB, LSB, 1); \
    257    } while (0)
    258#else
    259#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
    260#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
    261#define fLSBNEW0NOT (!fLSBNEW0)
    262#define fLSBNEW1NOT (!fLSBNEW1)
    263#endif
    264
    265#define fNEWREG(VAL) ((int32_t)(VAL))
    266
    267#define fNEWREG_ST(VAL) (VAL)
    268
    269#define fSATUVALN(N, VAL) \
    270    ({ \
    271        fSET_OVERFLOW(); \
    272        ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
    273    })
    274#define fSATVALN(N, VAL) \
    275    ({ \
    276        fSET_OVERFLOW(); \
    277        ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
    278    })
    279#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
    280#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
    281#define fSATN(N, VAL) \
    282    ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
    283#define fADDSAT64(DST, A, B) \
    284    do { \
    285        uint64_t __a = fCAST8u(A); \
    286        uint64_t __b = fCAST8u(B); \
    287        uint64_t __sum = __a + __b; \
    288        uint64_t __xor = __a ^ __b; \
    289        const uint64_t __mask = 0x8000000000000000ULL; \
    290        if (__xor & __mask) { \
    291            DST = __sum; \
    292        } \
    293        else if ((__a ^ __sum) & __mask) { \
    294            if (__sum & __mask) { \
    295                DST = 0x7FFFFFFFFFFFFFFFLL; \
    296                fSET_OVERFLOW(); \
    297            } else { \
    298                DST = 0x8000000000000000LL; \
    299                fSET_OVERFLOW(); \
    300            } \
    301        } else { \
    302            DST = __sum; \
    303        } \
    304    } while (0)
    305#define fSATUN(N, VAL) \
    306    ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
    307#define fSATH(VAL) (fSATN(16, VAL))
    308#define fSATUH(VAL) (fSATUN(16, VAL))
    309#define fSATUB(VAL) (fSATUN(8, VAL))
    310#define fSATB(VAL) (fSATN(8, VAL))
    311#define fIMMEXT(IMM) (IMM = IMM)
    312#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
    313
    314#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
    315
    316#ifdef QEMU_GENERATE
    317static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
    318{
    319    /*
    320     * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
    321     *
    322     *  The "I" value from a modifier register is divided into two pieces
    323     *      LSB         bits 23:17
    324     *      MSB         bits 31:28
    325     * The value is signed
    326     *
    327     * At the end we shift the result according to the shift argument
    328     */
    329    TCGv msb = tcg_temp_new();
    330    TCGv lsb = tcg_temp_new();
    331
    332    tcg_gen_extract_tl(lsb, val, 17, 7);
    333    tcg_gen_sari_tl(msb, val, 21);
    334    tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
    335
    336    tcg_gen_shli_tl(result, result, shift);
    337
    338    tcg_temp_free(msb);
    339    tcg_temp_free(lsb);
    340
    341    return result;
    342}
    343#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
    344#else
    345#define fREAD_IREG(VAL) \
    346    (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
    347#endif
    348
    349#define fREAD_LR() (READ_REG(HEX_REG_LR))
    350
    351#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
    352#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
    353#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
    354
    355#define fREAD_SP() (READ_REG(HEX_REG_SP))
    356#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
    357#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
    358#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
    359#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
    360#define fREAD_FP() (READ_REG(HEX_REG_FP))
    361#ifdef FIXME
    362/* Figure out how to get insn->extension_valid to helper */
    363#define fREAD_GP() \
    364    (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
    365#else
    366#define fREAD_GP() READ_REG(HEX_REG_GP)
    367#endif
    368#define fREAD_PC() (READ_REG(HEX_REG_PC))
    369
    370#define fREAD_NPC() (env->next_PC & (0xfffffffe))
    371
    372#define fREAD_P0() (READ_PREG(0))
    373#define fREAD_P3() (READ_PREG(3))
    374
    375#define fCHECK_PCALIGN(A)
    376
    377#define fWRITE_NPC(A) write_new_pc(env, A)
    378
    379#define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
    380#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
    381#define fHINTJR(TARGET) { /* Not modelled in qemu */}
    382#define fCALL(A) \
    383    do { \
    384        fWRITE_LR(fREAD_NPC()); \
    385        fBRANCH(A, COF_TYPE_CALL); \
    386    } while (0)
    387#define fCALLR(A) \
    388    do { \
    389        fWRITE_LR(fREAD_NPC()); \
    390        fBRANCH(A, COF_TYPE_CALLR); \
    391    } while (0)
    392#define fWRITE_LOOP_REGS0(START, COUNT) \
    393    do { \
    394        WRITE_RREG(HEX_REG_LC0, COUNT);  \
    395        WRITE_RREG(HEX_REG_SA0, START); \
    396    } while (0)
    397#define fWRITE_LOOP_REGS1(START, COUNT) \
    398    do { \
    399        WRITE_RREG(HEX_REG_LC1, COUNT);  \
    400        WRITE_RREG(HEX_REG_SA1, START);\
    401    } while (0)
    402#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
    403#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
    404
    405#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
    406#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
    407#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
    408#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
    409#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
    410#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
    411#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
    412#define fPART1(WORK) if (part1) { WORK; return; }
    413#define fCAST4u(A) ((uint32_t)(A))
    414#define fCAST4s(A) ((int32_t)(A))
    415#define fCAST8u(A) ((uint64_t)(A))
    416#define fCAST8s(A) ((int64_t)(A))
    417#define fCAST4_4s(A) ((int32_t)(A))
    418#define fCAST4_4u(A) ((uint32_t)(A))
