cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

rtc-test.c (20536B)


      1/*
      2 * QTest testcase for the MC146818 real-time clock
      3 *
      4 * Copyright IBM, Corp. 2012
      5 *
      6 * Authors:
      7 *  Anthony Liguori   <aliguori@us.ibm.com>
      8 *
      9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
     10 * See the COPYING file in the top-level directory.
     11 *
     12 */
     13
     14#include "qemu/osdep.h"
     15
     16#include "libqtest-single.h"
     17#include "qemu/timer.h"
     18#include "hw/rtc/mc146818rtc.h"
     19#include "hw/rtc/mc146818rtc_regs.h"
     20
     21#define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
     22
     23static uint8_t base = 0x70;
     24
     25static int bcd2dec(int value)
     26{
     27    return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
     28}
     29
     30static uint8_t cmos_read(uint8_t reg)
     31{
     32    outb(base + 0, reg);
     33    return inb(base + 1);
     34}
     35
     36static void cmos_write(uint8_t reg, uint8_t val)
     37{
     38    outb(base + 0, reg);
     39    outb(base + 1, val);
     40}
     41
     42static int tm_cmp(struct tm *lhs, struct tm *rhs)
     43{
     44    time_t a, b;
     45    struct tm d1, d2;
     46
     47    memcpy(&d1, lhs, sizeof(d1));
     48    memcpy(&d2, rhs, sizeof(d2));
     49
     50    a = mktime(&d1);
     51    b = mktime(&d2);
     52
     53    if (a < b) {
     54        return -1;
     55    } else if (a > b) {
     56        return 1;
     57    }
     58
     59    return 0;
     60}
     61
     62#if 0
     63static void print_tm(struct tm *tm)
     64{
     65    printf("%04d-%02d-%02d %02d:%02d:%02d\n",
     66           tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
     67           tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
     68}
     69#endif
     70
     71static void cmos_get_date_time(struct tm *date)
     72{
     73    int base_year = 2000, hour_offset;
     74    int sec, min, hour, mday, mon, year;
     75    time_t ts;
     76    struct tm dummy;
     77
     78    sec = cmos_read(RTC_SECONDS);
     79    min = cmos_read(RTC_MINUTES);
     80    hour = cmos_read(RTC_HOURS);
     81    mday = cmos_read(RTC_DAY_OF_MONTH);
     82    mon = cmos_read(RTC_MONTH);
     83    year = cmos_read(RTC_YEAR);
     84
     85    if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
     86        sec = bcd2dec(sec);
     87        min = bcd2dec(min);
     88        hour = bcd2dec(hour);
     89        mday = bcd2dec(mday);
     90        mon = bcd2dec(mon);
     91        year = bcd2dec(year);
     92        hour_offset = 80;
     93    } else {
     94        hour_offset = 0x80;
     95    }
     96
     97    if ((cmos_read(0x0B) & REG_B_24H) == 0) {
     98        if (hour >= hour_offset) {
     99            hour -= hour_offset;
    100            hour += 12;
    101        }
    102    }
    103
    104    ts = time(NULL);
    105    localtime_r(&ts, &dummy);
    106
    107    date->tm_isdst = dummy.tm_isdst;
    108    date->tm_sec = sec;
    109    date->tm_min = min;
    110    date->tm_hour = hour;
    111    date->tm_mday = mday;
    112    date->tm_mon = mon - 1;
    113    date->tm_year = base_year + year - 1900;
    114#ifndef __sun__
    115    date->tm_gmtoff = 0;
    116#endif
    117
    118    ts = mktime(date);
    119}
    120
    121static void check_time(int wiggle)
    122{
    123    struct tm start, date[4], end;
    124    struct tm *datep;
    125    time_t ts;
    126
    127    /*
    128     * This check assumes a few things.  First, we cannot guarantee that we get
    129     * a consistent reading from the wall clock because we may hit an edge of
    130     * the clock while reading.  To work around this, we read four clock readings
    131     * such that at least two of them should match.  We need to assume that one
    132     * reading is corrupt so we need four readings to ensure that we have at
    133     * least two consecutive identical readings
    134     *
    135     * It's also possible that we'll cross an edge reading the host clock so
    136     * simply check to make sure that the clock reading is within the period of
    137     * when we expect it to be.
