cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

mem_helper.c (21886B)


      1/*
      2 *  PowerPC memory access emulation helpers for QEMU.
      3 *
      4 *  Copyright (c) 2003-2007 Jocelyn Mayer
      5 *
      6 * This library is free software; you can redistribute it and/or
      7 * modify it under the terms of the GNU Lesser General Public
      8 * License as published by the Free Software Foundation; either
      9 * version 2.1 of the License, or (at your option) any later version.
     10 *
     11 * This library is distributed in the hope that it will be useful,
     12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14 * Lesser General Public License for more details.
     15 *
     16 * You should have received a copy of the GNU Lesser General Public
     17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18 */
     19
     20#include "qemu/osdep.h"
     21#include "cpu.h"
     22#include "exec/exec-all.h"
     23#include "qemu/host-utils.h"
     24#include "qemu/main-loop.h"
     25#include "exec/helper-proto.h"
     26#include "helper_regs.h"
     27#include "exec/cpu_ldst.h"
     28#include "tcg/tcg.h"
     29#include "internal.h"
     30#include "qemu/atomic128.h"
     31
     32/* #define DEBUG_OP */
     33
     34static inline bool needs_byteswap(const CPUPPCState *env)
     35{
     36#if defined(TARGET_WORDS_BIGENDIAN)
     37  return msr_le;
     38#else
     39  return !msr_le;
     40#endif
     41}
     42
     43/*****************************************************************************/
     44/* Memory load and stores */
     45
     46static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
     47                                    target_long arg)
     48{
     49#if defined(TARGET_PPC64)
     50    if (!msr_is_64bit(env, env->msr)) {
     51        return (uint32_t)(addr + arg);
     52    } else
     53#endif
     54    {
     55        return addr + arg;
     56    }
     57}
     58
     59static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb,
     60                              MMUAccessType access_type, int mmu_idx,
     61                              uintptr_t raddr)
     62{
     63    void *host1, *host2;
     64    uint32_t nb_pg1, nb_pg2;
     65
     66    nb_pg1 = -(addr | TARGET_PAGE_MASK);
     67    if (likely(nb <= nb_pg1)) {
     68        /* The entire operation is on a single page.  */
     69        return probe_access(env, addr, nb, access_type, mmu_idx, raddr);
     70    }
     71
     72    /* The operation spans two pages.  */
     73    nb_pg2 = nb - nb_pg1;
     74    host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr);
     75    addr = addr_add(env, addr, nb_pg1);
     76    host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr);
     77
     78    /* If the two host pages are contiguous, optimize.  */
     79    if (host2 == host1 + nb_pg1) {
     80        return host1;
     81    }
     82    return NULL;
     83}
     84
     85void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
     86{
     87    uintptr_t raddr = GETPC();
     88    int mmu_idx = cpu_mmu_index(env, false);
     89    void *host = probe_contiguous(env, addr, (32 - reg) * 4,
     90                                  MMU_DATA_LOAD, mmu_idx, raddr);
     91
     92    if (likely(host)) {
     93        /* Fast path -- the entire operation is in RAM at host.  */
     94        for (; reg < 32; reg++) {
     95            env->gpr[reg] = (uint32_t)ldl_be_p(host);
     96            host += 4;
     97        }
     98    } else {
     99        /* Slow path -- at least some of the operation requires i/o.  */
    100        for (; reg < 32; reg++) {
    101            env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
    102            addr = addr_add(env, addr, 4);
    103        }
    104    }
    105}
    106
    107void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
    108{
    109    uintptr_t raddr = GETPC();
    110    int mmu_idx = cpu_mmu_index(env, false);
    111    void *host = probe_contiguous(env, addr, (32 - reg) * 4,
    112                                  MMU_DATA_STORE, mmu_idx, raddr);
    113
    114    if (likely(host)) {
    115        /* Fast path -- the entire operation is in RAM at host.  */
    116        for (; reg < 32; reg++) {
    117            stl_be_p(host, env->gpr[reg]);
    118            host += 4;
    119        }
    120    } else {
    121        /* Slow path -- at least some of the operation requires i/o.  */
    122        for (; reg < 32; reg++) {
    123            cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
    124            addr = addr_add(env, addr, 4);
    125        }
    126    }
    127}
    128
    129static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
    130                   uint32_t reg, uintptr_t raddr)
    131{
    132    int mmu_idx;
    133    void *host;
    134    uint32_t val;
    135
    136    if (unlikely(nb == 0)) {
    137        return;
    138    }
    139
    140    mmu_idx = cpu_mmu_index(env, false);
    141    host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr);
    142
    143    if (likely(host)) {
