cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

mmu_helper.c (19607B)


      1/*
      2 * S390x MMU related functions
      3 *
      4 * Copyright (c) 2011 Alexander Graf
      5 * Copyright (c) 2015 Thomas Huth, IBM Corporation
      6 *
      7 * This program is free software; you can redistribute it and/or modify
      8 * it under the terms of the GNU General Public License as published by
      9 * the Free Software Foundation; either version 2 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * This program is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 */
     17
     18#include "qemu/osdep.h"
     19#include "qemu/error-report.h"
     20#include "exec/address-spaces.h"
     21#include "cpu.h"
     22#include "s390x-internal.h"
     23#include "kvm/kvm_s390x.h"
     24#include "sysemu/kvm.h"
     25#include "sysemu/tcg.h"
     26#include "exec/exec-all.h"
     27#include "trace.h"
     28#include "hw/hw.h"
     29#include "hw/s390x/storage-keys.h"
     30#include "hw/boards.h"
     31
     32/* Fetch/store bits in the translation exception code: */
     33#define FS_READ  0x800
     34#define FS_WRITE 0x400
     35
     36static void trigger_access_exception(CPUS390XState *env, uint32_t type,
     37                                     uint64_t tec)
     38{
     39    S390CPU *cpu = env_archcpu(env);
     40
     41    if (kvm_enabled()) {
     42        kvm_s390_access_exception(cpu, type, tec);
     43    } else {
     44        CPUState *cs = env_cpu(env);
     45        if (type != PGM_ADDRESSING) {
     46            stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
     47        }
     48        trigger_pgm_exception(env, type);
     49    }
     50}
     51
     52/* check whether the address would be proteted by Low-Address Protection */
     53static bool is_low_address(uint64_t addr)
     54{
     55    return addr <= 511 || (addr >= 4096 && addr <= 4607);
     56}
     57
     58/* check whether Low-Address Protection is enabled for mmu_translate() */
     59static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
     60{
     61    if (!(env->cregs[0] & CR0_LOWPROT)) {
     62        return false;
     63    }
     64    if (!(env->psw.mask & PSW_MASK_DAT)) {
     65        return true;
     66    }
     67
     68    /* Check the private-space control bit */
     69    switch (asc) {
     70    case PSW_ASC_PRIMARY:
     71        return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
     72    case PSW_ASC_SECONDARY:
     73        return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
     74    case PSW_ASC_HOME:
     75        return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
     76    default:
     77        /* We don't support access register mode */
     78        error_report("unsupported addressing mode");
     79        exit(1);
     80    }
     81}
     82
     83/**
     84 * Translate real address to absolute (= physical)
     85 * address by taking care of the prefix mapping.
     86 */
     87target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
     88{
     89    if (raddr < 0x2000) {
     90        return raddr + env->psa;    /* Map the lowcore. */
     91    } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
     92        return raddr - env->psa;    /* Map the 0 page. */
     93    }
     94    return raddr;
     95}
     96
     97bool mmu_absolute_addr_valid(target_ulong addr, bool is_write)
     98{
     99    return address_space_access_valid(&address_space_memory,
    100                                      addr & TARGET_PAGE_MASK,
    101                                      TARGET_PAGE_SIZE, is_write,
    102                                      MEMTXATTRS_UNSPECIFIED);
    103}
    104
    105static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr,
    106                                    uint64_t *entry)
    107{
    108    CPUState *cs = env_cpu(env);
    109
    110    /*
    111     * According to the PoP, these table addresses are "unpredictably real
    112     * or absolute". Also, "it is unpredictable whether the address wraps
    113     * or an addressing exception is recognized".
    114     *
    115     * We treat them as absolute addresses and don't wrap them.
