cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

kvm.c (81192B)


      1/*
      2 * PowerPC implementation of KVM hooks
      3 *
      4 * Copyright IBM Corp. 2007
      5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
      6 *
      7 * Authors:
      8 *  Jerone Young <jyoung5@us.ibm.com>
      9 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
     10 *  Hollis Blanchard <hollisb@us.ibm.com>
     11 *
     12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
     13 * See the COPYING file in the top-level directory.
     14 *
     15 */
     16
     17#include "qemu/osdep.h"
     18#include <dirent.h>
     19#include <sys/ioctl.h>
     20#include <sys/vfs.h>
     21
     22#include <linux/kvm.h>
     23
     24#include "qemu-common.h"
     25#include "qapi/error.h"
     26#include "qemu/error-report.h"
     27#include "cpu.h"
     28#include "cpu-models.h"
     29#include "qemu/timer.h"
     30#include "sysemu/hw_accel.h"
     31#include "kvm_ppc.h"
     32#include "sysemu/cpus.h"
     33#include "sysemu/device_tree.h"
     34#include "mmu-hash64.h"
     35
     36#include "hw/sysbus.h"
     37#include "hw/ppc/spapr.h"
     38#include "hw/ppc/spapr_cpu_core.h"
     39#include "hw/hw.h"
     40#include "hw/ppc/ppc.h"
     41#include "migration/qemu-file-types.h"
     42#include "sysemu/watchdog.h"
     43#include "trace.h"
     44#include "exec/gdbstub.h"
     45#include "exec/memattrs.h"
     46#include "exec/ram_addr.h"
     47#include "sysemu/hostmem.h"
     48#include "qemu/cutils.h"
     49#include "qemu/main-loop.h"
     50#include "qemu/mmap-alloc.h"
     51#include "elf.h"
     52#include "sysemu/kvm_int.h"
     53
     54#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
     55
     56#define DEBUG_RETURN_GUEST 0
     57#define DEBUG_RETURN_GDB   1
     58
     59const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     60    KVM_CAP_LAST_INFO
     61};
     62
     63static int cap_interrupt_unset;
     64static int cap_segstate;
     65static int cap_booke_sregs;
     66static int cap_ppc_smt;
     67static int cap_ppc_smt_possible;
     68static int cap_spapr_tce;
     69static int cap_spapr_tce_64;
     70static int cap_spapr_multitce;
     71static int cap_spapr_vfio;
     72static int cap_hior;
     73static int cap_one_reg;
     74static int cap_epr;
     75static int cap_ppc_watchdog;
     76static int cap_papr;
     77static int cap_htab_fd;
     78static int cap_fixup_hcalls;
     79static int cap_htm;             /* Hardware transactional memory support */
     80static int cap_mmu_radix;
     81static int cap_mmu_hash_v3;
     82static int cap_xive;
     83static int cap_resize_hpt;
     84static int cap_ppc_pvr_compat;
     85static int cap_ppc_safe_cache;
     86static int cap_ppc_safe_bounds_check;
     87static int cap_ppc_safe_indirect_branch;
     88static int cap_ppc_count_cache_flush_assist;
     89static int cap_ppc_nested_kvm_hv;
     90static int cap_large_decr;
     91static int cap_fwnmi;
     92static int cap_rpt_invalidate;
     93
     94static uint32_t debug_inst_opcode;
     95
     96/*
     97 * Check whether we are running with KVM-PR (instead of KVM-HV).  This
     98 * should only be used for fallback tests - generally we should use
     99 * explicit capabilities for the features we want, rather than
    100 * assuming what is/isn't available depending on the KVM variant.
    101 */
    102static bool kvmppc_is_pr(KVMState *ks)
    103{
    104    /* Assume KVM-PR if the GET_PVINFO capability is available */
    105    return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
    106}
    107
    108static int kvm_ppc_register_host_cpu_type(void);
    109static void kvmppc_get_cpu_characteristics(KVMState *s);
    110static int kvmppc_get_dec_bits(void);
    111
    112int kvm_arch_init(MachineState *ms, KVMState *s)
    113{
    114    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    115    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    116    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
    117    cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
    118    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
    119    cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
    120    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
    121    cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
    122    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
    123    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
    124    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
    125    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
    126    /*
    127     * Note: we don't set cap_papr here, because this capability is
    128     * only activated after this by kvmppc_set_papr()
    129     */
    130    cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
    131    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
    132    cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
    133    cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
    134    cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
    135    cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
    136    cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
    137    cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
    138    kvmppc_get_cpu_characteristics(s);
    139    cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
    140    cap_large_decr = kvmppc_get_dec_bits();
    141    cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
    142    /*
    143     * Note: setting it to false because there is not such capability
    144     * in KVM at this moment.
    145     *
    146     * TODO: call kvm_vm_check_extension() with the right capability
    147     * after the kernel starts implementing it.
    148     */
    149    cap_ppc_pvr_compat = false;
    150
    151    if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
    152        error_report("KVM: Host kernel doesn't have level irq capability");
    153        exit(1);
    154    }
    155
    156    cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
    157    kvm_ppc_register_host_cpu_type();
    158
    159    return 0;
    160}
    161
    162int kvm_arch_irqchip_create(KVMState *s)
    163{
    164    return 0;
    165}
    166
    167static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
    168{
    169    CPUPPCState *cenv = &cpu->env;
    170    CPUState *cs = CPU(cpu);
    171    struct kvm_sregs sregs;
    172    int ret;
    173
    174    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
    175        /*
    176         * What we're really trying to say is "if we're on BookE, we
    177         * use the native PVR for now". This is the only sane way to
    178         * check it though, so we potentially confuse users that they
    179         * can run BookE guests on BookS. Let's hope nobody dares
    180         * enough :)
    181         */
    182        return 0;
    183    } else {
    184        if (!cap_segstate) {
    185            fprintf(stderr, "kvm error: missing PVR setting capability\n");
    186            return -ENOSYS;
    187        }
    188    }
    189
    190    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
    191    if (ret) {
    192        return ret;
    193    }
    194
    195    sregs.pvr = cenv->spr[SPR_PVR];
    196    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
    197}
    198
    199/* Set up a shared TLB array with KVM */
    200static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
    201{
    202    CPUPPCState *env = &cpu->env;
    203    CPUState *cs = CPU(cpu);
    204    struct kvm_book3e_206_tlb_params params = {};
    205    struct kvm_config_tlb cfg = {};
    206    unsigned int entries = 0;
    207    int ret, i;
    208
    209    if (!kvm_enabled() ||
    210        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
    211        return 0;
    212    }
    213
    214    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
    215
    216    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
    217        params.tlb_sizes[i] = booke206_tlb_size(env, i);
    218        params.tlb_ways[i] = booke206_tlb_ways(env, i);
    219        entries += params.tlb_sizes[i];
    220    }
    221
    222    assert(entries == env->nb_tlb);
    223    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
    224
    225    env->tlb_dirty = true;
    226
    227    cfg.array = (uintptr_t)env->tlb.tlbm;
    228    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    229    cfg.params = (uintptr_t)&params;
    230    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
    231
    232    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
    233    if (ret < 0) {
    234        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
    235                __func__, strerror(-ret));
    236        return ret;
    237    }
    238
    239    env->kvm_sw_tlb = true;
    240    return 0;
    241}
    242
    243
    244#if defined(TARGET_PPC64)
    245static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
    246{
    247    int ret;
    248
    249    assert(kvm_state != NULL);
    250
    251    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
    252        error_setg(errp, "KVM doesn't expose the MMU features it supports");
    253        error_append_hint(errp, "Consider switching to a newer KVM\n");
    254        return;
    255    }
    256
    257    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
    258    if (ret == 0) {
    259        return;
    260    }
    261
    262    error_setg_errno(errp, -ret,
    263                     "KVM failed to provide the MMU features it supports");
    264}
    265
    266struct ppc_radix_page_info *kvm_get_radix_page_info(void)
    267{
    268    KVMState *s = KVM_STATE(current_accel());
    269    struct ppc_radix_page_info *radix_page_info;
    270    struct kvm_ppc_rmmu_info rmmu_info;
    271    int i;
    272
    273    if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
    274        return NULL;
    275    }
    276    if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
    277        return NULL;
    278    }
    279    radix_page_info = g_malloc0(sizeof(*radix_page_info));
    280    radix_page_info->count = 0;
    281    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
    282        if (rmmu_info.ap_encodings[i]) {
    283            radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
    284            radix_page_info->count++;
    285        }
    286    }
    287    return radix_page_info;
    288}
    289
    290target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
    291                                     bool radix, bool gtse,
    292                                     uint64_t proc_tbl)
    293{
    294    CPUState *cs = CPU(cpu);
    295    int ret;
    296    uint64_t flags = 0;
    297    struct kvm_ppc_mmuv3_cfg cfg = {
    298        .process_table = proc_tbl,
    299    };
    300
    301    if (radix) {
    302        flags |= KVM_PPC_MMUV3_RADIX;
    303    }
    304    if (gtse) {
    305        flags |= KVM_PPC_MMUV3_GTSE;
    306    }
    307    cfg.flags = flags;
    308    ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
    309    switch (ret) {
    310    case 0:
    311        return H_SUCCESS;
    312    case -EINVAL:
    313        return H_PARAMETER;
    314    case -ENODEV:
    315        return H_NOT_AVAILABLE;
    316    default:
    317        return H_HARDWARE;
    318    }
    319}
    320
    321bool kvmppc_hpt_needs_host_contiguous_pages(void)
    322{
    323    static struct kvm_ppc_smmu_info smmu_info;
    324
    325    if (!kvm_enabled()) {
    326        return false;
    327    }
    328
    329    kvm_get_smmu_info(&smmu_info, &error_fatal);
    330    return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
    331}
    332
    333void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
    334{
    335    struct kvm_ppc_smmu_info smmu_info;
    336    int iq, ik, jq, jk;
    337    Error *local_err = NULL;
    338
    339    /* For now, we only have anything to check on hash64 MMUs */
    340    if (!cpu->hash64_opts || !kvm_enabled()) {
    341        return;
    342    }
    343
    344    kvm_get_smmu_info(&smmu_info, &local_err);
    345    if (local_err) {
    346        error_propagate(errp, local_err);
    347        return;
    348    }
    349
    350    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
    351        && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
    352        error_setg(errp,
    353                   "KVM does not support 1TiB segments which guest expects");
    354        return;
    355    }
    356
    357    if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
    358        error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
    359                   smmu_info.slb_size, cpu->hash64_opts->slb_size);
    360        return;
    361    }
    362
    363    /*
    364     * Verify that every pagesize supported by the cpu model is
    365     * supported by KVM with the same encodings
    366     */
    367    for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
    368        PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
    369        struct kvm_ppc_one_seg_page_size *ksps;
    370
    371        for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
    372            if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
    373                break;
    374            }
    375        }
    376        if (ik >= ARRAY_SIZE(smmu_info.sps)) {
    377            error_setg(errp, "KVM doesn't support for base page shift %u",
    378                       qsps->page_shift);
    379            return;
    380        }
    381
    382        ksps = &smmu_info.sps[ik];
    383        if (ksps->slb_enc != qsps->slb_enc) {
    384            error_setg(errp,
    385"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
    386                       ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
    387            return;
    388        }
    389
    390        for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
    391            for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
    392                if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
    393                    break;
    394                }
    395            }
    396
    397            if (jk >= ARRAY_SIZE(ksps->enc)) {
    398                error_setg(errp, "KVM doesn't support page shift %u/%u",
    399                           qsps->enc[jq].page_shift, qsps->page_shift);
    400                return;
    401            }
    402            if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
    403                error_setg(errp,
    404"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
    405                           ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
    406                           qsps->page_shift, qsps->enc[jq].pte_enc);
    407                return;
    408            }
    409        }
    410    }
    411
    412    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
    413        /*
    414         * Mostly what guest pagesizes we can use are related to the
    415         * host pages used to map guest RAM, which is handled in the
    416         * platform code. Cache-Inhibited largepages (64k) however are
    417         * used for I/O, so if they're mapped to the host at all it
    418         * will be a normal mapping, not a special hugepage one used
    419         * for RAM.