    144        /* Fast path -- the entire operation is in RAM at host.  */
    145        for (; nb > 3; nb -= 4) {
    146            env->gpr[reg] = (uint32_t)ldl_be_p(host);
    147            reg = (reg + 1) % 32;
    148            host += 4;
    149        }
    150        switch (nb) {
    151        default:
    152            return;
    153        case 1:
    154            val = ldub_p(host) << 24;
    155            break;
    156        case 2:
    157            val = lduw_be_p(host) << 16;
    158            break;
    159        case 3:
    160            val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8);
    161            break;
    162        }
    163    } else {
    164        /* Slow path -- at least some of the operation requires i/o.  */
    165        for (; nb > 3; nb -= 4) {
    166            env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
    167            reg = (reg + 1) % 32;
    168            addr = addr_add(env, addr, 4);
    169        }
    170        switch (nb) {
    171        default:
    172            return;
    173        case 1:
    174            val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24;
    175            break;
    176        case 2:
    177            val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
    178            break;
    179        case 3:
    180            val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
    181            addr = addr_add(env, addr, 2);
    182            val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8;
    183            break;
    184        }
    185    }
    186    env->gpr[reg] = val;
    187}
    188
    189void helper_lsw(CPUPPCState *env, target_ulong addr,
    190                uint32_t nb, uint32_t reg)
    191{
    192    do_lsw(env, addr, nb, reg, GETPC());
    193}
    194
    195/*
    196 * PPC32 specification says we must generate an exception if rA is in
    197 * the range of registers to be loaded.  In an other hand, IBM says
    198 * this is valid, but rA won't be loaded.  For now, I'll follow the
    199 * spec...
    200 */
    201void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
    202                 uint32_t ra, uint32_t rb)
    203{
    204    if (likely(xer_bc != 0)) {
    205        int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
    206        if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
    207                     lsw_reg_in_range(reg, num_used_regs, rb))) {
    208            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
    209                                   POWERPC_EXCP_INVAL |
    210                                   POWERPC_EXCP_INVAL_LSWX, GETPC());
    211        } else {
    212            do_lsw(env, addr, xer_bc, reg, GETPC());
    213        }
    214    }
    215}
    216
    217void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
    218                 uint32_t reg)
    219{
    220    uintptr_t raddr = GETPC();
    221    int mmu_idx;
    222    void *host;
    223    uint32_t val;
    224
    225    if (unlikely(nb == 0)) {
    226        return;
    227    }
    228
    229    mmu_idx = cpu_mmu_index(env, false);
    230    host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr);
    231
    232    if (likely(host)) {
    233        /* Fast path -- the entire operation is in RAM at host.  */
    234        for (; nb > 3; nb -= 4) {
    235            stl_be_p(host, env->gpr[reg]);
    236            reg = (reg + 1) % 32;
    237            host += 4;
    238        }
    239        val = env->gpr[reg];
    240        switch (nb) {
    241        case 1:
    242            stb_p(host, val >> 24);
    243            break;
    244        case 2:
    245            stw_be_p(host, val >> 16);
    246            break;
    247        case 3:
    248            stw_be_p(host, val >> 16);
    249            stb_p(host + 2, val >> 8);
    250            break;
    251        }
    252    } else {
    253        for (; nb > 3; nb -= 4) {
    254            cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
    255            reg = (reg + 1) % 32;
    256            addr = addr_add(env, addr, 4);
    257        }
    258        val = env->gpr[reg];
    259        switch (nb) {
    260        case 1:
    261            cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr);
    262            break;
    263        case 2:
    264            cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
    265            break;
    266        case 3:
    267            cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
    268            addr = addr_add(env, addr, 2);
    269            cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr);
    270            break;
    271        }
    272    }
    273}
    274
    275static void dcbz_common(CPUPPCState *env, target_ulong addr,
    276                        uint32_t opcode, bool epid, uintptr_t retaddr)
    277{
    278    target_ulong mask, dcbz_size = env->dcache_line_size;
    279    uint32_t i;
    280    void *haddr;
    281    int mmu_idx = epid ? PPC_TLB_EPID_STORE : cpu_mmu_index(env, false);
    282
    283#if defined(TARGET_PPC64)