    419#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
    420#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
    421#define fCAST8_8s(A) ((int64_t)(A))
    422#define fCAST8_8u(A) ((uint64_t)(A))
    423#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
    424#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
    425#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
    426#define fSE8_16(A) ((int16_t)((int8_t)(A)))
    427#define fSE16_32(A) ((int32_t)((int16_t)(A)))
    428#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
    429#define fSE32_64(A) ((int64_t)((int32_t)(A)))
    430#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
    431#define fSE8_32(A) ((int32_t)((int8_t)(A)))
    432#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
    433#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
    434#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
    435#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
    436#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
    437#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
    438#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
    439#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
    440#define fMPY16US(A, B) fMPY16SU(B, A)
    441#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
    442#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
    443#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
    444#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
    445#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
    446#define fROUND(A) (A + 0x8000)
    447#define fCLIP(DST, SRC, U) \
    448    do { \
    449        int32_t maxv = (1 << U) - 1; \
    450        int32_t minv = -(1 << U); \
    451        DST = fMIN(maxv, fMAX(SRC, minv)); \
    452    } while (0)
    453#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
    454#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
    455#define fCRNDN(A, N) (conv_round(A, N))
    456#define fADD128(A, B) (int128_add(A, B))
    457#define fSUB128(A, B) (int128_sub(A, B))
    458#define fSHIFTR128(A, B) (int128_rshift(A, B))
    459#define fSHIFTL128(A, B) (int128_lshift(A, B))
    460#define fAND128(A, B) (int128_and(A, B))
    461#define fCAST8S_16S(A) (int128_exts64(A))
    462#define fCAST16S_8S(A) (int128_getlo(A))
    463
    464#ifdef QEMU_GENERATE
    465#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
    466#define fEA_RRs(REG, REG2, SCALE) \
    467    do { \
    468        TCGv tmp = tcg_temp_new(); \
    469        tcg_gen_shli_tl(tmp, REG2, SCALE); \
    470        tcg_gen_add_tl(EA, REG, tmp); \
    471        tcg_temp_free(tmp); \
    472    } while (0)
    473#define fEA_IRs(IMM, REG, SCALE) \
    474    do { \
    475        tcg_gen_shli_tl(EA, REG, SCALE); \
    476        tcg_gen_addi_tl(EA, EA, IMM); \
    477    } while (0)
    478#else
    479#define fEA_RI(REG, IMM) \
    480    do { \
    481        EA = REG + IMM; \
    482    } while (0)
    483#define fEA_RRs(REG, REG2, SCALE) \
    484    do { \
    485        EA = REG + (REG2 << SCALE); \
    486    } while (0)
    487#define fEA_IRs(IMM, REG, SCALE) \
    488    do { \
    489        EA = IMM + (REG << SCALE); \
    490    } while (0)
    491#endif
    492
    493#ifdef QEMU_GENERATE
    494#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
    495#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
    496#define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
    497#define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
    498#define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
    499#define fPM_CIRI(REG, IMM, MVAL) \
    500    do { \
    501        TCGv tcgv_siV = tcg_const_tl(siV); \
    502        gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
    503                            hex_gpr[HEX_REG_CS0 + MuN]); \
    504        tcg_temp_free(tcgv_siV); \
    505    } while (0)
    506#else
    507#define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
    508#define fEA_REG(REG)        do { EA = (REG); } while (0)
    509#define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
    510#define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
    511#define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
    512#endif
    513#define fSCALE(N, A) (((int64_t)(A)) << N)
    514#define fSATW(A) fSATN(32, ((long long)A))
    515#define fSAT(A) fSATN(32, (A))
    516#define fSAT_ORIG_SHL(A, ORIG_REG) \
    517    ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
    518        ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
    519        : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
    520                                            : fSAT(A)))
    521#define fPASS(A) A
    522#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
    523    (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
    524                   : (fCAST##REGSTYPE(SRC) << (SHAMT)))
    525#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
    526    fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
    527#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
    528    fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
    529#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
    530    (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
    531                   : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
    532#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
    533    (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
    534                   : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
    535#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
    536    fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
    537#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
    538    fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
    539#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
    540    (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
    541                        << ((-(SHAMT)) - 1)) << 1, (SRC)) \
    542                   : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
