cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

gdbstub.c (13345B)


      1/*
      2 * x86 gdb server stub
      3 *
      4 * Copyright (c) 2003-2005 Fabrice Bellard
      5 * Copyright (c) 2013 SUSE LINUX Products GmbH
      6 *
      7 * This library is free software; you can redistribute it and/or
      8 * modify it under the terms of the GNU Lesser General Public
      9 * License as published by the Free Software Foundation; either
     10 * version 2.1 of the License, or (at your option) any later version.
     11 *
     12 * This library is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     15 * Lesser General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU Lesser General Public
     18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     19 */
     20#include "qemu/osdep.h"
     21#include "cpu.h"
     22#include "exec/gdbstub.h"
     23
     24#ifdef TARGET_X86_64
     25static const int gpr_map[16] = {
     26    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
     27    8, 9, 10, 11, 12, 13, 14, 15
     28};
     29#else
     30#define gpr_map gpr_map32
     31#endif
     32static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
     33
     34/*
     35 * Keep these in sync with assignment to
     36 * gdb_num_core_regs in target/i386/cpu.c
     37 * and with the machine description
     38 */
     39
     40/*
     41 * SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base
     42 */
     43
     44/*
     45 * general regs ----->  8 or 16
     46 */
     47#define IDX_NB_IP       1
     48#define IDX_NB_FLAGS    1
     49#define IDX_NB_SEG      (6 + 3)
     50#define IDX_NB_CTL      6
     51#define IDX_NB_FP       16
     52/*
     53 * fpu regs ----------> 8 or 16
     54 */
     55#define IDX_NB_MXCSR    1
     56/*
     57 *          total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66
     58 */
     59
     60#define IDX_IP_REG      CPU_NB_REGS
     61#define IDX_FLAGS_REG   (IDX_IP_REG + IDX_NB_IP)
     62#define IDX_SEG_REGS    (IDX_FLAGS_REG + IDX_NB_FLAGS)
     63#define IDX_CTL_REGS    (IDX_SEG_REGS + IDX_NB_SEG)
     64#define IDX_FP_REGS     (IDX_CTL_REGS + IDX_NB_CTL)
     65#define IDX_XMM_REGS    (IDX_FP_REGS + IDX_NB_FP)
     66#define IDX_MXCSR_REG   (IDX_XMM_REGS + CPU_NB_REGS)
     67
     68#define IDX_CTL_CR0_REG     (IDX_CTL_REGS + 0)
     69#define IDX_CTL_CR2_REG     (IDX_CTL_REGS + 1)
     70#define IDX_CTL_CR3_REG     (IDX_CTL_REGS + 2)
     71#define IDX_CTL_CR4_REG     (IDX_CTL_REGS + 3)
     72#define IDX_CTL_CR8_REG     (IDX_CTL_REGS + 4)
     73#define IDX_CTL_EFER_REG    (IDX_CTL_REGS + 5)
     74
     75#ifdef TARGET_X86_64
     76#define GDB_FORCE_64 1
     77#else
     78#define GDB_FORCE_64 0
     79#endif
     80
     81static int gdb_read_reg_cs64(uint32_t hflags, GByteArray *buf, target_ulong val)
     82{
     83    if ((hflags & HF_CS64_MASK) || GDB_FORCE_64) {
     84        return gdb_get_reg64(buf, val);
     85    }
     86    return gdb_get_reg32(buf, val);
     87}
     88
     89static int gdb_write_reg_cs64(uint32_t hflags, uint8_t *buf, target_ulong *val)
     90{
     91    if (hflags & HF_CS64_MASK) {
     92        *val = ldq_p(buf);
     93        return 8;
     94    }
     95    *val = ldl_p(buf);
     96    return 4;
     97}
     98
     99int x86_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
    100{
    101    X86CPU *cpu = X86_CPU(cs);
    102    CPUX86State *env = &cpu->env;
    103
    104    uint64_t tpr;
    105
    106    /* N.B. GDB can't deal with changes in registers or sizes in the middle
    107       of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
    108       as if we're on a 64-bit cpu. */
    109
    110    if (n < CPU_NB_REGS) {
    111        if (TARGET_LONG_BITS == 64) {
    112            if (env->hflags & HF_CS64_MASK) {
    113                return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]);
    114            } else if (n < CPU_NB_REGS32) {
    115                return gdb_get_reg64(mem_buf,