    284    /* Check for dcbz vs dcbzl on 970 */
    285    if (env->excp_model == POWERPC_EXCP_970 &&
    286        !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
    287        dcbz_size = 32;
    288    }
    289#endif
    290
    291    /* Align address */
    292    mask = ~(dcbz_size - 1);
    293    addr &= mask;
    294
    295    /* Check reservation */
    296    if ((env->reserve_addr & mask) == addr)  {
    297        env->reserve_addr = (target_ulong)-1ULL;
    298    }
    299
    300    /* Try fast path translate */
    301    haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr);
    302    if (haddr) {
    303        memset(haddr, 0, dcbz_size);
    304    } else {
    305        /* Slow path */
    306        for (i = 0; i < dcbz_size; i += 8) {
    307            cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr);
    308        }
    309    }
    310}
    311
    312void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
    313{
    314    dcbz_common(env, addr, opcode, false, GETPC());
    315}
    316
    317void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
    318{
    319    dcbz_common(env, addr, opcode, true, GETPC());
    320}
    321
    322void helper_icbi(CPUPPCState *env, target_ulong addr)
    323{
    324    addr &= ~(env->dcache_line_size - 1);
    325    /*
    326     * Invalidate one cache line :
    327     * PowerPC specification says this is to be treated like a load
    328     * (not a fetch) by the MMU. To be sure it will be so,
    329     * do the load "by hand".
    330     */
    331    cpu_ldl_data_ra(env, addr, GETPC());
    332}
    333
    334void helper_icbiep(CPUPPCState *env, target_ulong addr)
    335{
    336#if !defined(CONFIG_USER_ONLY)
    337    /* See comments above */
    338    addr &= ~(env->dcache_line_size - 1);
    339    cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC());
    340#endif
    341}
    342
    343/* XXX: to be tested */
    344target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
    345                          uint32_t ra, uint32_t rb)
    346{
    347    int i, c, d;
    348
    349    d = 24;
    350    for (i = 0; i < xer_bc; i++) {
    351        c = cpu_ldub_data_ra(env, addr, GETPC());
    352        addr = addr_add(env, addr, 1);
    353        /* ra (if not 0) and rb are never modified */
    354        if (likely(reg != rb && (ra == 0 || reg != ra))) {
    355            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
    356        }
    357        if (unlikely(c == xer_cmp)) {
    358            break;
    359        }
    360        if (likely(d != 0)) {
    361            d -= 8;
    362        } else {
    363            d = 24;
    364            reg++;
    365            reg = reg & 0x1F;
    366        }
    367    }
    368    return i;
    369}
    370
    371#ifdef TARGET_PPC64
    372uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
    373                               uint32_t opidx)
    374{
    375    Int128 ret;
    376
    377    /* We will have raised EXCP_ATOMIC from the translator.  */
    378    assert(HAVE_ATOMIC128);
    379    ret = cpu_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
    380    env->retxh = int128_gethi(ret);
    381    return int128_getlo(ret);
    382}
    383
    384uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
    385                               uint32_t opidx)
    386{
    387    Int128 ret;
    388
    389    /* We will have raised EXCP_ATOMIC from the translator.  */
    390    assert(HAVE_ATOMIC128);
    391    ret = cpu_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
    392    env->retxh = int128_gethi(ret);
    393    return int128_getlo(ret);
    394}
    395
    396void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
    397                            uint64_t lo, uint64_t hi, uint32_t opidx)
    398{
    399    Int128 val;
    400
    401    /* We will have raised EXCP_ATOMIC from the translator.  */
    402    assert(HAVE_ATOMIC128);
    403    val = int128_make128(lo, hi);
    404    cpu_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
    405}
    406
    407void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
    408                            uint64_t lo, uint64_t hi, uint32_t opidx)
    409{
    410    Int128 val;
    411
    412    /* We will have raised EXCP_ATOMIC from the translator.  */
    413    assert(HAVE_ATOMIC128);
    414    val = int128_make128(lo, hi);
    415    cpu_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
    416}
    417
    418uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
    419                                  uint64_t new_lo, uint64_t new_hi,
    420                                  uint32_t opidx)
    421{
    422    bool success = false;
    423
    424    /* We will have raised EXCP_ATOMIC from the translator.  */
    425    assert(HAVE_CMPXCHG128);
    426
    427    if (likely(addr == env->reserve_addr)) {
    428        Int128 oldv, cmpv, newv;
    429
    430        cmpv = int128_make128(env->reserve_val2, env->reserve_val);
    431        newv = int128_make128(new_lo, new_hi);