    420         */
    421        if (qemu_real_host_page_size < 0x10000) {
    422            error_setg(errp,
    423                       "KVM can't supply 64kiB CI pages, which guest expects");
    424        }
    425    }
    426}
    427#endif /* !defined (TARGET_PPC64) */
    428
    429unsigned long kvm_arch_vcpu_id(CPUState *cpu)
    430{
    431    return POWERPC_CPU(cpu)->vcpu_id;
    432}
    433
    434/*
    435 * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
    436 * only 1 watchpoint, so array size of 4 is sufficient for now.
    437 */
    438#define MAX_HW_BKPTS 4
    439
    440static struct HWBreakpoint {
    441    target_ulong addr;
    442    int type;
    443} hw_debug_points[MAX_HW_BKPTS];
    444
    445static CPUWatchpoint hw_watchpoint;
    446
    447/* Default there is no breakpoint and watchpoint supported */
    448static int max_hw_breakpoint;
    449static int max_hw_watchpoint;
    450static int nb_hw_breakpoint;
    451static int nb_hw_watchpoint;
    452
    453static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
    454{
    455    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
    456        max_hw_breakpoint = 2;
    457        max_hw_watchpoint = 2;
    458    }
    459
    460    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
    461        fprintf(stderr, "Error initializing h/w breakpoints\n");
    462        return;
    463    }
    464}
    465
    466int kvm_arch_init_vcpu(CPUState *cs)
    467{
    468    PowerPCCPU *cpu = POWERPC_CPU(cs);
    469    CPUPPCState *cenv = &cpu->env;
    470    int ret;
    471
    472    /* Synchronize sregs with kvm */
    473    ret = kvm_arch_sync_sregs(cpu);
    474    if (ret) {
    475        if (ret == -EINVAL) {
    476            error_report("Register sync failed... If you're using kvm-hv.ko,"
    477                         " only \"-cpu host\" is possible");
    478        }
    479        return ret;
    480    }
    481
    482    switch (cenv->mmu_model) {
    483    case POWERPC_MMU_BOOKE206:
    484        /* This target supports access to KVM's guest TLB */
    485        ret = kvm_booke206_tlb_init(cpu);
    486        break;
    487    case POWERPC_MMU_2_07:
    488        if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
    489            /*
    490             * KVM-HV has transactional memory on POWER8 also without
    491             * the KVM_CAP_PPC_HTM extension, so enable it here
    492             * instead as long as it's available to userspace on the
    493             * host.
    494             */
    495            if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
    496                cap_htm = true;
    497            }
    498        }
    499        break;
    500    default:
    501        break;
    502    }
    503
    504    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
    505    kvmppc_hw_debug_points_init(cenv);
    506
    507    return ret;
    508}
    509
    510int kvm_arch_destroy_vcpu(CPUState *cs)
    511{
    512    return 0;
    513}
    514
    515static void kvm_sw_tlb_put(PowerPCCPU *cpu)
    516{
    517    CPUPPCState *env = &cpu->env;
    518    CPUState *cs = CPU(cpu);
    519    struct kvm_dirty_tlb dirty_tlb;
    520    unsigned char *bitmap;
    521    int ret;
    522
    523    if (!env->kvm_sw_tlb) {
    524        return;
    525    }
    526
    527    bitmap = g_malloc((env->nb_tlb + 7) / 8);
    528    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
    529
    530    dirty_tlb.bitmap = (uintptr_t)bitmap;
    531    dirty_tlb.num_dirty = env->nb_tlb;
    532
    533    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
    534    if (ret) {
    535        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
    536                __func__, strerror(-ret));
    537    }
    538
    539    g_free(bitmap);
    540}
    541
    542static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
    543{
    544    PowerPCCPU *cpu = POWERPC_CPU(cs);
    545    CPUPPCState *env = &cpu->env;
    546    union {
    547        uint32_t u32;
    548        uint64_t u64;
    549    } val;
    550    struct kvm_one_reg reg = {
    551        .id = id,
    552        .addr = (uintptr_t) &val,
    553    };
    554    int ret;
    555
    556    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    557    if (ret != 0) {
    558        trace_kvm_failed_spr_get(spr, strerror(errno));
    559    } else {
    560        switch (id & KVM_REG_SIZE_MASK) {
    561        case KVM_REG_SIZE_U32:
    562            env->spr[spr] = val.u32;
    563            break;
    564
    565        case KVM_REG_SIZE_U64:
    566            env->spr[spr] = val.u64;
    567            break;
    568
    569        default:
    570            /* Don't handle this size yet */
    571            abort();
    572        }
    573    }
    574}
    575
    576static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
    577{
    578    PowerPCCPU *cpu = POWERPC_CPU(cs);
    579    CPUPPCState *env = &cpu->env;
    580    union {
    581        uint32_t u32;
    582        uint64_t u64;
    583    } val;
    584    struct kvm_one_reg reg = {
    585        .id = id,
    586        .addr = (uintptr_t) &val,
    587    };
    588    int ret;
    589
    590    switch (id & KVM_REG_SIZE_MASK) {
    591    case KVM_REG_SIZE_U32:
    592        val.u32 = env->spr[spr];
    593        break;
    594
    595    case KVM_REG_SIZE_U64:
    596        val.u64 = env->spr[spr];
    597        break;
    598
    599    default:
    600        /* Don't handle this size yet */
    601        abort();
    602    }
    603
    604    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    605    if (ret != 0) {
    606        trace_kvm_failed_spr_set(spr, strerror(errno));
    607    }
    608}
    609
    610static int kvm_put_fp(CPUState *cs)
    611{
    612    PowerPCCPU *cpu = POWERPC_CPU(cs);
    613    CPUPPCState *env = &cpu->env;
    614    struct kvm_one_reg reg;
    615    int i;
    616    int ret;
    617
    618    if (env->insns_flags & PPC_FLOAT) {
    619        uint64_t fpscr = env->fpscr;
    620        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
    621
    622        reg.id = KVM_REG_PPC_FPSCR;
    623        reg.addr = (uintptr_t)&fpscr;
    624        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    625        if (ret < 0) {
    626            trace_kvm_failed_fpscr_set(strerror(errno));
    627            return ret;
    628        }
    629
    630        for (i = 0; i < 32; i++) {
    631            uint64_t vsr[2];
    632            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
    633            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
    634
    635#ifdef HOST_WORDS_BIGENDIAN
    636            vsr[0] = float64_val(*fpr);
    637            vsr[1] = *vsrl;
    638#else
    639            vsr[0] = *vsrl;
    640            vsr[1] = float64_val(*fpr);
    641#endif
    642            reg.addr = (uintptr_t) &vsr;
    643            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
    644
    645            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    646            if (ret < 0) {
    647                trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
    648                                        strerror(errno));
    649                return ret;
    650            }
    651        }
    652    }
    653
    654    if (env->insns_flags & PPC_ALTIVEC) {
    655        reg.id = KVM_REG_PPC_VSCR;
    656        reg.addr = (uintptr_t)&env->vscr;
    657        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    658        if (ret < 0) {
    659            trace_kvm_failed_vscr_set(strerror(errno));
    660            return ret;
    661        }
    662
    663        for (i = 0; i < 32; i++) {
    664            reg.id = KVM_REG_PPC_VR(i);
    665            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
    666            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    667            if (ret < 0) {
    668                trace_kvm_failed_vr_set(i, strerror(errno));
    669                return ret;
    670            }
    671        }
    672    }
    673
    674    return 0;
    675}
    676
    677static int kvm_get_fp(CPUState *cs)
    678{
    679    PowerPCCPU *cpu = POWERPC_CPU(cs);
    680    CPUPPCState *env = &cpu->env;
    681    struct kvm_one_reg reg;
    682    int i;
    683    int ret;
    684
    685    if (env->insns_flags & PPC_FLOAT) {
    686        uint64_t fpscr;
    687        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
    688
    689        reg.id = KVM_REG_PPC_FPSCR;
    690        reg.addr = (uintptr_t)&fpscr;
    691        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    692        if (ret < 0) {
    693            trace_kvm_failed_fpscr_get(strerror(errno));
    694            return ret;
    695        } else {
    696            env->fpscr = fpscr;
    697        }
    698
    699        for (i = 0; i < 32; i++) {
    700            uint64_t vsr[2];
    701            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
    702            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
    703
    704            reg.addr = (uintptr_t) &vsr;
    705            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
    706
    707            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    708            if (ret < 0) {
    709                trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
    710                                        strerror(errno));
    711                return ret;
    712            } else {
    713#ifdef HOST_WORDS_BIGENDIAN
    714                *fpr = vsr[0];
    715                if (vsx) {
    716                    *vsrl = vsr[1];
    717                }
    718#else
    719                *fpr = vsr[1];
    720                if (vsx) {
    721                    *vsrl = vsr[0];
    722                }
    723#endif
    724            }
    725        }
    726    }
    727
    728    if (env->insns_flags & PPC_ALTIVEC) {
    729        reg.id = KVM_REG_PPC_VSCR;
    730        reg.addr = (uintptr_t)&env->vscr;
    731        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    732        if (ret < 0) {
    733            trace_kvm_failed_vscr_get(strerror(errno));
    734            return ret;
    735        }
    736
    737        for (i = 0; i < 32; i++) {
    738            reg.id = KVM_REG_PPC_VR(i);
    739            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
    740            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    741            if (ret < 0) {
    742                trace_kvm_failed_vr_get(i, strerror(errno));
    743                return ret;
    744            }
    745        }
    746    }
    747
    748    return 0;
    749}
    750
    751#if defined(TARGET_PPC64)
    752static int kvm_get_vpa(CPUState *cs)
    753{
    754    PowerPCCPU *cpu = POWERPC_CPU(cs);
    755    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    756    struct kvm_one_reg reg;
    757    int ret;
    758
    759    reg.id = KVM_REG_PPC_VPA_ADDR;
    760    reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
    761    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    762    if (ret < 0) {
    763        trace_kvm_failed_vpa_addr_get(strerror(errno));
    764        return ret;
    765    }
    766
    767    assert((uintptr_t)&spapr_cpu->slb_shadow_size
    768           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
    769    reg.id = KVM_REG_PPC_VPA_SLB;
    770    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
    771    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    772    if (ret < 0) {
    773        trace_kvm_failed_slb_get(strerror(errno));
    774        return ret;
    775    }
    776
    777    assert((uintptr_t)&spapr_cpu->dtl_size
    778           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
    779    reg.id = KVM_REG_PPC_VPA_DTL;
    780    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
    781    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    782    if (ret < 0) {
    783        trace_kvm_failed_dtl_get(strerror(errno));
    784        return ret;
    785    }
    786
    787    return 0;
    788}
    789
    790static int kvm_put_vpa(CPUState *cs)
    791{
    792    PowerPCCPU *cpu = POWERPC_CPU(cs);
    793    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    794    struct kvm_one_reg reg;
    795    int ret;
    796
    797    /*
    798     * SLB shadow or DTL can't be registered unless a master VPA is
    799     * registered.  That means when restoring state, if a VPA *is*
    800     * registered, we need to set that up first.  If not, we need to
    801     * deregister the others before deregistering the master VPA
    802     */
    803    assert(spapr_cpu->vpa_addr
    804           || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
    805
    806    if (spapr_cpu->vpa_addr) {
    807        reg.id = KVM_REG_PPC_VPA_ADDR;
    808        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
    809        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    810        if (ret < 0) {
    811            trace_kvm_failed_vpa_addr_set(strerror(errno));
    812            return ret;
    813        }
    814    }
    815
    816    assert((uintptr_t)&spapr_cpu->slb_shadow_size
    817           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
    818    reg.id = KVM_REG_PPC_VPA_SLB;
    819    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
    820    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    821    if (ret < 0) {
    822        trace_kvm_failed_slb_set(strerror(errno));
    823        return ret;
    824    }
    825
    826    assert((uintptr_t)&spapr_cpu->dtl_size
    827           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
    828    reg.id = KVM_REG_PPC_VPA_DTL;
    829    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
    830    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    831    if (ret < 0) {
    832        trace_kvm_failed_dtl_set(strerror(errno));
    833        return ret;
    834    }
    835