    116     */
    117    if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED,
    118                                    entry, sizeof(*entry)) !=
    119                 MEMTX_OK)) {
    120        return false;
    121    }
    122    *entry = be64_to_cpu(*entry);
    123    return true;
    124}
    125
    126static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
    127                              uint64_t asc, uint64_t asce, target_ulong *raddr,
    128                              int *flags)
    129{
    130    const bool edat1 = (env->cregs[0] & CR0_EDAT) &&
    131                       s390_has_feat(S390_FEAT_EDAT);
    132    const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2);
    133    const bool iep = (env->cregs[0] & CR0_IEP) &&
    134                     s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT);
    135    const int asce_tl = asce & ASCE_TABLE_LENGTH;
    136    const int asce_p = asce & ASCE_PRIVATE_SPACE;
    137    hwaddr gaddr = asce & ASCE_ORIGIN;
    138    uint64_t entry;
    139
    140    if (asce & ASCE_REAL_SPACE) {
    141        /* direct mapping */
    142        *raddr = vaddr;
    143        return 0;
    144    }
    145
    146    switch (asce & ASCE_TYPE_MASK) {
    147    case ASCE_TYPE_REGION1:
    148        if (VADDR_REGION1_TL(vaddr) > asce_tl) {
    149            return PGM_REG_FIRST_TRANS;
    150        }
    151        gaddr += VADDR_REGION1_TX(vaddr) * 8;
    152        break;
    153    case ASCE_TYPE_REGION2:
    154        if (VADDR_REGION1_TX(vaddr)) {
    155            return PGM_ASCE_TYPE;
    156        }
    157        if (VADDR_REGION2_TL(vaddr) > asce_tl) {
    158            return PGM_REG_SEC_TRANS;
    159        }
    160        gaddr += VADDR_REGION2_TX(vaddr) * 8;
    161        break;
    162    case ASCE_TYPE_REGION3:
    163        if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) {
    164            return PGM_ASCE_TYPE;
    165        }
    166        if (VADDR_REGION3_TL(vaddr) > asce_tl) {
    167            return PGM_REG_THIRD_TRANS;
    168        }
    169        gaddr += VADDR_REGION3_TX(vaddr) * 8;
    170        break;
    171    case ASCE_TYPE_SEGMENT:
    172        if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) ||
    173            VADDR_REGION3_TX(vaddr)) {
    174            return PGM_ASCE_TYPE;
    175        }
    176        if (VADDR_SEGMENT_TL(vaddr) > asce_tl) {
    177            return PGM_SEGMENT_TRANS;
    178        }
    179        gaddr += VADDR_SEGMENT_TX(vaddr) * 8;
    180        break;
    181    }
    182
    183    switch (asce & ASCE_TYPE_MASK) {
    184    case ASCE_TYPE_REGION1:
    185        if (!read_table_entry(env, gaddr, &entry)) {
    186            return PGM_ADDRESSING;
    187        }
    188        if (entry & REGION_ENTRY_I) {
    189            return PGM_REG_FIRST_TRANS;
    190        }
    191        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) {
    192            return PGM_TRANS_SPEC;
    193        }
    194        if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
    195            VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
    196            return PGM_REG_SEC_TRANS;
    197        }
    198        if (edat1 && (entry & REGION_ENTRY_P)) {
    199            *flags &= ~PAGE_WRITE;
    200        }
    201        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8;
    202        /* fall through */
    203    case ASCE_TYPE_REGION2:
    204        if (!read_table_entry(env, gaddr, &entry)) {
    205            return PGM_ADDRESSING;
    206        }
    207        if (entry & REGION_ENTRY_I) {
    208            return PGM_REG_SEC_TRANS;
    209        }
    210        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) {
    211            return PGM_TRANS_SPEC;
    212        }
    213        if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
    214            VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
    215            return PGM_REG_THIRD_TRANS;
    216        }
    217        if (edat1 && (entry & REGION_ENTRY_P)) {
    218            *flags &= ~PAGE_WRITE;
    219        }
    220        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8;
    221        /* fall through */
    222    case ASCE_TYPE_REGION3:
    223        if (!read_table_entry(env, gaddr, &entry)) {
    224            return PGM_ADDRESSING;
    225        }
    226        if (entry & REGION_ENTRY_I) {
