cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

x86hvf.c (16883B)


      1/*
      2 * Copyright (c) 2003-2008 Fabrice Bellard
      3 * Copyright (C) 2016 Veertu Inc,
      4 * Copyright (C) 2017 Google Inc,
      5 *
      6 * This program is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This program is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21
     22#include "qemu-common.h"
     23#include "x86hvf.h"
     24#include "vmx.h"
     25#include "vmcs.h"
     26#include "cpu.h"
     27#include "x86_descr.h"
     28#include "x86_decode.h"
     29#include "sysemu/hw_accel.h"
     30
     31#include "hw/i386/apic_internal.h"
     32
     33#include <Hypervisor/hv.h>
     34#include <Hypervisor/hv_vmx.h>
     35
     36void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
     37                     SegmentCache *qseg, bool is_tr)
     38{
     39    vmx_seg->sel = qseg->selector;
     40    vmx_seg->base = qseg->base;
     41    vmx_seg->limit = qseg->limit;
     42
     43    if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
     44        /* the TR register is usable after processor reset despite
     45         * having a null selector */
     46        vmx_seg->ar = 1 << 16;
     47        return;
     48    }
     49    vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
     50    vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
     51    vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
     52    vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
     53    vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
     54    vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
     55    vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
     56    vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
     57}
     58
     59void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
     60{
     61    qseg->limit = vmx_seg->limit;
     62    qseg->base = vmx_seg->base;
     63    qseg->selector = vmx_seg->sel;
     64    qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
     65                  (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
     66                  (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
     67                  (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
     68                  (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
     69                  (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
     70                  (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
     71                  (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
     72}
     73
     74void hvf_put_xsave(CPUState *cpu_state)
     75{
     76    void *xsave = X86_CPU(cpu_state)->env.xsave_buf;
     77    uint32_t xsave_len = X86_CPU(cpu_state)->env.xsave_buf_len;
     78
     79    x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave, xsave_len);
     80
     81    if (hv_vcpu_write_fpstate(cpu_state->hvf->fd, xsave, xsave_len)) {
     82        abort();
     83    }
     84}
     85
     86void hvf_put_segments(CPUState *cpu_state)
     87{
     88    CPUX86State *env = &X86_CPU(cpu_state)->env;
     89    struct vmx_segment seg;
     90    
     91    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
     92    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
     93
     94    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
     95    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
     96
     97    /* wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR2, env->cr[2]); */
     98    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3, env->cr[3]);
     99    vmx_update_tpr(cpu_state);
    100    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER, env->efer);
    101
    102    macvm_set_cr4(cpu_state->hvf->fd, env->cr[4]);
    103    macvm_set_cr0(cpu_state->hvf->fd, env->cr[0]);
    104
    105    hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
    106    vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
    107    
    108    hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
    109    vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
    110
    111    hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
    112    vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
    113
    114    hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
    115    vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
    116
    117    hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
    118    vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
    119
    120    hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
    121    vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
    122
    123    hvf_set_segment(cpu_state, &seg, &env->tr, true);
    124    vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
    125
    126    hvf_set_segment(cpu_state, &seg, &env->ldt, false);