    836    if (!spapr_cpu->vpa_addr) {
    837        reg.id = KVM_REG_PPC_VPA_ADDR;
    838        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
    839        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    840        if (ret < 0) {
    841            trace_kvm_failed_null_vpa_addr_set(strerror(errno));
    842            return ret;
    843        }
    844    }
    845
    846    return 0;
    847}
    848#endif /* TARGET_PPC64 */
    849
    850int kvmppc_put_books_sregs(PowerPCCPU *cpu)
    851{
    852    CPUPPCState *env = &cpu->env;
    853    struct kvm_sregs sregs;
    854    int i;
    855
    856    sregs.pvr = env->spr[SPR_PVR];
    857
    858    if (cpu->vhyp) {
    859        PPCVirtualHypervisorClass *vhc =
    860            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
    861        sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
    862    } else {
    863        sregs.u.s.sdr1 = env->spr[SPR_SDR1];
    864    }
    865
    866    /* Sync SLB */
    867#ifdef TARGET_PPC64
    868    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
    869        sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
    870        if (env->slb[i].esid & SLB_ESID_V) {
    871            sregs.u.s.ppc64.slb[i].slbe |= i;
    872        }
    873        sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
    874    }
    875#endif
    876
    877    /* Sync SRs */
    878    for (i = 0; i < 16; i++) {
    879        sregs.u.s.ppc32.sr[i] = env->sr[i];
    880    }
    881
    882    /* Sync BATs */
    883    for (i = 0; i < 8; i++) {
    884        /* Beware. We have to swap upper and lower bits here */
    885        sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
    886            | env->DBAT[1][i];
    887        sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
    888            | env->IBAT[1][i];
    889    }
    890
    891    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
    892}
    893
    894int kvm_arch_put_registers(CPUState *cs, int level)
    895{
    896    PowerPCCPU *cpu = POWERPC_CPU(cs);
    897    CPUPPCState *env = &cpu->env;
    898    struct kvm_regs regs;
    899    int ret;
    900    int i;
    901
    902    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    903    if (ret < 0) {
    904        return ret;
    905    }
    906
    907    regs.ctr = env->ctr;
    908    regs.lr  = env->lr;
    909    regs.xer = cpu_read_xer(env);
    910    regs.msr = env->msr;
    911    regs.pc = env->nip;
    912
    913    regs.srr0 = env->spr[SPR_SRR0];
    914    regs.srr1 = env->spr[SPR_SRR1];
    915
    916    regs.sprg0 = env->spr[SPR_SPRG0];
    917    regs.sprg1 = env->spr[SPR_SPRG1];
    918    regs.sprg2 = env->spr[SPR_SPRG2];
    919    regs.sprg3 = env->spr[SPR_SPRG3];
    920    regs.sprg4 = env->spr[SPR_SPRG4];
    921    regs.sprg5 = env->spr[SPR_SPRG5];
    922    regs.sprg6 = env->spr[SPR_SPRG6];
    923    regs.sprg7 = env->spr[SPR_SPRG7];
    924
    925    regs.pid = env->spr[SPR_BOOKE_PID];
    926
    927    for (i = 0; i < 32; i++) {
    928        regs.gpr[i] = env->gpr[i];
    929    }
    930
    931    regs.cr = 0;
    932    for (i = 0; i < 8; i++) {
    933        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    934    }
    935
    936    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
    937    if (ret < 0) {
    938        return ret;
    939    }
    940
    941    kvm_put_fp(cs);
    942
    943    if (env->tlb_dirty) {
    944        kvm_sw_tlb_put(cpu);
    945        env->tlb_dirty = false;
    946    }
    947
    948    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
    949        ret = kvmppc_put_books_sregs(cpu);
    950        if (ret < 0) {
    951            return ret;
    952        }
    953    }
    954
    955    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
    956        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    957    }
    958
    959    if (cap_one_reg) {
    960        int i;
    961
    962        /*
    963         * We deliberately ignore errors here, for kernels which have
    964         * the ONE_REG calls, but don't support the specific
    965         * registers, there's a reasonable chance things will still
    966         * work, at least until we try to migrate.
    967         */
    968        for (i = 0; i < 1024; i++) {
    969            uint64_t id = env->spr_cb[i].one_reg_id;
    970
    971            if (id != 0) {
    972                kvm_put_one_spr(cs, id, i);
    973            }
    974        }
    975
    976#ifdef TARGET_PPC64
    977        if (msr_ts) {
    978            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
    979                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
    980            }
    981            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
    982                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
    983            }
    984            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
    985            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
    986            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
    987            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
    988            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
    989            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
    990            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
    991            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
    992            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
    993            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
    994        }
    995
    996        if (cap_papr) {
    997            if (kvm_put_vpa(cs) < 0) {
    998                trace_kvm_failed_put_vpa();
    999            }
   1000        }
   1001
   1002        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
   1003
   1004        if (level > KVM_PUT_RUNTIME_STATE) {
   1005            kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
   1006        }
   1007#endif /* TARGET_PPC64 */
   1008    }
   1009
   1010    return ret;
   1011}
   1012
   1013static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
   1014{
   1015     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
   1016}
   1017
   1018static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
   1019{
   1020    CPUPPCState *env = &cpu->env;
   1021    struct kvm_sregs sregs;
   1022    int ret;
   1023
   1024    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
   1025    if (ret < 0) {
   1026        return ret;
   1027    }
   1028
   1029    if (sregs.u.e.features & KVM_SREGS_E_BASE) {
   1030        env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
   1031        env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
   1032        env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
   1033        env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
   1034        env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
   1035        env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
   1036        env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
   1037        env->spr[SPR_DECR] = sregs.u.e.dec;
   1038        env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
   1039        env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
   1040        env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
   1041    }
   1042
   1043    if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
   1044        env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
   1045        env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
   1046        env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
   1047        env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
   1048        env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
   1049    }
   1050
   1051    if (sregs.u.e.features & KVM_SREGS_E_64) {
   1052        env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
   1053    }
   1054
   1055    if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
   1056        env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
   1057    }
   1058
   1059    if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
   1060        env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
   1061        kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
   1062        env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
   1063        kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
   1064        env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
   1065        kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
   1066        env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
   1067        kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
   1068        env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
   1069        kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
   1070        env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
   1071        kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
   1072        env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
   1073        kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
   1074        env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
   1075        kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
   1076        env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
   1077        kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
   1078        env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
   1079        kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
   1080        env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
   1081        kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
   1082        env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
   1083        kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
   1084        env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
   1085        kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
   1086        env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
   1087        kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
   1088        env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
   1089        kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
   1090        env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
   1091        kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
   1092
   1093        if (sregs.u.e.features & KVM_SREGS_E_SPE) {
   1094            env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
   1095            kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
   1096            env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
   1097            kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
   1098            env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
   1099            kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
   1100        }
   1101
   1102        if (sregs.u.e.features & KVM_SREGS_E_PM) {
   1103            env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
   1104            kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
   1105        }
   1106
   1107        if (sregs.u.e.features & KVM_SREGS_E_PC) {
   1108            env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
   1109            kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
   1110            env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
   1111            kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
   1112        }
   1113    }
   1114
   1115    if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
   1116        env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
   1117        env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
   1118        env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
   1119        env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
   1120        env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
   1121        env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
   1122        env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
   1123        env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
   1124        env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
   1125        env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
   1126    }
   1127
   1128    if (sregs.u.e.features & KVM_SREGS_EXP) {
   1129        env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
   1130    }
   1131
   1132    if (sregs.u.e.features & KVM_SREGS_E_PD) {
   1133        env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
   1134        env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
   1135    }
   1136
   1137    if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
   1138        env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
   1139        env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
   1140        env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
   1141
   1142        if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
   1143            env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
   1144            env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
   1145        }
   1146    }
   1147
   1148    return 0;
   1149}
   1150
   1151static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
   1152{
   1153    CPUPPCState *env = &cpu->env;
   1154    struct kvm_sregs sregs;
   1155    int ret;
   1156    int i;
   1157
   1158    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
   1159    if (ret < 0) {
   1160        return ret;
   1161    }
   1162
   1163    if (!cpu->vhyp) {
   1164        ppc_store_sdr1(env, sregs.u.s.sdr1);
   1165    }
   1166
   1167    /* Sync SLB */
   1168#ifdef TARGET_PPC64
   1169    /*
   1170     * The packed SLB array we get from KVM_GET_SREGS only contains
   1171     * information about valid entries. So we flush our internal copy
   1172     * to get rid of stale ones, then put all valid SLB entries back
   1173     * in.