    227            return PGM_REG_THIRD_TRANS;
    228        }
    229        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) {
    230            return PGM_TRANS_SPEC;
    231        }
    232        if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) {
    233            return PGM_TRANS_SPEC;
    234        }
    235        if (edat1 && (entry & REGION_ENTRY_P)) {
    236            *flags &= ~PAGE_WRITE;
    237        }
    238        if (edat2 && (entry & REGION3_ENTRY_FC)) {
    239            if (iep && (entry & REGION3_ENTRY_IEP)) {
    240                *flags &= ~PAGE_EXEC;
    241            }
    242            *raddr = (entry & REGION3_ENTRY_RFAA) |
    243                     (vaddr & ~REGION3_ENTRY_RFAA);
    244            return 0;
    245        }
    246        if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
    247            VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
    248            return PGM_SEGMENT_TRANS;
    249        }
    250        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8;
    251        /* fall through */
    252    case ASCE_TYPE_SEGMENT:
    253        if (!read_table_entry(env, gaddr, &entry)) {
    254            return PGM_ADDRESSING;
    255        }
    256        if (entry & SEGMENT_ENTRY_I) {
    257            return PGM_SEGMENT_TRANS;
    258        }
    259        if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) {
    260            return PGM_TRANS_SPEC;
    261        }
    262        if ((entry & SEGMENT_ENTRY_CS) && asce_p) {
    263            return PGM_TRANS_SPEC;
    264        }
    265        if (entry & SEGMENT_ENTRY_P) {
    266            *flags &= ~PAGE_WRITE;
    267        }
    268        if (edat1 && (entry & SEGMENT_ENTRY_FC)) {
    269            if (iep && (entry & SEGMENT_ENTRY_IEP)) {
    270                *flags &= ~PAGE_EXEC;
    271            }
    272            *raddr = (entry & SEGMENT_ENTRY_SFAA) |
    273                     (vaddr & ~SEGMENT_ENTRY_SFAA);
    274            return 0;
    275        }
    276        gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8;
    277        break;
    278    }
    279
    280    if (!read_table_entry(env, gaddr, &entry)) {
    281        return PGM_ADDRESSING;
    282    }
    283    if (entry & PAGE_ENTRY_I) {
    284        return PGM_PAGE_TRANS;
    285    }
    286    if (entry & PAGE_ENTRY_0) {
    287        return PGM_TRANS_SPEC;
    288    }
    289    if (entry & PAGE_ENTRY_P) {
    290        *flags &= ~PAGE_WRITE;
    291    }
    292    if (iep && (entry & PAGE_ENTRY_IEP)) {
    293        *flags &= ~PAGE_EXEC;
    294    }
    295
    296    *raddr = entry & TARGET_PAGE_MASK;
    297    return 0;
    298}
    299
    300static void mmu_handle_skey(target_ulong addr, int rw, int *flags)
    301{
    302    static S390SKeysClass *skeyclass;
    303    static S390SKeysState *ss;
    304    uint8_t key, old_key;
    305    int rc;
    306
    307    /*
    308     * We expect to be called with an absolute address that has already been
    309     * validated, such that we can reliably use it to lookup the storage key.
    310     */
    311    if (unlikely(!ss)) {
    312        ss = s390_get_skeys_device();
    313        skeyclass = S390_SKEYS_GET_CLASS(ss);
    314    }
    315
    316    /*
    317     * Don't enable storage keys if they are still disabled, i.e., no actual
    318     * storage key instruction was issued yet.
    319     */
    320    if (!skeyclass->skeys_are_enabled(ss)) {
    321        return;
    322    }
    323
    324    /*
    325     * Whenever we create a new TLB entry, we set the storage key reference
    326     * bit. In case we allow write accesses, we set the storage key change
    327     * bit. Whenever the guest changes the storage key, we have to flush the
    328     * TLBs of all CPUs (the whole TLB or all affected entries), so that the
    329     * next reference/change will result in an MMU fault and make us properly
    330     * update the storage key here.
    331     *
    332     * Note 1: "record of references ... is not necessarily accurate",
    333     *         "change bit may be set in case no storing has occurred".
    334     *         -> We can set reference/change bits even on exceptions.
    335     * Note 2: certain accesses seem to ignore storage keys. For example,
    336     *         DAT translation does not set reference bits for table accesses.