    116                                     env->regs[gpr_map[n]] & 0xffffffffUL);
    117            } else {
    118                return gdb_get_regl(mem_buf, 0);
    119            }
    120        } else {
    121            return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]);
    122        }
    123    } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
    124        floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS];
    125        int len = gdb_get_reg64(mem_buf, cpu_to_le64(fp->low));
    126        len += gdb_get_reg16(mem_buf, cpu_to_le16(fp->high));
    127        return len;
    128    } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
    129        n -= IDX_XMM_REGS;
    130        if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
    131            return gdb_get_reg128(mem_buf,
    132                                  env->xmm_regs[n].ZMM_Q(0),
    133                                  env->xmm_regs[n].ZMM_Q(1));
    134        }
    135    } else {
    136        switch (n) {
    137        case IDX_IP_REG:
    138            if (TARGET_LONG_BITS == 64) {
    139                if (env->hflags & HF_CS64_MASK) {
    140                    return gdb_get_reg64(mem_buf, env->eip);
    141                } else {
    142                    return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL);
    143                }
    144            } else {
    145                return gdb_get_reg32(mem_buf, env->eip);
    146            }
    147        case IDX_FLAGS_REG:
    148            return gdb_get_reg32(mem_buf, env->eflags);
    149
    150        case IDX_SEG_REGS:
    151            return gdb_get_reg32(mem_buf, env->segs[R_CS].selector);
    152        case IDX_SEG_REGS + 1:
    153            return gdb_get_reg32(mem_buf, env->segs[R_SS].selector);
    154        case IDX_SEG_REGS + 2:
    155            return gdb_get_reg32(mem_buf, env->segs[R_DS].selector);
    156        case IDX_SEG_REGS + 3:
    157            return gdb_get_reg32(mem_buf, env->segs[R_ES].selector);
    158        case IDX_SEG_REGS + 4:
    159            return gdb_get_reg32(mem_buf, env->segs[R_FS].selector);
    160        case IDX_SEG_REGS + 5:
    161            return gdb_get_reg32(mem_buf, env->segs[R_GS].selector);
    162        case IDX_SEG_REGS + 6:
    163            return gdb_read_reg_cs64(env->hflags, mem_buf, env->segs[R_FS].base);
    164        case IDX_SEG_REGS + 7:
    165            return gdb_read_reg_cs64(env->hflags, mem_buf, env->segs[R_GS].base);
    166
    167        case IDX_SEG_REGS + 8:
    168#ifdef TARGET_X86_64
    169            return gdb_read_reg_cs64(env->hflags, mem_buf, env->kernelgsbase);
    170#else
    171            return gdb_get_reg32(mem_buf, 0);
    172#endif
    173
    174        case IDX_FP_REGS + 8:
    175            return gdb_get_reg32(mem_buf, env->fpuc);
    176        case IDX_FP_REGS + 9:
    177            return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) |
    178                                          (env->fpstt & 0x7) << 11);
    179        case IDX_FP_REGS + 10:
    180            return gdb_get_reg32(mem_buf, 0); /* ftag */
    181        case IDX_FP_REGS + 11:
    182            return gdb_get_reg32(mem_buf, 0); /* fiseg */
    183        case IDX_FP_REGS + 12:
    184            return gdb_get_reg32(mem_buf, 0); /* fioff */
    185        case IDX_FP_REGS + 13:
    186            return gdb_get_reg32(mem_buf, 0); /* foseg */
    187        case IDX_FP_REGS + 14:
    188            return gdb_get_reg32(mem_buf, 0); /* fooff */
    189        case IDX_FP_REGS + 15:
    190            return gdb_get_reg32(mem_buf, 0); /* fop */
    191
    192        case IDX_MXCSR_REG:
    193            update_mxcsr_from_sse_status(env);
    194            return gdb_get_reg32(mem_buf, env->mxcsr);
    195
    196        case IDX_CTL_CR0_REG:
    197            return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[0]);