   1174     */
   1175    memset(env->slb, 0, sizeof(env->slb));
   1176    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
   1177        target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
   1178        target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
   1179        /*
   1180         * Only restore valid entries
   1181         */
   1182        if (rb & SLB_ESID_V) {
   1183            ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
   1184        }
   1185    }
   1186#endif
   1187
   1188    /* Sync SRs */
   1189    for (i = 0; i < 16; i++) {
   1190        env->sr[i] = sregs.u.s.ppc32.sr[i];
   1191    }
   1192
   1193    /* Sync BATs */
   1194    for (i = 0; i < 8; i++) {
   1195        env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
   1196        env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
   1197        env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
   1198        env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
   1199    }
   1200
   1201    return 0;
   1202}
   1203
   1204int kvm_arch_get_registers(CPUState *cs)
   1205{
   1206    PowerPCCPU *cpu = POWERPC_CPU(cs);
   1207    CPUPPCState *env = &cpu->env;
   1208    struct kvm_regs regs;
   1209    uint32_t cr;
   1210    int i, ret;
   1211
   1212    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
   1213    if (ret < 0) {
   1214        return ret;
   1215    }
   1216
   1217    cr = regs.cr;
   1218    for (i = 7; i >= 0; i--) {
   1219        env->crf[i] = cr & 15;
   1220        cr >>= 4;
   1221    }
   1222
   1223    env->ctr = regs.ctr;
   1224    env->lr = regs.lr;
   1225    cpu_write_xer(env, regs.xer);
   1226    env->msr = regs.msr;
   1227    env->nip = regs.pc;
   1228
   1229    env->spr[SPR_SRR0] = regs.srr0;
   1230    env->spr[SPR_SRR1] = regs.srr1;
   1231
   1232    env->spr[SPR_SPRG0] = regs.sprg0;
   1233    env->spr[SPR_SPRG1] = regs.sprg1;
   1234    env->spr[SPR_SPRG2] = regs.sprg2;
   1235    env->spr[SPR_SPRG3] = regs.sprg3;
   1236    env->spr[SPR_SPRG4] = regs.sprg4;
   1237    env->spr[SPR_SPRG5] = regs.sprg5;
   1238    env->spr[SPR_SPRG6] = regs.sprg6;
   1239    env->spr[SPR_SPRG7] = regs.sprg7;
   1240
   1241    env->spr[SPR_BOOKE_PID] = regs.pid;
   1242
   1243    for (i = 0; i < 32; i++) {
   1244        env->gpr[i] = regs.gpr[i];
   1245    }
   1246
   1247    kvm_get_fp(cs);
   1248
   1249    if (cap_booke_sregs) {
   1250        ret = kvmppc_get_booke_sregs(cpu);
   1251        if (ret < 0) {
   1252            return ret;
   1253        }
   1254    }
   1255
   1256    if (cap_segstate) {
   1257        ret = kvmppc_get_books_sregs(cpu);
   1258        if (ret < 0) {
   1259            return ret;
   1260        }
   1261    }
   1262
   1263    if (cap_hior) {
   1264        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
   1265    }
   1266
   1267    if (cap_one_reg) {
   1268        int i;
   1269
   1270        /*
   1271         * We deliberately ignore errors here, for kernels which have
   1272         * the ONE_REG calls, but don't support the specific
   1273         * registers, there's a reasonable chance things will still
   1274         * work, at least until we try to migrate.
   1275         */
   1276        for (i = 0; i < 1024; i++) {
   1277            uint64_t id = env->spr_cb[i].one_reg_id;
   1278
   1279            if (id != 0) {
   1280                kvm_get_one_spr(cs, id, i);
   1281            }
   1282        }
   1283
   1284#ifdef TARGET_PPC64
   1285        if (msr_ts) {
   1286            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
   1287                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
   1288            }
   1289            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
   1290                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
   1291            }
   1292            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
   1293            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
   1294            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
   1295            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
   1296            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
   1297            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
   1298            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
   1299            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
   1300            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
   1301            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
   1302        }
   1303
   1304        if (cap_papr) {
   1305            if (kvm_get_vpa(cs) < 0) {
   1306                trace_kvm_failed_get_vpa();
   1307            }
   1308        }
   1309
   1310        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
   1311        kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
   1312#endif
   1313    }
   1314
   1315    return 0;
   1316}
   1317
   1318int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
   1319{
   1320    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
   1321
   1322    if (irq != PPC_INTERRUPT_EXT) {
   1323        return 0;
   1324    }
   1325
   1326    if (!kvm_enabled() || !cap_interrupt_unset) {
   1327        return 0;
   1328    }
   1329
   1330    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
   1331
   1332    return 0;
   1333}
   1334
   1335void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
   1336{
   1337    return;
   1338}
   1339
   1340MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
   1341{
   1342    return MEMTXATTRS_UNSPECIFIED;
   1343}
   1344
   1345int kvm_arch_process_async_events(CPUState *cs)
   1346{
   1347    return cs->halted;
   1348}
   1349
   1350static int kvmppc_handle_halt(PowerPCCPU *cpu)
   1351{
   1352    CPUState *cs = CPU(cpu);
   1353    CPUPPCState *env = &cpu->env;
   1354
   1355    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
   1356        cs->halted = 1;
   1357        cs->exception_index = EXCP_HLT;
   1358    }
   1359
   1360    return 0;
   1361}
   1362
   1363/* map dcr access to existing qemu dcr emulation */
   1364static int kvmppc_handle_dcr_read(CPUPPCState *env,
   1365                                  uint32_t dcrn, uint32_t *data)
   1366{
   1367    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
   1368        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
   1369    }
   1370
   1371    return 0;
   1372}
   1373
   1374static int kvmppc_handle_dcr_write(CPUPPCState *env,
   1375                                   uint32_t dcrn, uint32_t data)
   1376{
   1377    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
   1378        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
   1379    }
   1380
   1381    return 0;
   1382}
   1383
   1384int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
   1385{
   1386    /* Mixed endian case is not handled */
   1387    uint32_t sc = debug_inst_opcode;
   1388
   1389    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
   1390                            sizeof(sc), 0) ||
   1391        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
   1392        return -EINVAL;
   1393    }
   1394
   1395    return 0;
   1396}
   1397
   1398int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
   1399{
   1400    uint32_t sc;
   1401
   1402    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
   1403        sc != debug_inst_opcode ||
   1404        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
   1405                            sizeof(sc), 1)) {
   1406        return -EINVAL;
   1407    }
   1408
   1409    return 0;
   1410}
   1411
   1412static int find_hw_breakpoint(target_ulong addr, int type)
   1413{
   1414    int n;
   1415
   1416    assert((nb_hw_breakpoint + nb_hw_watchpoint)
   1417           <= ARRAY_SIZE(hw_debug_points));
   1418
   1419    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
   1420        if (hw_debug_points[n].addr == addr &&
   1421             hw_debug_points[n].type == type) {
   1422            return n;
   1423        }
   1424    }
   1425
   1426    return -1;
   1427}
   1428
   1429static int find_hw_watchpoint(target_ulong addr, int *flag)
   1430{
   1431    int n;
   1432
   1433    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
   1434    if (n >= 0) {
   1435        *flag = BP_MEM_ACCESS;
   1436        return n;
   1437    }
   1438
   1439    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
   1440    if (n >= 0) {
   1441        *flag = BP_MEM_WRITE;
   1442        return n;
   1443    }
   1444
   1445    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
   1446    if (n >= 0) {
   1447        *flag = BP_MEM_READ;
   1448        return n;
   1449    }
   1450
   1451    return -1;
   1452}
   1453
   1454int kvm_arch_insert_hw_breakpoint(target_ulong addr,
   1455                                  target_ulong len, int type)
   1456{
   1457    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
   1458        return -ENOBUFS;
   1459    }
   1460
   1461    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
   1462    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
   1463
   1464    switch (type) {
   1465    case GDB_BREAKPOINT_HW:
   1466        if (nb_hw_breakpoint >= max_hw_breakpoint) {
   1467            return -ENOBUFS;
   1468        }
   1469
   1470        if (find_hw_breakpoint(addr, type) >= 0) {
   1471            return -EEXIST;
   1472        }
   1473
   1474        nb_hw_breakpoint++;
   1475        break;
   1476
   1477    case GDB_WATCHPOINT_WRITE:
   1478    case GDB_WATCHPOINT_READ:
   1479    case GDB_WATCHPOINT_ACCESS:
   1480        if (nb_hw_watchpoint >= max_hw_watchpoint) {
   1481            return -ENOBUFS;
   1482        }
   1483
   1484        if (find_hw_breakpoint(addr, type) >= 0) {
   1485            return -EEXIST;
   1486        }
   1487
   1488        nb_hw_watchpoint++;
   1489        break;
   1490
   1491    default:
   1492        return -ENOSYS;
   1493    }
   1494
   1495    return 0;
   1496}
   1497
   1498int kvm_arch_remove_hw_breakpoint(target_ulong addr,
   1499                                  target_ulong len, int type)
   1500{
   1501    int n;
   1502
   1503    n = find_hw_breakpoint(addr, type);
   1504    if (n < 0) {
   1505        return -ENOENT;
   1506    }
   1507
   1508    switch (type) {
   1509    case GDB_BREAKPOINT_HW:
   1510        nb_hw_breakpoint--;
   1511        break;
   1512
   1513    case GDB_WATCHPOINT_WRITE:
   1514    case GDB_WATCHPOINT_READ:
   1515    case GDB_WATCHPOINT_ACCESS:
   1516        nb_hw_watchpoint--;
   1517        break;
   1518
   1519    default:
   1520        return -ENOSYS;
   1521    }
   1522    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
   1523
   1524    return 0;
   1525}
   1526
   1527void kvm_arch_remove_all_hw_breakpoints(void)
   1528{
   1529    nb_hw_breakpoint = nb_hw_watchpoint = 0;
   1530}
   1531
   1532void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
   1533{
   1534    int n;
   1535
   1536    /* Software Breakpoint updates */
   1537    if (kvm_sw_breakpoints_active(cs)) {
   1538        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
   1539    }
   1540
   1541    assert((nb_hw_breakpoint + nb_hw_watchpoint)
   1542           <= ARRAY_SIZE(hw_debug_points));
   1543    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
   1544
   1545    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
   1546        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
   1547        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
   1548        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