    337     *
    338     * TODO: key-controlled protection. Only CPU accesses make use of the
    339     *       PSW key. CSS accesses are different - we have to pass in the key.
    340     *
    341     * TODO: we have races between getting and setting the key.
    342     */
    343    rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
    344    if (rc) {
    345        trace_get_skeys_nonzero(rc);
    346        return;
    347    }
    348    old_key = key;
    349
    350    switch (rw) {
    351    case MMU_DATA_LOAD:
    352    case MMU_INST_FETCH:
    353        /*
    354         * The TLB entry has to remain write-protected on read-faults if
    355         * the storage key does not indicate a change already. Otherwise
    356         * we might miss setting the change bit on write accesses.
    357         */
    358        if (!(key & SK_C)) {
    359            *flags &= ~PAGE_WRITE;
    360        }
    361        break;
    362    case MMU_DATA_STORE:
    363        key |= SK_C;
    364        break;
    365    default:
    366        g_assert_not_reached();
    367    }
    368
    369    /* Any store/fetch sets the reference bit */
    370    key |= SK_R;
    371
    372    if (key != old_key) {
    373        rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
    374        if (rc) {
    375            trace_set_skeys_nonzero(rc);
    376        }
    377    }
    378}
    379
    380/**
    381 * Translate a virtual (logical) address into a physical (absolute) address.
    382 * @param vaddr  the virtual address
    383 * @param rw     0 = read, 1 = write, 2 = code fetch, < 0 = load real address
    384 * @param asc    address space control (one of the PSW_ASC_* modes)
    385 * @param raddr  the translated address is stored to this pointer
    386 * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
    387 * @param tec    the translation exception code if stored to this pointer if
    388 *               there is an exception to raise
    389 * @return       0 = success, != 0, the exception to raise
    390 */
    391int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
    392                  target_ulong *raddr, int *flags, uint64_t *tec)
    393{
    394    uint64_t asce;
    395    int r;
    396
    397    *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) |
    398            (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
    399    *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    400
    401    if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
    402        /*
    403         * If any part of this page is currently protected, make sure the
    404         * TLB entry will not be reused.
    405         *
    406         * As the protected range is always the first 512 bytes of the
    407         * two first pages, we are able to catch all writes to these areas
    408         * just by looking at the start address (triggering the tlb miss).
    409         */
    410        *flags |= PAGE_WRITE_INV;
    411        if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
    412            /* LAP sets bit 56 */
    413            *tec |= 0x80;
    414            return PGM_PROTECTION;
    415        }
    416    }
    417
    418    vaddr &= TARGET_PAGE_MASK;
    419
    420    if (!(env->psw.mask & PSW_MASK_DAT)) {
    421        *raddr = vaddr;
    422        goto nodat;
    423    }
    424
    425    switch (asc) {
    426    case PSW_ASC_PRIMARY:
    427        asce = env->cregs[1];
    428        break;
    429    case PSW_ASC_HOME:
    430        asce = env->cregs[13];
    431        break;
    432    case PSW_ASC_SECONDARY:
    433        asce = env->cregs[7];
    434        break;
    435    case PSW_ASC_ACCREG:
    436    default:
    437        hw_error("guest switched to unknown asc mode\n");
    438        break;
    439    }
    440
    441    /* perform the DAT translation */
    442    r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags);
    443    if (unlikely(r)) {
    444        return r;
    445    }
    446
    447    /* check for DAT protection */
    448    if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) {
    449        /* DAT sets bit 61 only */
    450        *tec |= 0x4;
    451        return PGM_PROTECTION;
    452    }
    453
    454    /* check for Instruction-Execution-Protection */
    455    if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) {
    456        /* IEP sets bit 56 and 61 */
    457        *tec |= 0x84;
    458        return PGM_PROTECTION;
    459    }
    460
    461nodat:
    462    if (rw >= 0) {
    463        /* Convert real address -> absolute address */
    464        *raddr = mmu_real2abs(env, *raddr);
    465
    466        if (!mmu_absolute_addr_valid(*raddr, rw == MMU_DATA_STORE)) {
    467            *tec = 0; /* unused */
    468            return PGM_ADDRESSING;
    469        }
    470
    471        mmu_handle_skey(*raddr, rw, flags);
    472    }
    473    return 0;
    474}
    475
    476/**
    477 * translate_pages: Translate a set of consecutive logical page addresses
    478 * to absolute addresses. This function is used for TCG and old KVM without
    479 * the MEMOP interface.