    127    vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
    128    
    129    hv_vcpu_flush(cpu_state->hvf->fd);
    130}
    131    
    132void hvf_put_msrs(CPUState *cpu_state)
    133{
    134    CPUX86State *env = &X86_CPU(cpu_state)->env;
    135
    136    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS,
    137                      env->sysenter_cs);
    138    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP,
    139                      env->sysenter_esp);
    140    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP,
    141                      env->sysenter_eip);
    142
    143    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_STAR, env->star);
    144
    145#ifdef TARGET_X86_64
    146    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_CSTAR, env->cstar);
    147    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, env->kernelgsbase);
    148    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FMASK, env->fmask);
    149    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_LSTAR, env->lstar);
    150#endif
    151
    152    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_GSBASE, env->segs[R_GS].base);
    153    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FSBASE, env->segs[R_FS].base);
    154}
    155
    156
    157void hvf_get_xsave(CPUState *cpu_state)
    158{
    159    void *xsave = X86_CPU(cpu_state)->env.xsave_buf;
    160    uint32_t xsave_len = X86_CPU(cpu_state)->env.xsave_buf_len;
    161
    162    if (hv_vcpu_read_fpstate(cpu_state->hvf->fd, xsave, xsave_len)) {
    163        abort();
    164    }
    165
    166    x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave, xsave_len);
    167}
    168
    169void hvf_get_segments(CPUState *cpu_state)
    170{
    171    CPUX86State *env = &X86_CPU(cpu_state)->env;
    172
    173    struct vmx_segment seg;
    174
    175    env->interrupt_injected = -1;
    176
    177    vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
    178    hvf_get_segment(&env->segs[R_CS], &seg);
    179    
    180    vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
    181    hvf_get_segment(&env->segs[R_DS], &seg);
    182
    183    vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
    184    hvf_get_segment(&env->segs[R_ES], &seg);
    185
    186    vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
    187    hvf_get_segment(&env->segs[R_FS], &seg);
    188
    189    vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
    190    hvf_get_segment(&env->segs[R_GS], &seg);
    191
    192    vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
    193    hvf_get_segment(&env->segs[R_SS], &seg);
    194
    195    vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
    196    hvf_get_segment(&env->tr, &seg);
    197
    198    vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
    199    hvf_get_segment(&env->ldt, &seg);
    200
    201    env->idt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT);
    202    env->idt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE);
    203    env->gdt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT);
    204    env->gdt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE);
    205
    206    env->cr[0] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR0);
    207    env->cr[2] = 0;
    208    env->cr[3] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3);
    209    env->cr[4] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR4);
    210    
    211    env->efer = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER);
    212}
    213
    214void hvf_get_msrs(CPUState *cpu_state)
    215{
    216    CPUX86State *env = &X86_CPU(cpu_state)->env;
    217    uint64_t tmp;
    218    
    219    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS, &tmp);
    220    env->sysenter_cs = tmp;
    221    
    222    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP, &tmp);
    223    env->sysenter_esp = tmp;
    224
    225    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP, &tmp);
    226    env->sysenter_eip = tmp;
    227
    228    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_STAR, &env->star);
    229
    230#ifdef TARGET_X86_64
    231    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_CSTAR, &env->cstar);
    232    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, &env->kernelgsbase);
    233    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_FMASK, &env->fmask);
    234    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_LSTAR, &env->lstar);
    235#endif
    236
    237    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_APICBASE, &tmp);
    238    
    239    env->tsc = rdtscp() + rvmcs(cpu_state->hvf->fd, VMCS_TSC_OFFSET);
    240}
    241
    242int hvf_put_registers(CPUState *cpu_state)
    243{
    244    X86CPU *x86cpu = X86_CPU(cpu_state);
    245    CPUX86State *env = &x86cpu->env;