   1549            switch (hw_debug_points[n].type) {
   1550            case GDB_BREAKPOINT_HW:
   1551                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
   1552                break;
   1553            case GDB_WATCHPOINT_WRITE:
   1554                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
   1555                break;
   1556            case GDB_WATCHPOINT_READ:
   1557                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
   1558                break;
   1559            case GDB_WATCHPOINT_ACCESS:
   1560                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
   1561                                        KVMPPC_DEBUG_WATCH_READ;
   1562                break;
   1563            default:
   1564                cpu_abort(cs, "Unsupported breakpoint type\n");
   1565            }
   1566            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
   1567        }
   1568    }
   1569}
   1570
   1571static int kvm_handle_hw_breakpoint(CPUState *cs,
   1572                                    struct kvm_debug_exit_arch *arch_info)
   1573{
   1574    int handle = DEBUG_RETURN_GUEST;
   1575    int n;
   1576    int flag = 0;
   1577
   1578    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
   1579        if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
   1580            n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
   1581            if (n >= 0) {
   1582                handle = DEBUG_RETURN_GDB;
   1583            }
   1584        } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
   1585                                        KVMPPC_DEBUG_WATCH_WRITE)) {
   1586            n = find_hw_watchpoint(arch_info->address,  &flag);
   1587            if (n >= 0) {
   1588                handle = DEBUG_RETURN_GDB;
   1589                cs->watchpoint_hit = &hw_watchpoint;
   1590                hw_watchpoint.vaddr = hw_debug_points[n].addr;
   1591                hw_watchpoint.flags = flag;
   1592            }
   1593        }
   1594    }
   1595    return handle;
   1596}
   1597
   1598static int kvm_handle_singlestep(void)
   1599{
   1600    return DEBUG_RETURN_GDB;
   1601}
   1602
   1603static int kvm_handle_sw_breakpoint(void)
   1604{
   1605    return DEBUG_RETURN_GDB;
   1606}
   1607
   1608static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
   1609{
   1610    CPUState *cs = CPU(cpu);
   1611    CPUPPCState *env = &cpu->env;
   1612    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
   1613
   1614    if (cs->singlestep_enabled) {
   1615        return kvm_handle_singlestep();
   1616    }
   1617
   1618    if (arch_info->status) {
   1619        return kvm_handle_hw_breakpoint(cs, arch_info);
   1620    }
   1621
   1622    if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
   1623        return kvm_handle_sw_breakpoint();
   1624    }
   1625
   1626    /*
   1627     * QEMU is not able to handle debug exception, so inject
   1628     * program exception to guest;
   1629     * Yes program exception NOT debug exception !!
   1630     * When QEMU is using debug resources then debug exception must
   1631     * be always set. To achieve this we set MSR_DE and also set
   1632     * MSRP_DEP so guest cannot change MSR_DE.
   1633     * When emulating debug resource for guest we want guest
   1634     * to control MSR_DE (enable/disable debug interrupt on need).
   1635     * Supporting both configurations are NOT possible.
   1636     * So the result is that we cannot share debug resources
   1637     * between QEMU and Guest on BOOKE architecture.
   1638     * In the current design QEMU gets the priority over guest,
   1639     * this means that if QEMU is using debug resources then guest
   1640     * cannot use them;
   1641     * For software breakpoint QEMU uses a privileged instruction;
   1642     * So there cannot be any reason that we are here for guest
   1643     * set debug exception, only possibility is guest executed a
   1644     * privileged / illegal instruction and that's why we are
   1645     * injecting a program interrupt.
   1646     */
   1647    cpu_synchronize_state(cs);
   1648    /*
   1649     * env->nip is PC, so increment this by 4 to use
   1650     * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
   1651     */
   1652    env->nip += 4;
   1653    cs->exception_index = POWERPC_EXCP_PROGRAM;
   1654    env->error_code = POWERPC_EXCP_INVAL;
   1655    ppc_cpu_do_interrupt(cs);
   1656
   1657    return DEBUG_RETURN_GUEST;
   1658}
   1659
   1660int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
   1661{
   1662    PowerPCCPU *cpu = POWERPC_CPU(cs);
   1663    CPUPPCState *env = &cpu->env;
   1664    int ret;
   1665
   1666    qemu_mutex_lock_iothread();
   1667
   1668    switch (run->exit_reason) {
   1669    case KVM_EXIT_DCR:
   1670        if (run->dcr.is_write) {
   1671            trace_kvm_handle_dcr_write();
   1672            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
   1673        } else {
   1674            trace_kvm_handle_dcr_read();
   1675            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
   1676        }
   1677        break;
   1678    case KVM_EXIT_HLT:
   1679        trace_kvm_handle_halt();
   1680        ret = kvmppc_handle_halt(cpu);
   1681        break;
   1682#if defined(TARGET_PPC64)
   1683    case KVM_EXIT_PAPR_HCALL:
   1684        trace_kvm_handle_papr_hcall();
   1685        run->papr_hcall.ret = spapr_hypercall(cpu,
   1686                                              run->papr_hcall.nr,
   1687                                              run->papr_hcall.args);
   1688        ret = 0;
   1689        break;
   1690#endif
   1691    case KVM_EXIT_EPR:
   1692        trace_kvm_handle_epr();
   1693        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
   1694        ret = 0;
   1695        break;
   1696    case KVM_EXIT_WATCHDOG:
   1697        trace_kvm_handle_watchdog_expiry();
   1698        watchdog_perform_action();
   1699        ret = 0;
   1700        break;
   1701
   1702    case KVM_EXIT_DEBUG:
   1703        trace_kvm_handle_debug_exception();
   1704        if (kvm_handle_debug(cpu, run)) {
   1705            ret = EXCP_DEBUG;
   1706            break;
   1707        }
   1708        /* re-enter, this exception was guest-internal */
   1709        ret = 0;
   1710        break;
   1711
   1712#if defined(TARGET_PPC64)
   1713    case KVM_EXIT_NMI:
   1714        trace_kvm_handle_nmi_exception();
   1715        ret = kvm_handle_nmi(cpu, run);
   1716        break;
   1717#endif
   1718
   1719    default:
   1720        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
   1721        ret = -1;
   1722        break;
   1723    }
   1724
   1725    qemu_mutex_unlock_iothread();
   1726    return ret;
   1727}
   1728
   1729int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
   1730{
   1731    CPUState *cs = CPU(cpu);
   1732    uint32_t bits = tsr_bits;
   1733    struct kvm_one_reg reg = {
   1734        .id = KVM_REG_PPC_OR_TSR,
   1735        .addr = (uintptr_t) &bits,
   1736    };
   1737
   1738    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
   1739}
   1740
   1741int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
   1742{
   1743
   1744    CPUState *cs = CPU(cpu);
   1745    uint32_t bits = tsr_bits;
   1746    struct kvm_one_reg reg = {
   1747        .id = KVM_REG_PPC_CLEAR_TSR,
   1748        .addr = (uintptr_t) &bits,
   1749    };
   1750
   1751    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
   1752}
   1753
   1754int kvmppc_set_tcr(PowerPCCPU *cpu)
   1755{
   1756    CPUState *cs = CPU(cpu);
   1757    CPUPPCState *env = &cpu->env;
   1758    uint32_t tcr = env->spr[SPR_BOOKE_TCR];
   1759
   1760    struct kvm_one_reg reg = {
   1761        .id = KVM_REG_PPC_TCR,
   1762        .addr = (uintptr_t) &tcr,
   1763    };
   1764
   1765    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
   1766}
   1767
   1768int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
   1769{
   1770    CPUState *cs = CPU(cpu);
   1771    int ret;
   1772
   1773    if (!kvm_enabled()) {
   1774        return -1;
   1775    }
   1776
   1777    if (!cap_ppc_watchdog) {
   1778        printf("warning: KVM does not support watchdog");
   1779        return -1;
   1780    }
   1781
   1782    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
   1783    if (ret < 0) {
   1784        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
   1785                __func__, strerror(-ret));
   1786        return ret;
   1787    }
   1788
   1789    return ret;
   1790}
   1791
   1792static int read_cpuinfo(const char *field, char *value, int len)
   1793{
   1794    FILE *f;
   1795    int ret = -1;
   1796    int field_len = strlen(field);
   1797    char line[512];
   1798
   1799    f = fopen("/proc/cpuinfo", "r");
   1800    if (!f) {
   1801        return -1;
   1802    }
   1803
   1804    do {
   1805        if (!fgets(line, sizeof(line), f)) {
   1806            break;
   1807        }
   1808        if (!strncmp(line, field, field_len)) {
   1809            pstrcpy(value, len, line);
   1810            ret = 0;
   1811            break;
   1812        }
   1813    } while (*line);
   1814
   1815    fclose(f);
   1816
   1817    return ret;
   1818}
   1819
   1820static uint32_t kvmppc_get_tbfreq_procfs(void)
   1821{
   1822    char line[512];
   1823    char *ns;
   1824    uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
   1825    uint32_t tbfreq_procfs;
   1826
   1827    if (read_cpuinfo("timebase", line, sizeof(line))) {
   1828        return tbfreq_fallback;
   1829    }
   1830
   1831    ns = strchr(line, ':');
   1832    if (!ns) {
   1833        return tbfreq_fallback;
   1834    }
   1835
   1836    tbfreq_procfs = atoi(++ns);
   1837
   1838    /* 0 is certainly not acceptable by the guest, return fallback value */
   1839    return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
   1840}
   1841
   1842uint32_t kvmppc_get_tbfreq(void)
   1843{
   1844    static uint32_t cached_tbfreq;
   1845
   1846    if (!cached_tbfreq) {
   1847        cached_tbfreq = kvmppc_get_tbfreq_procfs();
   1848    }
   1849
   1850    return cached_tbfreq;
   1851}
   1852
   1853bool kvmppc_get_host_serial(char **value)
   1854{
   1855    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
   1856                               NULL);
   1857}
   1858
   1859bool kvmppc_get_host_model(char **value)
   1860{
   1861    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
   1862}
   1863
   1864/* Try to find a device tree node for a CPU with clock-frequency property */
   1865static int kvmppc_find_cpu_dt(char *buf, int buf_len)
   1866{
   1867    struct dirent *dirp;
   1868    DIR *dp;
   1869
   1870    dp = opendir(PROC_DEVTREE_CPU);
   1871    if (!dp) {
   1872        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
   1873        return -1;
   1874    }
   1875
   1876    buf[0] = '\0';
   1877    while ((dirp = readdir(dp)) != NULL) {
   1878        FILE *f;
   1879        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
   1880                 dirp->d_name);
   1881        f = fopen(buf, "r");
   1882        if (f) {
   1883            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
   1884            fclose(f);
   1885            break;
   1886        }
   1887        buf[0] = '\0';
   1888    }
   1889    closedir(dp);
   1890    if (buf[0] == '\0') {
   1891        printf("Unknown host!\n");
   1892        return -1;
   1893    }
   1894
   1895    return 0;
   1896}
   1897
   1898static uint64_t kvmppc_read_int_dt(const char *filename)
   1899{
   1900    union {
   1901        uint32_t v32;
   1902        uint64_t v64;
   1903    } u;
   1904    FILE *f;
   1905    int len;