    198        case IDX_CTL_CR2_REG:
    199            return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[2]);
    200        case IDX_CTL_CR3_REG:
    201            return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[3]);
    202        case IDX_CTL_CR4_REG:
    203            return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[4]);
    204        case IDX_CTL_CR8_REG:
    205#ifndef CONFIG_USER_ONLY
    206            tpr = cpu_get_apic_tpr(cpu->apic_state);
    207#else
    208            tpr = 0;
    209#endif
    210            return gdb_read_reg_cs64(env->hflags, mem_buf, tpr);
    211
    212        case IDX_CTL_EFER_REG:
    213            return gdb_read_reg_cs64(env->hflags, mem_buf, env->efer);
    214        }
    215    }
    216    return 0;
    217}
    218
    219static int x86_cpu_gdb_load_seg(X86CPU *cpu, X86Seg sreg, uint8_t *mem_buf)
    220{
    221    CPUX86State *env = &cpu->env;
    222    uint16_t selector = ldl_p(mem_buf);
    223
    224    if (selector != env->segs[sreg].selector) {
    225#if defined(CONFIG_USER_ONLY)
    226        cpu_x86_load_seg(env, sreg, selector);
    227#else
    228        unsigned int limit, flags;
    229        target_ulong base;
    230
    231        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
    232            int dpl = (env->eflags & VM_MASK) ? 3 : 0;
    233            base = selector << 4;
    234            limit = 0xffff;
    235            flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    236                    DESC_A_MASK | (dpl << DESC_DPL_SHIFT);
    237        } else {
    238            if (!cpu_x86_get_descr_debug(env, selector, &base, &limit,
    239                                         &flags)) {
    240                return 4;
    241            }
    242        }
    243        cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
    244#endif
    245    }
    246    return 4;
    247}
    248
    249int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
    250{
    251    X86CPU *cpu = X86_CPU(cs);
    252    CPUX86State *env = &cpu->env;
    253    target_ulong tmp;
    254    int len;
    255
    256    /* N.B. GDB can't deal with changes in registers or sizes in the middle
    257       of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
    258       as if we're on a 64-bit cpu. */
    259
    260    if (n < CPU_NB_REGS) {
    261        if (TARGET_LONG_BITS == 64) {
    262            if (env->hflags & HF_CS64_MASK) {
    263                env->regs[gpr_map[n]] = ldtul_p(mem_buf);
    264            } else if (n < CPU_NB_REGS32) {
    265                env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL;
    266            }
    267            return sizeof(target_ulong);
    268        } else if (n < CPU_NB_REGS32) {
    269            n = gpr_map32[n];
    270            env->regs[n] &= ~0xffffffffUL;
    271            env->regs[n] |= (uint32_t)ldl_p(mem_buf);
    272            return 4;
    273        }
    274    } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
    275        floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS];
    276        fp->low = le64_to_cpu(* (uint64_t *) mem_buf);
    277        fp->high = le16_to_cpu(* (uint16_t *) (mem_buf + 8));
    278        return 10;
    279    } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
    280        n -= IDX_XMM_REGS;
    281        if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
    282            env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf);
    283            env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8);
    284            return 16;
    285        }
    286    } else {
    287        switch (n) {
    288        case IDX_IP_REG:
    289            if (TARGET_LONG_BITS == 64) {
    290                if (env->hflags & HF_CS64_MASK) {
    291                    env->eip = ldq_p(mem_buf);
    292                } else {
    293                    env->eip = ldq_p(mem_buf) & 0xffffffffUL;
