cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

smm_helper.c (13207B)


      1/*
      2 *  x86 SMM helpers (sysemu-only)
      3 *
      4 *  Copyright (c) 2003 Fabrice Bellard
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21#include "cpu.h"
     22#include "exec/helper-proto.h"
     23#include "exec/log.h"
     24#include "tcg/helper-tcg.h"
     25
     26
     27/* SMM support */
     28
     29#ifdef TARGET_X86_64
     30#define SMM_REVISION_ID 0x00020064
     31#else
     32#define SMM_REVISION_ID 0x00020000
     33#endif
     34
     35void do_smm_enter(X86CPU *cpu)
     36{
     37    CPUX86State *env = &cpu->env;
     38    CPUState *cs = CPU(cpu);
     39    target_ulong sm_state;
     40    SegmentCache *dt;
     41    int i, offset;
     42
     43    qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
     44    log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
     45
     46    env->msr_smi_count++;
     47    env->hflags |= HF_SMM_MASK;
     48    if (env->hflags2 & HF2_NMI_MASK) {
     49        env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
     50    } else {
     51        env->hflags2 |= HF2_NMI_MASK;
     52    }
     53
     54    sm_state = env->smbase + 0x8000;
     55
     56#ifdef TARGET_X86_64
     57    for (i = 0; i < 6; i++) {
     58        dt = &env->segs[i];
     59        offset = 0x7e00 + i * 16;
     60        x86_stw_phys(cs, sm_state + offset, dt->selector);
     61        x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
     62        x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
     63        x86_stq_phys(cs, sm_state + offset + 8, dt->base);
     64    }
     65
     66    x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
     67    x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
     68
     69    x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
     70    x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
     71    x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
     72    x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
     73
     74    x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
     75    x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
     76
     77    x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
     78    x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
     79    x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
     80    x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
     81
     82    /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
     83       is saved at offset 7ED0.  Vol 3, 34.4.1.1, Table 32-2, has
     84       7EA0-7ED7 as "reserved".  What's this, and what's really
     85       supposed to happen?  */
     86    x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
     87
     88    x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
     89    x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
     90    x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
     91    x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
     92    x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
     93    x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
     94    x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
     95    x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
     96    for (i = 8; i < 16; i++) {
     97        x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
     98    }
     99    x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
    100    x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
    101    x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
    102    x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
    103
    104    x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
    105    x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
    106    x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
    107
    108    x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
    109    x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
    110#else
    111    x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
    112    x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
    113    x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
    114    x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
    115    x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
    116    x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
    117    x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
    118    x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
    119    x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
    120    x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
    121    x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
    122    x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
    123    x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
    124    x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
    125
    126    x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
    127    x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
    128    x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
    129    x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
    130
    131    x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
    132    x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
    133    x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
    134    x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
    135
    136    x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
    137    x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
    138
    139    x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
    140    x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
    141
    142    for (i = 0; i < 6; i++) {
    143        dt = &env->segs[i];
    144        if (i < 3) {
    145            offset = 0x7f84 + i * 12;
    146        } else {
    147            offset = 0x7f2c + (i - 3) * 12;
    148        }
    149        x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
    150        x86_stl_phys(cs, sm_state + offset + 8, dt->base);
    151        x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
    152        x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
    153    }
    154    x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
    155
    156    x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
    157    x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
    158#endif
    159    /* init SMM cpu state */
    160
    161#ifdef TARGET_X86_64
    162    cpu_load_efer(env, 0);
    163#endif
    164    cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
    165                              DF_MASK));
    166    env->eip = 0x00008000;
    167    cpu_x86_update_cr0(env,
    168                       env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
    169                                      CR0_PG_MASK));
    170    cpu_x86_update_cr4(env, 0);
    171    env->dr[7] = 0x00000400;
    172
    173    cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
    174                           0xffffffff,
    175                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    176                           DESC_G_MASK | DESC_A_MASK);
    177    cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
    178                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    179                           DESC_G_MASK | DESC_A_MASK);
    180    cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
    181                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    182                           DESC_G_MASK | DESC_A_MASK);
    183    cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
    184                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    185                           DESC_G_MASK | DESC_A_MASK);
    186    cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
    187                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    188                           DESC_G_MASK | DESC_A_MASK);
    189    cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
    190                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
    191                           DESC_G_MASK | DESC_A_MASK);
    192}
    193
    194void helper_rsm(CPUX86State *env)
    195{
    196    X86CPU *cpu = env_archcpu(env);
    197    CPUState *cs = env_cpu(env);
    198    target_ulong sm_state;
    199    int i, offset;
    200    uint32_t val;
    201
    202    sm_state = env->smbase + 0x8000;
    203#ifdef TARGET_X86_64
    204    cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
    205
    206    env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
    207    env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
    208
    209    env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
    210    env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
    211    env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
    212    env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
    213
    214    env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
    215    env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
    216
    217    env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
    218    env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
    219    env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
    220    env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
    221
    222    env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
    223    env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
    224    env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
    225    env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
    226    env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
    227    env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
    228    env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
    229    env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
    230    for (i = 8; i < 16; i++) {
    231        env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
    232    }
    233    env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
    234    cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
    235                    ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
    236    env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
    237    env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
    238
    239    cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
    240    cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
    241    cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
    242
    243    for (i = 0; i < 6; i++) {
    244        offset = 0x7e00 + i * 16;
    245        cpu_x86_load_seg_cache(env, i,
    246                               x86_lduw_phys(cs, sm_state + offset),
    247                               x86_ldq_phys(cs, sm_state + offset + 8),
    248                               x86_ldl_phys(cs, sm_state + offset + 4),
    249                               (x86_lduw_phys(cs, sm_state + offset + 2) &
    250                                0xf0ff) << 8);
    251    }
    252
    253    val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
    254    if (val & 0x20000) {
    255        env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
    256    }
    257#else
    258    cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
    259    cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
    260    cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
    261                    ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
    262    env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
    263    env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
    264    env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
    265    env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
    266    env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
    267    env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
    268    env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
    269    env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
    270    env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
    271    env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
    272    env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
    273
    274    env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
    275    env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
    276    env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
    277    env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
    278
    279    env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
    280    env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
    281    env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
    282    env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
    283
    284    env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
    285    env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
    286
    287    env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
    288    env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
    289
    290    for (i = 0; i < 6; i++) {
    291        if (i < 3) {
    292            offset = 0x7f84 + i * 12;
    293        } else {
    294            offset = 0x7f2c + (i - 3) * 12;
    295        }
    296        cpu_x86_load_seg_cache(env, i,
    297                               x86_ldl_phys(cs,
    298                                        sm_state + 0x7fa8 + i * 4) & 0xffff,
    299                               x86_ldl_phys(cs, sm_state + offset + 8),
    300                               x86_ldl_phys(cs, sm_state + offset + 4),
    301                               (x86_ldl_phys(cs,
    302                                         sm_state + offset) & 0xf0ff) << 8);
    303    }
    304    cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
    305
    306    val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
    307    if (val & 0x20000) {
    308        env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
    309    }
    310#endif
    311    if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
    312        env->hflags2 &= ~HF2_NMI_MASK;
    313    }
    314    env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
    315    env->hflags &= ~HF_SMM_MASK;
    316
    317    qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
    318    log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
    319}