   1906
   1907    f = fopen(filename, "rb");
   1908    if (!f) {
   1909        return -1;
   1910    }
   1911
   1912    len = fread(&u, 1, sizeof(u), f);
   1913    fclose(f);
   1914    switch (len) {
   1915    case 4:
   1916        /* property is a 32-bit quantity */
   1917        return be32_to_cpu(u.v32);
   1918    case 8:
   1919        return be64_to_cpu(u.v64);
   1920    }
   1921
   1922    return 0;
   1923}
   1924
   1925/*
   1926 * Read a CPU node property from the host device tree that's a single
   1927 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
   1928 * (can't find or open the property, or doesn't understand the format)
   1929 */
   1930static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
   1931{
   1932    char buf[PATH_MAX], *tmp;
   1933    uint64_t val;
   1934
   1935    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
   1936        return -1;
   1937    }
   1938
   1939    tmp = g_strdup_printf("%s/%s", buf, propname);
   1940    val = kvmppc_read_int_dt(tmp);
   1941    g_free(tmp);
   1942
   1943    return val;
   1944}
   1945
   1946uint64_t kvmppc_get_clockfreq(void)
   1947{
   1948    return kvmppc_read_int_cpu_dt("clock-frequency");
   1949}
   1950
   1951static int kvmppc_get_dec_bits(void)
   1952{
   1953    int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
   1954
   1955    if (nr_bits > 0) {
   1956        return nr_bits;
   1957    }
   1958    return 0;
   1959}
   1960
   1961static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
   1962{
   1963    CPUState *cs = env_cpu(env);
   1964
   1965    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
   1966        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
   1967        return 0;
   1968    }
   1969
   1970    return 1;
   1971}
   1972
   1973int kvmppc_get_hasidle(CPUPPCState *env)
   1974{
   1975    struct kvm_ppc_pvinfo pvinfo;
   1976
   1977    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
   1978        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
   1979        return 1;
   1980    }
   1981
   1982    return 0;
   1983}
   1984
   1985int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
   1986{
   1987    uint32_t *hc = (uint32_t *)buf;
   1988    struct kvm_ppc_pvinfo pvinfo;
   1989
   1990    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
   1991        memcpy(buf, pvinfo.hcall, buf_len);
   1992        return 0;
   1993    }
   1994
   1995    /*
   1996     * Fallback to always fail hypercalls regardless of endianness:
   1997     *
   1998     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
   1999     *     li r3, -1
   2000     *     b .+8       (becomes nop in wrong endian)
   2001     *     bswap32(li r3, -1)
   2002     */
   2003
   2004    hc[0] = cpu_to_be32(0x08000048);
   2005    hc[1] = cpu_to_be32(0x3860ffff);
   2006    hc[2] = cpu_to_be32(0x48000008);
   2007    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
   2008
   2009    return 1;
   2010}
   2011
   2012static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
   2013{
   2014    return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
   2015}
   2016
   2017void kvmppc_enable_logical_ci_hcalls(void)
   2018{
   2019    /*
   2020     * FIXME: it would be nice if we could detect the cases where
   2021     * we're using a device which requires the in kernel
   2022     * implementation of these hcalls, but the kernel lacks them and
   2023     * produce a warning.
   2024     */
   2025    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
   2026    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
   2027}
   2028
   2029void kvmppc_enable_set_mode_hcall(void)
   2030{
   2031    kvmppc_enable_hcall(kvm_state, H_SET_MODE);
   2032}
   2033
   2034void kvmppc_enable_clear_ref_mod_hcalls(void)
   2035{
   2036    kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
   2037    kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
   2038}
   2039
   2040void kvmppc_enable_h_page_init(void)
   2041{
   2042    kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
   2043}
   2044
   2045void kvmppc_enable_h_rpt_invalidate(void)
   2046{
   2047    kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
   2048}
   2049
   2050void kvmppc_set_papr(PowerPCCPU *cpu)
   2051{
   2052    CPUState *cs = CPU(cpu);
   2053    int ret;
   2054
   2055    if (!kvm_enabled()) {
   2056        return;
   2057    }
   2058
   2059    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
   2060    if (ret) {
   2061        error_report("This vCPU type or KVM version does not support PAPR");
   2062        exit(1);
   2063    }
   2064
   2065    /*
   2066     * Update the capability flag so we sync the right information
   2067     * with kvm
   2068     */
   2069    cap_papr = 1;
   2070}
   2071
   2072int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
   2073{
   2074    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
   2075}
   2076
   2077void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
   2078{
   2079    CPUState *cs = CPU(cpu);
   2080    int ret;
   2081
   2082    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
   2083    if (ret && mpic_proxy) {
   2084        error_report("This KVM version does not support EPR");
   2085        exit(1);
   2086    }
   2087}
   2088
   2089bool kvmppc_get_fwnmi(void)
   2090{
   2091    return cap_fwnmi;
   2092}
   2093
   2094int kvmppc_set_fwnmi(PowerPCCPU *cpu)
   2095{
   2096    CPUState *cs = CPU(cpu);
   2097
   2098    return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
   2099}
   2100
   2101int kvmppc_smt_threads(void)
   2102{
   2103    return cap_ppc_smt ? cap_ppc_smt : 1;
   2104}
   2105
   2106int kvmppc_set_smt_threads(int smt)
   2107{
   2108    int ret;
   2109
   2110    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
   2111    if (!ret) {
   2112        cap_ppc_smt = smt;
   2113    }
   2114    return ret;
   2115}
   2116
   2117void kvmppc_error_append_smt_possible_hint(Error *const *errp)
   2118{
   2119    int i;
   2120    GString *g;
   2121    char *s;
   2122
   2123    assert(kvm_enabled());
   2124    if (cap_ppc_smt_possible) {
   2125        g = g_string_new("Available VSMT modes:");
   2126        for (i = 63; i >= 0; i--) {
   2127            if ((1UL << i) & cap_ppc_smt_possible) {
   2128                g_string_append_printf(g, " %lu", (1UL << i));
   2129            }
   2130        }
   2131        s = g_string_free(g, false);
   2132        error_append_hint(errp, "%s.\n", s);
   2133        g_free(s);
   2134    } else {
   2135        error_append_hint(errp,
   2136                          "This KVM seems to be too old to support VSMT.\n");
   2137    }
   2138}
   2139
   2140
   2141#ifdef TARGET_PPC64
   2142uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
   2143{
   2144    struct kvm_ppc_smmu_info info;
   2145    long rampagesize, best_page_shift;
   2146    int i;
   2147
   2148    /*
   2149     * Find the largest hardware supported page size that's less than
   2150     * or equal to the (logical) backing page size of guest RAM
   2151     */
   2152    kvm_get_smmu_info(&info, &error_fatal);
   2153    rampagesize = qemu_minrampagesize();
   2154    best_page_shift = 0;
   2155
   2156    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
   2157        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
   2158
   2159        if (!sps->page_shift) {
   2160            continue;
   2161        }
   2162
   2163        if ((sps->page_shift > best_page_shift)
   2164            && ((1UL << sps->page_shift) <= rampagesize)) {
   2165            best_page_shift = sps->page_shift;
   2166        }
   2167    }
   2168
   2169    return 1ULL << (best_page_shift + hash_shift - 7);
   2170}
   2171#endif
   2172
   2173bool kvmppc_spapr_use_multitce(void)
   2174{
   2175    return cap_spapr_multitce;
   2176}
   2177
   2178int kvmppc_spapr_enable_inkernel_multitce(void)
   2179{
   2180    int ret;
   2181
   2182    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
   2183                            H_PUT_TCE_INDIRECT, 1);
   2184    if (!ret) {
   2185        ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
   2186                                H_STUFF_TCE, 1);
   2187    }
   2188
   2189    return ret;
   2190}
   2191
   2192void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
   2193                              uint64_t bus_offset, uint32_t nb_table,
   2194                              int *pfd, bool need_vfio)
   2195{
   2196    long len;
   2197    int fd;
   2198    void *table;
   2199
   2200    /*
   2201     * Must set fd to -1 so we don't try to munmap when called for
   2202     * destroying the table, which the upper layers -will- do
   2203     */
   2204    *pfd = -1;
   2205    if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
   2206        return NULL;
   2207    }
   2208
   2209    if (cap_spapr_tce_64) {
   2210        struct kvm_create_spapr_tce_64 args = {
   2211            .liobn = liobn,
   2212            .page_shift = page_shift,
   2213            .offset = bus_offset >> page_shift,
   2214            .size = nb_table,
   2215            .flags = 0
   2216        };
   2217        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
   2218        if (fd < 0) {
   2219            fprintf(stderr,
   2220                    "KVM: Failed to create TCE64 table for liobn 0x%x\n",
   2221                    liobn);
   2222            return NULL;
   2223        }
   2224    } else if (cap_spapr_tce) {
   2225        uint64_t window_size = (uint64_t) nb_table << page_shift;
   2226        struct kvm_create_spapr_tce args = {
   2227            .liobn = liobn,
   2228            .window_size = window_size,
   2229        };
   2230        if ((window_size != args.window_size) || bus_offset) {
   2231            return NULL;
   2232        }
   2233        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
   2234        if (fd < 0) {
   2235            fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
   2236                    liobn);
   2237            return NULL;
   2238        }
   2239    } else {
   2240        return NULL;
   2241    }
   2242
   2243    len = nb_table * sizeof(uint64_t);
   2244    /* FIXME: round this up to page size */
   2245
   2246    table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
   2247    if (table == MAP_FAILED) {
   2248        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
   2249                liobn);
   2250        close(fd);
   2251        return NULL;
   2252    }
   2253
   2254    *pfd = fd;
   2255    return table;
   2256}
   2257
   2258int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
   2259{
   2260    long len;
   2261
   2262    if (fd < 0) {
   2263        return -1;
   2264    }
   2265
   2266    len = nb_table * sizeof(uint64_t);
   2267    if ((munmap(table, len) < 0) ||
   2268        (close(fd) < 0)) {
   2269        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
   2270                strerror(errno));
   2271        /* Leak the table */
   2272    }
   2273
   2274    return 0;
   2275}
   2276
   2277int kvmppc_reset_htab(int shift_hint)
   2278{
   2279    uint32_t shift = shift_hint;
   2280
   2281    if (!kvm_enabled()) {
   2282        /* Full emulation, tell caller to allocate htab itself */
   2283        return 0;
   2284    }
   2285    if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
   2286        int ret;
   2287        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
   2288        if (ret == -ENOTTY) {
   2289            /*
   2290             * At least some versions of PR KVM advertise the
   2291             * capability, but don't implement the ioctl().  Oops.