    246
    247    wreg(cpu_state->hvf->fd, HV_X86_RAX, env->regs[R_EAX]);
    248    wreg(cpu_state->hvf->fd, HV_X86_RBX, env->regs[R_EBX]);
    249    wreg(cpu_state->hvf->fd, HV_X86_RCX, env->regs[R_ECX]);
    250    wreg(cpu_state->hvf->fd, HV_X86_RDX, env->regs[R_EDX]);
    251    wreg(cpu_state->hvf->fd, HV_X86_RBP, env->regs[R_EBP]);
    252    wreg(cpu_state->hvf->fd, HV_X86_RSP, env->regs[R_ESP]);
    253    wreg(cpu_state->hvf->fd, HV_X86_RSI, env->regs[R_ESI]);
    254    wreg(cpu_state->hvf->fd, HV_X86_RDI, env->regs[R_EDI]);
    255    wreg(cpu_state->hvf->fd, HV_X86_R8, env->regs[8]);
    256    wreg(cpu_state->hvf->fd, HV_X86_R9, env->regs[9]);
    257    wreg(cpu_state->hvf->fd, HV_X86_R10, env->regs[10]);
    258    wreg(cpu_state->hvf->fd, HV_X86_R11, env->regs[11]);
    259    wreg(cpu_state->hvf->fd, HV_X86_R12, env->regs[12]);
    260    wreg(cpu_state->hvf->fd, HV_X86_R13, env->regs[13]);
    261    wreg(cpu_state->hvf->fd, HV_X86_R14, env->regs[14]);
    262    wreg(cpu_state->hvf->fd, HV_X86_R15, env->regs[15]);
    263    wreg(cpu_state->hvf->fd, HV_X86_RFLAGS, env->eflags);
    264    wreg(cpu_state->hvf->fd, HV_X86_RIP, env->eip);
    265   
    266    wreg(cpu_state->hvf->fd, HV_X86_XCR0, env->xcr0);
    267    
    268    hvf_put_xsave(cpu_state);
    269    
    270    hvf_put_segments(cpu_state);
    271    
    272    hvf_put_msrs(cpu_state);
    273    
    274    wreg(cpu_state->hvf->fd, HV_X86_DR0, env->dr[0]);
    275    wreg(cpu_state->hvf->fd, HV_X86_DR1, env->dr[1]);
    276    wreg(cpu_state->hvf->fd, HV_X86_DR2, env->dr[2]);
    277    wreg(cpu_state->hvf->fd, HV_X86_DR3, env->dr[3]);
    278    wreg(cpu_state->hvf->fd, HV_X86_DR4, env->dr[4]);
    279    wreg(cpu_state->hvf->fd, HV_X86_DR5, env->dr[5]);
    280    wreg(cpu_state->hvf->fd, HV_X86_DR6, env->dr[6]);
    281    wreg(cpu_state->hvf->fd, HV_X86_DR7, env->dr[7]);
    282    
    283    return 0;
    284}
    285
    286int hvf_get_registers(CPUState *cpu_state)
    287{
    288    X86CPU *x86cpu = X86_CPU(cpu_state);
    289    CPUX86State *env = &x86cpu->env;
    290
    291    env->regs[R_EAX] = rreg(cpu_state->hvf->fd, HV_X86_RAX);
    292    env->regs[R_EBX] = rreg(cpu_state->hvf->fd, HV_X86_RBX);
    293    env->regs[R_ECX] = rreg(cpu_state->hvf->fd, HV_X86_RCX);
    294    env->regs[R_EDX] = rreg(cpu_state->hvf->fd, HV_X86_RDX);
    295    env->regs[R_EBP] = rreg(cpu_state->hvf->fd, HV_X86_RBP);
    296    env->regs[R_ESP] = rreg(cpu_state->hvf->fd, HV_X86_RSP);
    297    env->regs[R_ESI] = rreg(cpu_state->hvf->fd, HV_X86_RSI);
    298    env->regs[R_EDI] = rreg(cpu_state->hvf->fd, HV_X86_RDI);
    299    env->regs[8] = rreg(cpu_state->hvf->fd, HV_X86_R8);
    300    env->regs[9] = rreg(cpu_state->hvf->fd, HV_X86_R9);
    301    env->regs[10] = rreg(cpu_state->hvf->fd, HV_X86_R10);
    302    env->regs[11] = rreg(cpu_state->hvf->fd, HV_X86_R11);
    303    env->regs[12] = rreg(cpu_state->hvf->fd, HV_X86_R12);
    304    env->regs[13] = rreg(cpu_state->hvf->fd, HV_X86_R13);
    305    env->regs[14] = rreg(cpu_state->hvf->fd, HV_X86_R14);
    306    env->regs[15] = rreg(cpu_state->hvf->fd, HV_X86_R15);
    307    
    308    env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS);
    309    env->eip = rreg(cpu_state->hvf->fd, HV_X86_RIP);
    310   
    311    hvf_get_xsave(cpu_state);
    312    env->xcr0 = rreg(cpu_state->hvf->fd, HV_X86_XCR0);
    313    
    314    hvf_get_segments(cpu_state);
    315    hvf_get_msrs(cpu_state);
    316    
    317    env->dr[0] = rreg(cpu_state->hvf->fd, HV_X86_DR0);
    318    env->dr[1] = rreg(cpu_state->hvf->fd, HV_X86_DR1);
    319    env->dr[2] = rreg(cpu_state->hvf->fd, HV_X86_DR2);
    320    env->dr[3] = rreg(cpu_state->hvf->fd, HV_X86_DR3);
    321    env->dr[4] = rreg(cpu_state->hvf->fd, HV_X86_DR4);
    322    env->dr[5] = rreg(cpu_state->hvf->fd, HV_X86_DR5);
    323    env->dr[6] = rreg(cpu_state->hvf->fd, HV_X86_DR6);
    324    env->dr[7] = rreg(cpu_state->hvf->fd, HV_X86_DR7);
    325    
    326    x86_update_hflags(env);
    327    return 0;
    328}
    329
    330static void vmx_set_int_window_exiting(CPUState *cpu)
    331{
    332     uint64_t val;
    333     val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
    334     wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val |
    335             VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
    336}
    337
    338void vmx_clear_int_window_exiting(CPUState *cpu)
    339{
    340     uint64_t val;
    341     val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
    342     wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val &
    343             ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
    344}
    345
    346bool hvf_inject_interrupts(CPUState *cpu_state)
    347{
    348    X86CPU *x86cpu = X86_CPU(cpu_state);
    349    CPUX86State *env = &x86cpu->env;
    350
    351    uint8_t vector;