    432        oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
    433                                          opidx, GETPC());
    434        success = int128_eq(oldv, cmpv);
    435    }
    436    env->reserve_addr = -1;
    437    return env->so + success * CRF_EQ_BIT;
    438}
    439
    440uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
    441                                  uint64_t new_lo, uint64_t new_hi,
    442                                  uint32_t opidx)
    443{
    444    bool success = false;
    445
    446    /* We will have raised EXCP_ATOMIC from the translator.  */
    447    assert(HAVE_CMPXCHG128);
    448
    449    if (likely(addr == env->reserve_addr)) {
    450        Int128 oldv, cmpv, newv;
    451
    452        cmpv = int128_make128(env->reserve_val2, env->reserve_val);
    453        newv = int128_make128(new_lo, new_hi);
    454        oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
    455                                          opidx, GETPC());
    456        success = int128_eq(oldv, cmpv);
    457    }
    458    env->reserve_addr = -1;
    459    return env->so + success * CRF_EQ_BIT;
    460}
    461#endif
    462
    463/*****************************************************************************/
    464/* Altivec extension helpers */
    465#if defined(HOST_WORDS_BIGENDIAN)
    466#define HI_IDX 0
    467#define LO_IDX 1
    468#else
    469#define HI_IDX 1
    470#define LO_IDX 0
    471#endif
    472
    473/*
    474 * We use msr_le to determine index ordering in a vector.  However,
    475 * byteswapping is not simply controlled by msr_le.  We also need to
    476 * take into account endianness of the target.  This is done for the
    477 * little-endian PPC64 user-mode target.
    478 */
    479
    480#define LVE(name, access, swap, element)                        \
    481    void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
    482                       target_ulong addr)                       \
    483    {                                                           \
    484        size_t n_elems = ARRAY_SIZE(r->element);                \
    485        int adjust = HI_IDX * (n_elems - 1);                    \
    486        int sh = sizeof(r->element[0]) >> 1;                    \
    487        int index = (addr & 0xf) >> sh;                         \
    488        if (msr_le) {                                           \
    489            index = n_elems - index - 1;                        \
    490        }                                                       \
    491                                                                \
    492        if (needs_byteswap(env)) {                              \
    493            r->element[LO_IDX ? index : (adjust - index)] =     \
    494                swap(access(env, addr, GETPC()));               \
    495        } else {                                                \
    496            r->element[LO_IDX ? index : (adjust - index)] =     \
    497                access(env, addr, GETPC());                     \
    498        }                                                       \
    499    }
    500#define I(x) (x)
    501LVE(lvebx, cpu_ldub_data_ra, I, u8)
    502LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
    503LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
    504#undef I
    505#undef LVE
    506
    507#define STVE(name, access, swap, element)                               \
    508    void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
    509                       target_ulong addr)                               \
    510    {                                                                   \
    511        size_t n_elems = ARRAY_SIZE(r->element);                        \
    512        int adjust = HI_IDX * (n_elems - 1);                            \
    513        int sh = sizeof(r->element[0]) >> 1;                            \
    514        int index = (addr & 0xf) >> sh;                                 \
    515        if (msr_le) {                                                   \
    516            index = n_elems - index - 1;                                \
    517        }                                                               \
    518                                                                        \
    519        if (needs_byteswap(env)) {                                      \
    520            access(env, addr, swap(r->element[LO_IDX ? index :          \
    521                                              (adjust - index)]),       \
    522                        GETPC());                                       \
    523        } else {                                                        \
    524            access(env, addr, r->element[LO_IDX ? index :               \
    525                                         (adjust - index)], GETPC());   \
    526        }                                                               \
    527    }
    528#define I(x) (x)
    529STVE(stvebx, cpu_stb_data_ra, I, u8)
    530STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
    531STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