   2292             * Return 0 so that we allocate the htab in qemu, as is
   2293             * correct for PR.
   2294             */
   2295            return 0;
   2296        } else if (ret < 0) {
   2297            return ret;
   2298        }
   2299        return shift;
   2300    }
   2301
   2302    /*
   2303     * We have a kernel that predates the htab reset calls.  For PR
   2304     * KVM, we need to allocate the htab ourselves, for an HV KVM of
   2305     * this era, it has allocated a 16MB fixed size hash table
   2306     * already.
   2307     */
   2308    if (kvmppc_is_pr(kvm_state)) {
   2309        /* PR - tell caller to allocate htab */
   2310        return 0;
   2311    } else {
   2312        /* HV - assume 16MB kernel allocated htab */
   2313        return 24;
   2314    }
   2315}
   2316
   2317static inline uint32_t mfpvr(void)
   2318{
   2319    uint32_t pvr;
   2320
   2321    asm ("mfpvr %0"
   2322         : "=r"(pvr));
   2323    return pvr;
   2324}
   2325
   2326static void alter_insns(uint64_t *word, uint64_t flags, bool on)
   2327{
   2328    if (on) {
   2329        *word |= flags;
   2330    } else {
   2331        *word &= ~flags;
   2332    }
   2333}
   2334
   2335static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
   2336{
   2337    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
   2338    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
   2339    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
   2340
   2341    /* Now fix up the class with information we can query from the host */
   2342    pcc->pvr = mfpvr();
   2343
   2344    alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
   2345                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
   2346    alter_insns(&pcc->insns_flags2, PPC2_VSX,
   2347                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
   2348    alter_insns(&pcc->insns_flags2, PPC2_DFP,
   2349                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
   2350
   2351    if (dcache_size != -1) {
   2352        pcc->l1_dcache_size = dcache_size;
   2353    }
   2354
   2355    if (icache_size != -1) {
   2356        pcc->l1_icache_size = icache_size;
   2357    }
   2358
   2359#if defined(TARGET_PPC64)
   2360    pcc->radix_page_info = kvm_get_radix_page_info();
   2361
   2362    if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
   2363        /*
   2364         * POWER9 DD1 has some bugs which make it not really ISA 3.00
   2365         * compliant.  More importantly, advertising ISA 3.00
   2366         * architected mode may prevent guests from activating
   2367         * necessary DD1 workarounds.
   2368         */
   2369        pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
   2370                                | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
   2371    }
   2372#endif /* defined(TARGET_PPC64) */
   2373}
   2374
   2375bool kvmppc_has_cap_epr(void)
   2376{
   2377    return cap_epr;
   2378}
   2379
   2380bool kvmppc_has_cap_fixup_hcalls(void)
   2381{
   2382    return cap_fixup_hcalls;
   2383}
   2384
   2385bool kvmppc_has_cap_htm(void)
   2386{
   2387    return cap_htm;
   2388}
   2389
   2390bool kvmppc_has_cap_mmu_radix(void)
   2391{
   2392    return cap_mmu_radix;
   2393}
   2394
   2395bool kvmppc_has_cap_mmu_hash_v3(void)
   2396{
   2397    return cap_mmu_hash_v3;
   2398}
   2399
   2400static bool kvmppc_power8_host(void)
   2401{
   2402    bool ret = false;
   2403#ifdef TARGET_PPC64
   2404    {
   2405        uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
   2406        ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
   2407              (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
   2408              (base_pvr == CPU_POWERPC_POWER8_BASE);
   2409    }
   2410#endif /* TARGET_PPC64 */
   2411    return ret;
   2412}
   2413
   2414static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
   2415{
   2416    bool l1d_thread_priv_req = !kvmppc_power8_host();
   2417
   2418    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
   2419        return 2;
   2420    } else if ((!l1d_thread_priv_req ||
   2421                c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
   2422               (c.character & c.character_mask
   2423                & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
   2424        return 1;
   2425    }
   2426
   2427    return 0;
   2428}
   2429
   2430static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
   2431{
   2432    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
   2433        return 2;
   2434    } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
   2435        return 1;
   2436    }
   2437
   2438    return 0;
   2439}
   2440
   2441static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
   2442{
   2443    if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
   2444        (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
   2445        (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
   2446        return SPAPR_CAP_FIXED_NA;
   2447    } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
   2448        return SPAPR_CAP_WORKAROUND;
   2449    } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
   2450        return  SPAPR_CAP_FIXED_CCD;
   2451    } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
   2452        return SPAPR_CAP_FIXED_IBS;
   2453    }
   2454
   2455    return 0;
   2456}
   2457
   2458static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
   2459{
   2460    if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
   2461        return 1;
   2462    }
   2463    return 0;
   2464}
   2465
   2466bool kvmppc_has_cap_xive(void)
   2467{
   2468    return cap_xive;
   2469}
   2470
   2471static void kvmppc_get_cpu_characteristics(KVMState *s)
   2472{
   2473    struct kvm_ppc_cpu_char c;
   2474    int ret;
   2475
   2476    /* Assume broken */
   2477    cap_ppc_safe_cache = 0;
   2478    cap_ppc_safe_bounds_check = 0;
   2479    cap_ppc_safe_indirect_branch = 0;
   2480
   2481    ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
   2482    if (!ret) {
   2483        return;
   2484    }
   2485    ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
   2486    if (ret < 0) {
   2487        return;
   2488    }
   2489
   2490    cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
   2491    cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
   2492    cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
   2493    cap_ppc_count_cache_flush_assist =
   2494        parse_cap_ppc_count_cache_flush_assist(c);
   2495}
   2496
   2497int kvmppc_get_cap_safe_cache(void)
   2498{
   2499    return cap_ppc_safe_cache;
   2500}
   2501
   2502int kvmppc_get_cap_safe_bounds_check(void)
   2503{
   2504    return cap_ppc_safe_bounds_check;
   2505}
   2506
   2507int kvmppc_get_cap_safe_indirect_branch(void)
   2508{
   2509    return cap_ppc_safe_indirect_branch;
   2510}
   2511
   2512int kvmppc_get_cap_count_cache_flush_assist(void)
   2513{
   2514    return cap_ppc_count_cache_flush_assist;
   2515}
   2516
   2517bool kvmppc_has_cap_nested_kvm_hv(void)
   2518{
   2519    return !!cap_ppc_nested_kvm_hv;
   2520}
   2521
   2522int kvmppc_set_cap_nested_kvm_hv(int enable)
   2523{
   2524    return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
   2525}
   2526
   2527bool kvmppc_has_cap_spapr_vfio(void)
   2528{
   2529    return cap_spapr_vfio;
   2530}
   2531
   2532int kvmppc_get_cap_large_decr(void)
   2533{
   2534    return cap_large_decr;
   2535}
   2536
   2537int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
   2538{
   2539    CPUState *cs = CPU(cpu);
   2540    uint64_t lpcr;
   2541
   2542    kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
   2543    /* Do we need to modify the LPCR? */
   2544    if (!!(lpcr & LPCR_LD) != !!enable) {
   2545        if (enable) {
   2546            lpcr |= LPCR_LD;
   2547        } else {
   2548            lpcr &= ~LPCR_LD;
   2549        }
   2550        kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
   2551        kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
   2552
   2553        if (!!(lpcr & LPCR_LD) != !!enable) {
   2554            return -1;
   2555        }
   2556    }
   2557
   2558    return 0;
   2559}
   2560
   2561int kvmppc_has_cap_rpt_invalidate(void)
   2562{
   2563    return cap_rpt_invalidate;
   2564}
   2565
   2566PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
   2567{
   2568    uint32_t host_pvr = mfpvr();
   2569    PowerPCCPUClass *pvr_pcc;
   2570
   2571    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
   2572    if (pvr_pcc == NULL) {
   2573        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
   2574    }
   2575
   2576    return pvr_pcc;
   2577}
   2578
   2579static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
   2580{
   2581    MachineClass *mc = MACHINE_CLASS(oc);
   2582
   2583    mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
   2584}
   2585
   2586static int kvm_ppc_register_host_cpu_type(void)
   2587{
   2588    TypeInfo type_info = {
   2589        .name = TYPE_HOST_POWERPC_CPU,
   2590        .class_init = kvmppc_host_cpu_class_init,
   2591    };
   2592    PowerPCCPUClass *pvr_pcc;
   2593    ObjectClass *oc;
   2594    DeviceClass *dc;
   2595    int i;
   2596
   2597    pvr_pcc = kvm_ppc_get_host_cpu_class();
   2598    if (pvr_pcc == NULL) {
   2599        return -1;
   2600    }
   2601    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
   2602    type_register(&type_info);
   2603    /* override TCG default cpu type with 'host' cpu model */
   2604    object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
   2605                         false, NULL);
   2606
   2607    oc = object_class_by_name(type_info.name);
   2608    g_assert(oc);
   2609
   2610    /*
   2611     * Update generic CPU family class alias (e.g. on a POWER8NVL host,
   2612     * we want "POWER8" to be a "family" alias that points to the current
   2613     * host CPU type, too)
   2614     */
   2615    dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
   2616    for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
   2617        if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
   2618            char *suffix;
   2619
   2620            ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
   2621            suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
   2622            if (suffix) {
   2623                *suffix = 0;
   2624            }