    352    uint64_t intr_type;
    353    bool have_event = true;
    354    if (env->interrupt_injected != -1) {
    355        vector = env->interrupt_injected;
    356        if (env->ins_len) {
    357            intr_type = VMCS_INTR_T_SWINTR;
    358        } else {
    359            intr_type = VMCS_INTR_T_HWINTR;
    360        }
    361    } else if (env->exception_nr != -1) {
    362        vector = env->exception_nr;
    363        if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
    364            intr_type = VMCS_INTR_T_SWEXCEPTION;
    365        } else {
    366            intr_type = VMCS_INTR_T_HWEXCEPTION;
    367        }
    368    } else if (env->nmi_injected) {
    369        vector = EXCP02_NMI;
    370        intr_type = VMCS_INTR_T_NMI;
    371    } else {
    372        have_event = false;
    373    }
    374
    375    uint64_t info = 0;
    376    if (have_event) {
    377        info = vector | intr_type | VMCS_INTR_VALID;
    378        uint64_t reason = rvmcs(cpu_state->hvf->fd, VMCS_EXIT_REASON);
    379        if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
    380            vmx_clear_nmi_blocking(cpu_state);
    381        }
    382
    383        if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
    384            info &= ~(1 << 12); /* clear undefined bit */
    385            if (intr_type == VMCS_INTR_T_SWINTR ||
    386                intr_type == VMCS_INTR_T_SWEXCEPTION) {
    387                wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
    388            }
    389            
    390            if (env->has_error_code) {
    391                wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_EXCEPTION_ERROR,
    392                      env->error_code);
    393                /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
    394                info |= VMCS_INTR_DEL_ERRCODE;
    395            }
    396            /*printf("reinject  %lx err %d\n", info, err);*/
    397            wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info);
    398        };
    399    }
    400
    401    if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
    402        if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
    403            cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
    404            info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
    405            wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info);
    406        } else {
    407            vmx_set_nmi_window_exiting(cpu_state);
    408        }
    409    }
    410
    411    if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
    412        (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
    413        (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
    414        int line = cpu_get_pic_interrupt(&x86cpu->env);
    415        cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
    416        if (line >= 0) {
    417            wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, line |
    418                  VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
    419        }
    420    }
    421    if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
    422        vmx_set_int_window_exiting(cpu_state);
    423    }
    424    return (cpu_state->interrupt_request
    425            & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
    426}
    427
    428int hvf_process_events(CPUState *cpu_state)
    429{
    430    X86CPU *cpu = X86_CPU(cpu_state);
    431    CPUX86State *env = &cpu->env;
    432
    433    if (!cpu_state->vcpu_dirty) {
    434        /* light weight sync for CPU_INTERRUPT_HARD and IF_MASK */
    435        env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS);
    436    }
    437
    438    if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
    439        cpu_synchronize_state(cpu_state);
    440        do_cpu_init(cpu);
    441    }
    442
    443    if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
    444        cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
    445        apic_poll_irq(cpu->apic_state);
    446    }
    447    if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
    448        (env->eflags & IF_MASK)) ||
    449        (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
    450        cpu_state->halted = 0;
    451    }
    452    if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
    453        cpu_synchronize_state(cpu_state);
    454        do_cpu_sipi(cpu);
    455    }
    456    if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
    457        cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
    458        cpu_synchronize_state(cpu_state);
    459        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
    460                                      env->tpr_access_type);
    461    }
    462    return cpu_state->halted;
    463}