    294                }
    295                return 8;
    296            } else {
    297                env->eip &= ~0xffffffffUL;
    298                env->eip |= (uint32_t)ldl_p(mem_buf);
    299                return 4;
    300            }
    301        case IDX_FLAGS_REG:
    302            env->eflags = ldl_p(mem_buf);
    303            return 4;
    304
    305        case IDX_SEG_REGS:
    306            return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
    307        case IDX_SEG_REGS + 1:
    308            return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
    309        case IDX_SEG_REGS + 2:
    310            return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
    311        case IDX_SEG_REGS + 3:
    312            return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
    313        case IDX_SEG_REGS + 4:
    314            return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
    315        case IDX_SEG_REGS + 5:
    316            return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);
    317        case IDX_SEG_REGS + 6:
    318            return gdb_write_reg_cs64(env->hflags, mem_buf, &env->segs[R_FS].base);
    319        case IDX_SEG_REGS + 7:
    320            return gdb_write_reg_cs64(env->hflags, mem_buf, &env->segs[R_GS].base);
    321        case IDX_SEG_REGS + 8:
    322#ifdef TARGET_X86_64
    323            return gdb_write_reg_cs64(env->hflags, mem_buf, &env->kernelgsbase);
    324#endif
    325            return 4;
    326
    327        case IDX_FP_REGS + 8:
    328            cpu_set_fpuc(env, ldl_p(mem_buf));
    329            return 4;
    330        case IDX_FP_REGS + 9:
    331            tmp = ldl_p(mem_buf);
    332            env->fpstt = (tmp >> 11) & 7;
    333            env->fpus = tmp & ~0x3800;
    334            return 4;
    335        case IDX_FP_REGS + 10: /* ftag */
    336            return 4;
    337        case IDX_FP_REGS + 11: /* fiseg */
    338            return 4;
    339        case IDX_FP_REGS + 12: /* fioff */
    340            return 4;
    341        case IDX_FP_REGS + 13: /* foseg */
    342            return 4;
    343        case IDX_FP_REGS + 14: /* fooff */
    344            return 4;
    345        case IDX_FP_REGS + 15: /* fop */
    346            return 4;
    347
    348        case IDX_MXCSR_REG:
    349            cpu_set_mxcsr(env, ldl_p(mem_buf));
    350            return 4;
    351
    352        case IDX_CTL_CR0_REG:
    353            len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
    354#ifndef CONFIG_USER_ONLY
    355            cpu_x86_update_cr0(env, tmp);
    356#endif
    357            return len;
    358
    359        case IDX_CTL_CR2_REG:
    360            len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
    361#ifndef CONFIG_USER_ONLY
    362            env->cr[2] = tmp;
    363#endif
    364            return len;
    365
    366        case IDX_CTL_CR3_REG:
    367            len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
    368#ifndef CONFIG_USER_ONLY
    369            cpu_x86_update_cr3(env, tmp);
    370#endif
    371            return len;
    372
    373        case IDX_CTL_CR4_REG:
    374            len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
    375#ifndef CONFIG_USER_ONLY
    376            cpu_x86_update_cr4(env, tmp);
    377#endif
    378            return len;
    379
    380        case IDX_CTL_CR8_REG:
    381            len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
    382#ifndef CONFIG_USER_ONLY
    383            cpu_set_apic_tpr(cpu->apic_state, tmp);
    384#endif
    385            return len;
    386
    387        case IDX_CTL_EFER_REG:
    388            len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
    389#ifndef CONFIG_USER_ONLY
    390            cpu_load_efer(env, tmp);
    391#endif
    392            return len;
    393        }
    394    }
    395    /* Unrecognised register.  */
    396    return 0;
    397}