    480 */
    481static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
    482                           target_ulong *pages, bool is_write, uint64_t *tec)
    483{
    484    uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
    485    CPUS390XState *env = &cpu->env;
    486    int ret, i, pflags;
    487
    488    for (i = 0; i < nr_pages; i++) {
    489        ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec);
    490        if (ret) {
    491            return ret;
    492        }
    493        addr += TARGET_PAGE_SIZE;
    494    }
    495
    496    return 0;
    497}
    498
    499int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf,
    500                       int len, bool is_write)
    501{
    502    int ret;
    503
    504    if (kvm_enabled()) {
    505        ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write);
    506    } else {
    507        /* Protected Virtualization is a KVM/Hardware only feature */
    508        g_assert_not_reached();
    509    }
    510    return ret;
    511}
    512
    513/**
    514 * s390_cpu_virt_mem_rw:
    515 * @laddr:     the logical start address
    516 * @ar:        the access register number
    517 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
    518 * @len:       length that should be transferred
    519 * @is_write:  true = write, false = read
    520 * Returns:    0 on success, non-zero if an exception occurred
    521 *
    522 * Copy from/to guest memory using logical addresses. Note that we inject a
    523 * program interrupt in case there is an error while accessing the memory.
    524 *
    525 * This function will always return (also for TCG), make sure to call
    526 * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
    527 */
    528int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
    529                         int len, bool is_write)
    530{
    531    int currlen, nr_pages, i;
    532    target_ulong *pages;
    533    uint64_t tec;
    534    int ret;
    535
    536    if (kvm_enabled()) {
    537        ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
    538        if (ret >= 0) {
    539            return ret;
    540        }
    541    }
    542
    543    nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
    544               + 1;
    545    pages = g_malloc(nr_pages * sizeof(*pages));
    546
    547    ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec);
    548    if (ret) {
    549        trigger_access_exception(&cpu->env, ret, tec);
    550    } else if (hostbuf != NULL) {
    551        /* Copy data by stepping through the area page by page */
    552        for (i = 0; i < nr_pages; i++) {
    553            currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
    554            cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
    555                                   hostbuf, currlen, is_write);
    556            laddr += currlen;
    557            hostbuf += currlen;
    558            len -= currlen;
    559        }
    560    }
    561
    562    g_free(pages);
    563    return ret;
    564}
    565
    566void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
    567{
    568    /* KVM will handle the interrupt automatically, TCG has to exit the TB */
    569#ifdef CONFIG_TCG
    570    if (tcg_enabled()) {
    571        cpu_loop_exit_restore(CPU(cpu), ra);
    572    }
    573#endif
    574}
    575
    576/**
    577 * Translate a real address into a physical (absolute) address.
    578 * @param raddr  the real address
    579 * @param rw     0 = read, 1 = write, 2 = code fetch
    580 * @param addr   the translated address is stored to this pointer
    581 * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
    582 * @return       0 = success, != 0, the exception to raise
    583 */
    584int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
    585                       target_ulong *addr, int *flags, uint64_t *tec)
    586{
    587    const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
    588
    589    *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    590    if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
    591        /* see comment in mmu_translate() how this works */
    592        *flags |= PAGE_WRITE_INV;
    593        if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
    594            /* LAP sets bit 56 */
    595            *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80;
    596            return PGM_PROTECTION;
    597        }
    598    }
    599
    600    *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
    601
    602    if (!mmu_absolute_addr_valid(*addr, rw == MMU_DATA_STORE)) {
    603        /* unused */
    604        *tec = 0;
    605        return PGM_ADDRESSING;
    606    }
    607
    608    mmu_handle_skey(*addr, rw, flags);
    609    return 0;
    610}