    532#undef I
    533#undef LVE
    534
    535#ifdef TARGET_PPC64
    536#define GET_NB(rb) ((rb >> 56) & 0xFF)
    537
    538#define VSX_LXVL(name, lj)                                              \
    539void helper_##name(CPUPPCState *env, target_ulong addr,                 \
    540                   ppc_vsr_t *xt, target_ulong rb)                      \
    541{                                                                       \
    542    ppc_vsr_t t;                                                        \
    543    uint64_t nb = GET_NB(rb);                                           \
    544    int i;                                                              \
    545                                                                        \
    546    t.s128 = int128_zero();                                             \
    547    if (nb) {                                                           \
    548        nb = (nb >= 16) ? 16 : nb;                                      \
    549        if (msr_le && !lj) {                                            \
    550            for (i = 16; i > 16 - nb; i--) {                            \
    551                t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());   \
    552                addr = addr_add(env, addr, 1);                          \
    553            }                                                           \
    554        } else {                                                        \
    555            for (i = 0; i < nb; i++) {                                  \
    556                t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());       \
    557                addr = addr_add(env, addr, 1);                          \
    558            }                                                           \
    559        }                                                               \
    560    }                                                                   \
    561    *xt = t;                                                            \
    562}
    563
    564VSX_LXVL(lxvl, 0)
    565VSX_LXVL(lxvll, 1)
    566#undef VSX_LXVL
    567
    568#define VSX_STXVL(name, lj)                                       \
    569void helper_##name(CPUPPCState *env, target_ulong addr,           \
    570                   ppc_vsr_t *xt, target_ulong rb)                \
    571{                                                                 \
    572    target_ulong nb = GET_NB(rb);                                 \
    573    int i;                                                        \
    574                                                                  \
    575    if (!nb) {                                                    \
    576        return;                                                   \
    577    }                                                             \
    578                                                                  \
    579    nb = (nb >= 16) ? 16 : nb;                                    \
    580    if (msr_le && !lj) {                                          \
    581        for (i = 16; i > 16 - nb; i--) {                          \
    582            cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
    583            addr = addr_add(env, addr, 1);                        \
    584        }                                                         \
    585    } else {                                                      \
    586        for (i = 0; i < nb; i++) {                                \
    587            cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC());     \
    588            addr = addr_add(env, addr, 1);                        \
    589        }                                                         \
    590    }                                                             \
    591}
    592
    593VSX_STXVL(stxvl, 0)
    594VSX_STXVL(stxvll, 1)
    595#undef VSX_STXVL
    596#undef GET_NB
    597#endif /* TARGET_PPC64 */
    598
    599#undef HI_IDX
    600#undef LO_IDX
    601
    602void helper_tbegin(CPUPPCState *env)
    603{
    604    /*
    605     * As a degenerate implementation, always fail tbegin.  The reason
    606     * given is "Nesting overflow".  The "persistent" bit is set,
    607     * providing a hint to the error handler to not retry.  The TFIAR
    608     * captures the address of the failure, which is this tbegin
    609     * instruction.  Instruction execution will continue with the next
    610     * instruction in memory, which is precisely what we want.
    611     */
    612
    613    env->spr[SPR_TEXASR] =
    614        (1ULL << TEXASR_FAILURE_PERSISTENT) |
    615        (1ULL << TEXASR_NESTING_OVERFLOW) |
    616        (msr_hv << TEXASR_PRIVILEGE_HV) |
    617        (msr_pr << TEXASR_PRIVILEGE_PR) |
    618        (1ULL << TEXASR_FAILURE_SUMMARY) |
    619        (1ULL << TEXASR_TFIAR_EXACT);
    620    env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
    621    env->spr[SPR_TFHAR] = env->nip + 4;
    622    env->crf[0] = 0xB; /* 0b1010 = transaction failure */
    623}