    543#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
    544#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
    545    (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
    546#define fROTL(SRC, SHAMT, REGSTYPE) \
    547    (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
    548                              ((fCAST##REGSTYPE##u(SRC) >> \
    549                                 ((sizeof(SRC) * 8) - (SHAMT))))))
    550#define fROTR(SRC, SHAMT, REGSTYPE) \
    551    (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
    552                              ((fCAST##REGSTYPE##u(SRC) << \
    553                                 ((sizeof(SRC) * 8) - (SHAMT))))))
    554#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
    555    (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
    556
    557#ifdef QEMU_GENERATE
    558#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
    559#else
    560#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
    561    DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
    562#endif
    563
    564#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
    565
    566#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
    567#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
    568#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
    569
    570#ifdef CONFIG_USER_ONLY
    571#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
    572#else
    573/* System mode not implemented yet */
    574#define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
    575#endif
    576
    577#ifdef QEMU_GENERATE
    578#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
    579    gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
    580#endif
    581
    582#ifdef QEMU_GENERATE
    583#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
    584#else
    585#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
    586#endif
    587
    588#ifdef QEMU_GENERATE
    589#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
    590    gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
    591#endif
    592
    593#ifdef QEMU_GENERATE
    594#define GETBYTE_FUNC(X) \
    595    __builtin_choose_expr(TYPE_TCGV(X), \
    596        gen_get_byte, \
    597        __builtin_choose_expr(TYPE_TCGV_I64(X), \
    598            gen_get_byte_i64, (void)0))
    599#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
    600#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
    601#else
    602#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
    603#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
    604#endif
    605
    606#define fSETBYTE(N, DST, VAL) \
    607    do { \
    608        DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
    609        (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
    610    } while (0)
    611
    612#ifdef QEMU_GENERATE
    613#define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
    614#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
    615#else
    616#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
    617#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
    618#endif
    619#define fSETHALF(N, DST, VAL) \
    620    do { \
    621        DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
    622        (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
    623    } while (0)
    624#define fSETHALFw fSETHALF
    625#define fSETHALFd fSETHALF
    626
    627#define fGETWORD(N, SRC) \
    628    ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
    629#define fGETUWORD(N, SRC) \
    630    ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
    631
    632#define fSETWORD(N, DST, VAL) \
    633    do { \
    634        DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
    635              (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
    636    } while (0)
    637
    638#define fSETBIT(N, DST, VAL) \
    639    do { \
    640        DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
    641    } while (0)
    642
    643#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
    644#define fSETBITS(HI, LO, DST, VAL) \
    645    do { \
    646        int j; \
    647        for (j = LO; j <= HI; j++) { \
    648            fSETBIT(j, DST, VAL); \
    649        } \
    650    } while (0)
    651#define fCOUNTONES_4(VAL) ctpop32(VAL)
    652#define fCOUNTONES_8(VAL) ctpop64(VAL)
    653#define fBREV_8(VAL) revbit64(VAL)
    654#define fBREV_4(VAL) revbit32(VAL)
    655#define fCL1_8(VAL) clo64(VAL)
    656#define fCL1_4(VAL) clo32(VAL)
    657#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
    658#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
    659#define fHIDE(A) A
    660#define fCONSTLL(A) A##LL
    661#define fECHO(A) (A)
    662
    663#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
    664#define fPAUSE(IMM)
    665
    666#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
    667    ((VAL) << reg_field_info[FIELD].offset)
    668#define fGET_REG_FIELD_MASK(FIELD) \
    669    (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
    670#define fREAD_REG_FIELD(REG, FIELD) \
    671    fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
    672                   reg_field_info[FIELD].width, \
    673                   reg_field_info[FIELD].offset)
    674#define fGET_FIELD(VAL, FIELD)
    675#define fSET_FIELD(VAL, FIELD, NEWVAL)
    676#define fBARRIER()
    677#define fSYNCH()
    678#define fISYNC()
    679#define fDCFETCH(REG) \
    680    do { (void)REG; } while (0) /* Nothing to do in qemu */
    681#define fICINVA(REG) \
    682    do { (void)REG; } while (0) /* Nothing to do in qemu */
    683#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
    684#define fDCCLEANA(REG) \
    685    do { (void)REG; } while (0) /* Nothing to do in qemu */
    686#define fDCCLEANINVA(REG) \
    687    do { (void)REG; } while (0) /* Nothing to do in qemu */
    688
    689#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
    690
    691#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
    692                                STRBITNUM) /* Nothing */
    693
    694
    695#endif