   2625            break;
   2626        }
   2627    }
   2628
   2629    return 0;
   2630}
   2631
   2632int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
   2633{
   2634    struct kvm_rtas_token_args args = {
   2635        .token = token,
   2636    };
   2637
   2638    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
   2639        return -ENOENT;
   2640    }
   2641
   2642    strncpy(args.name, function, sizeof(args.name) - 1);
   2643
   2644    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
   2645}
   2646
   2647int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
   2648{
   2649    struct kvm_get_htab_fd s = {
   2650        .flags = write ? KVM_GET_HTAB_WRITE : 0,
   2651        .start_index = index,
   2652    };
   2653    int ret;
   2654
   2655    if (!cap_htab_fd) {
   2656        error_setg(errp, "KVM version doesn't support %s the HPT",
   2657                   write ? "writing" : "reading");
   2658        return -ENOTSUP;
   2659    }
   2660
   2661    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
   2662    if (ret < 0) {
   2663        error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
   2664                   write ? "writing" : "reading", write ? "to" : "from",
   2665                   strerror(errno));
   2666        return -errno;
   2667    }
   2668
   2669    return ret;
   2670}
   2671
   2672int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
   2673{
   2674    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
   2675    uint8_t buf[bufsize];
   2676    ssize_t rc;
   2677
   2678    do {
   2679        rc = read(fd, buf, bufsize);
   2680        if (rc < 0) {
   2681            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
   2682                    strerror(errno));
   2683            return rc;
   2684        } else if (rc) {
   2685            uint8_t *buffer = buf;
   2686            ssize_t n = rc;
   2687            while (n) {
   2688                struct kvm_get_htab_header *head =
   2689                    (struct kvm_get_htab_header *) buffer;
   2690                size_t chunksize = sizeof(*head) +
   2691                     HASH_PTE_SIZE_64 * head->n_valid;
   2692
   2693                qemu_put_be32(f, head->index);
   2694                qemu_put_be16(f, head->n_valid);
   2695                qemu_put_be16(f, head->n_invalid);
   2696                qemu_put_buffer(f, (void *)(head + 1),
   2697                                HASH_PTE_SIZE_64 * head->n_valid);
   2698
   2699                buffer += chunksize;
   2700                n -= chunksize;
   2701            }
   2702        }
   2703    } while ((rc != 0)
   2704             && ((max_ns < 0) ||
   2705                 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
   2706
   2707    return (rc == 0) ? 1 : 0;
   2708}
   2709
   2710int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
   2711                           uint16_t n_valid, uint16_t n_invalid, Error **errp)
   2712{
   2713    struct kvm_get_htab_header *buf;
   2714    size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
   2715    ssize_t rc;
   2716
   2717    buf = alloca(chunksize);
   2718    buf->index = index;
   2719    buf->n_valid = n_valid;
   2720    buf->n_invalid = n_invalid;
   2721
   2722    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
   2723
   2724    rc = write(fd, buf, chunksize);
   2725    if (rc < 0) {
   2726        error_setg_errno(errp, errno, "Error writing the KVM hash table");
   2727        return -errno;
   2728    }
   2729    if (rc != chunksize) {
   2730        /* We should never get a short write on a single chunk */
   2731        error_setg(errp, "Short write while restoring the KVM hash table");
   2732        return -ENOSPC;
   2733    }
   2734    return 0;
   2735}
   2736
   2737bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
   2738{
   2739    return true;
   2740}
   2741
   2742void kvm_arch_init_irq_routing(KVMState *s)
   2743{
   2744}
   2745
   2746void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
   2747{
   2748    int fd, rc;
   2749    int i;
   2750
   2751    fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
   2752
   2753    i = 0;
   2754    while (i < n) {
   2755        struct kvm_get_htab_header *hdr;
   2756        int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
   2757        char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
   2758
   2759        rc = read(fd, buf, sizeof(buf));
   2760        if (rc < 0) {
   2761            hw_error("kvmppc_read_hptes: Unable to read HPTEs");
   2762        }
   2763
   2764        hdr = (struct kvm_get_htab_header *)buf;
   2765        while ((i < n) && ((char *)hdr < (buf + rc))) {
   2766            int invalid = hdr->n_invalid, valid = hdr->n_valid;
   2767
   2768            if (hdr->index != (ptex + i)) {
   2769                hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
   2770                         " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
   2771            }
   2772
   2773            if (n - i < valid) {
   2774                valid = n - i;
   2775            }
   2776            memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
   2777            i += valid;
   2778
   2779            if ((n - i) < invalid) {
   2780                invalid = n - i;
   2781            }
   2782            memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
   2783            i += invalid;
   2784
   2785            hdr = (struct kvm_get_htab_header *)
   2786                ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
   2787        }
   2788    }
   2789
   2790    close(fd);
   2791}
   2792
   2793void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
   2794{
   2795    int fd, rc;
   2796    struct {
   2797        struct kvm_get_htab_header hdr;
   2798        uint64_t pte0;
   2799        uint64_t pte1;
   2800    } buf;
   2801
   2802    fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
   2803
   2804    buf.hdr.n_valid = 1;
   2805    buf.hdr.n_invalid = 0;
   2806    buf.hdr.index = ptex;
   2807    buf.pte0 = cpu_to_be64(pte0);
   2808    buf.pte1 = cpu_to_be64(pte1);
   2809
   2810    rc = write(fd, &buf, sizeof(buf));
   2811    if (rc != sizeof(buf)) {
   2812        hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
   2813    }
   2814    close(fd);
   2815}
   2816
   2817int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
   2818                             uint64_t address, uint32_t data, PCIDevice *dev)
   2819{
   2820    return 0;
   2821}
   2822
   2823int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
   2824                                int vector, PCIDevice *dev)
   2825{
   2826    return 0;
   2827}
   2828
   2829int kvm_arch_release_virq_post(int virq)
   2830{
   2831    return 0;
   2832}
   2833
   2834int kvm_arch_msi_data_to_gsi(uint32_t data)
   2835{
   2836    return data & 0xffff;
   2837}
   2838
   2839#if defined(TARGET_PPC64)
   2840int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
   2841{
   2842    uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
   2843
   2844    cpu_synchronize_state(CPU(cpu));
   2845
   2846    spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
   2847
   2848    return 0;
   2849}
   2850#endif
   2851
   2852int kvmppc_enable_hwrng(void)
   2853{
   2854    if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
   2855        return -1;
   2856    }
   2857
   2858    return kvmppc_enable_hcall(kvm_state, H_RANDOM);
   2859}
   2860
   2861void kvmppc_check_papr_resize_hpt(Error **errp)
   2862{
   2863    if (!kvm_enabled()) {
   2864        return; /* No KVM, we're good */
   2865    }
   2866
   2867    if (cap_resize_hpt) {
   2868        return; /* Kernel has explicit support, we're good */
   2869    }
   2870
   2871    /* Otherwise fallback on looking for PR KVM */
   2872    if (kvmppc_is_pr(kvm_state)) {
   2873        return;
   2874    }
   2875
   2876    error_setg(errp,
   2877               "Hash page table resizing not available with this KVM version");
   2878}
   2879
   2880int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
   2881{
   2882    CPUState *cs = CPU(cpu);
   2883    struct kvm_ppc_resize_hpt rhpt = {
   2884        .flags = flags,
   2885        .shift = shift,
   2886    };
   2887
   2888    if (!cap_resize_hpt) {
   2889        return -ENOSYS;
   2890    }
   2891
   2892    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
   2893}
   2894
   2895int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
   2896{
   2897    CPUState *cs = CPU(cpu);
   2898    struct kvm_ppc_resize_hpt rhpt = {
   2899        .flags = flags,
   2900        .shift = shift,
   2901    };
   2902
   2903    if (!cap_resize_hpt) {
   2904        return -ENOSYS;
   2905    }
   2906
   2907    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
   2908}
   2909
   2910/*
   2911 * This is a helper function to detect a post migration scenario
   2912 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
   2913 * the guest kernel can't handle a PVR value other than the actual host
   2914 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
   2915 *
   2916 * If we don't have cap_ppc_pvr_compat and we're not running in PR
   2917 * (so, we're HV), return true. The workaround itself is done in
   2918 * cpu_post_load.
   2919 *
   2920 * The order here is important: we'll only check for KVM PR as a
   2921 * fallback if the guest kernel can't handle the situation itself.
   2922 * We need to avoid as much as possible querying the running KVM type
   2923 * in QEMU level.
   2924 */
   2925bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
   2926{
   2927    CPUState *cs = CPU(cpu);
   2928
   2929    if (!kvm_enabled()) {
   2930        return false;
   2931    }
   2932
   2933    if (cap_ppc_pvr_compat) {
   2934        return false;
   2935    }
   2936
   2937    return !kvmppc_is_pr(cs->kvm_state);
   2938}
   2939
   2940void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
   2941{
   2942    CPUState *cs = CPU(cpu);
   2943
   2944    if (kvm_enabled()) {
   2945        kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
   2946    }
   2947}
   2948
   2949void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
   2950{
   2951    CPUState *cs = CPU(cpu);
   2952
   2953    if (kvm_enabled()) {
   2954        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
   2955    }
   2956}
   2957
   2958bool kvm_arch_cpu_check_are_resettable(void)
   2959{
   2960    return true;
   2961}