    138     */
    139
    140    ts = time(NULL);
    141    gmtime_r(&ts, &start);
    142
    143    cmos_get_date_time(&date[0]);
    144    cmos_get_date_time(&date[1]);
    145    cmos_get_date_time(&date[2]);
    146    cmos_get_date_time(&date[3]);
    147
    148    ts = time(NULL);
    149    gmtime_r(&ts, &end);
    150
    151    if (tm_cmp(&date[0], &date[1]) == 0) {
    152        datep = &date[0];
    153    } else if (tm_cmp(&date[1], &date[2]) == 0) {
    154        datep = &date[1];
    155    } else if (tm_cmp(&date[2], &date[3]) == 0) {
    156        datep = &date[2];
    157    } else {
    158        g_assert_not_reached();
    159    }
    160
    161    if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
    162        long t, s;
    163
    164        start.tm_isdst = datep->tm_isdst;
    165
    166        t = (long)mktime(datep);
    167        s = (long)mktime(&start);
    168        if (t < s) {
    169            g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
    170        } else {
    171            g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
    172        }
    173
    174        g_assert_cmpint(ABS(t - s), <=, wiggle);
    175    }
    176}
    177
    178static int wiggle = 2;
    179
    180static void set_year_20xx(void)
    181{
    182    /* Set BCD mode */
    183    cmos_write(RTC_REG_B, REG_B_24H);
    184    cmos_write(RTC_REG_A, 0x76);
    185    cmos_write(RTC_YEAR, 0x11);
    186    cmos_write(RTC_CENTURY, 0x20);
    187    cmos_write(RTC_MONTH, 0x02);
    188    cmos_write(RTC_DAY_OF_MONTH, 0x02);
    189    cmos_write(RTC_HOURS, 0x02);
    190    cmos_write(RTC_MINUTES, 0x04);
    191    cmos_write(RTC_SECONDS, 0x58);
    192    cmos_write(RTC_REG_A, 0x26);
    193
    194    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
    195    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
    196    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
    197    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
    198    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
    199    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
    200    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
    201
    202    if (sizeof(time_t) == 4) {
    203        return;
    204    }
    205
    206    /* Set a date in 2080 to ensure there is no year-2038 overflow.  */
    207    cmos_write(RTC_REG_A, 0x76);
    208    cmos_write(RTC_YEAR, 0x80);
    209    cmos_write(RTC_REG_A, 0x26);
    210
    211    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
    212    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
    213    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
    214    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
    215    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
    216    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
    217    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
    218
    219    cmos_write(RTC_REG_A, 0x76);
    220    cmos_write(RTC_YEAR, 0x11);
    221    cmos_write(RTC_REG_A, 0x26);
    222
    223    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
    224    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
    225    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
    226    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
    227    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
    228    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
    229    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
    230}
    231
    232static void set_year_1980(void)
    233{
    234    /* Set BCD mode */
    235    cmos_write(RTC_REG_B, REG_B_24H);
    236    cmos_write(RTC_REG_A, 0x76);
    237    cmos_write(RTC_YEAR, 0x80);
    238    cmos_write(RTC_CENTURY, 0x19);
    239    cmos_write(RTC_MONTH, 0x02);
    240    cmos_write(RTC_DAY_OF_MONTH, 0x02);
    241    cmos_write(RTC_HOURS, 0x02);
    242    cmos_write(RTC_MINUTES, 0x04);
    243    cmos_write(RTC_SECONDS, 0x58);
    244    cmos_write(RTC_REG_A, 0x26);
    245
    246    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
    247    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
    248    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
    249    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
    250    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
    251    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
    252    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
    253}
    254
    255static void bcd_check_time(void)
    256{
    257    /* Set BCD mode */
    258    cmos_write(RTC_REG_B, REG_B_24H);
    259    check_time(wiggle);
    260}
    261
    262static void dec_check_time(void)
    263{
    264    /* Set DEC mode */
    265    cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
    266    check_time(wiggle);
    267}
    268
    269static void alarm_time(void)
    270{
    271    struct tm now;
    272    time_t ts;
    273    int i;
    274
    275    ts = time(NULL);
    276    gmtime_r(&ts, &now);
    277
    278    /* set DEC mode */
    279    cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
    280
    281    g_assert(!get_irq(RTC_ISA_IRQ));
    282    cmos_read(RTC_REG_C);
    283
    284    now.tm_sec = (now.tm_sec + 2) % 60;
    285    cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
    286    cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
    287    cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
    288    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
    289
    290    for (i = 0; i < 2 + wiggle; i++) {
    291        if (get_irq(RTC_ISA_IRQ)) {
    292            break;
    293        }
    294
    295        clock_step(NANOSECONDS_PER_SECOND);
    296    }
    297
    298    g_assert(get_irq(RTC_ISA_IRQ));
    299    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
    300    g_assert(cmos_read(RTC_REG_C) == 0);
    301}
    302
    303static void set_time_regs(int h, int m, int s)
    304{
    305    cmos_write(RTC_HOURS, h);
    306    cmos_write(RTC_MINUTES, m);
    307    cmos_write(RTC_SECONDS, s);
    308}
    309
    310static void set_time(int mode, int h, int m, int s)
    311{
    312    cmos_write(RTC_REG_B, mode);
    313    cmos_write(RTC_REG_A, 0x76);
    314    set_time_regs(h, m, s);
    315    cmos_write(RTC_REG_A, 0x26);
    316}
    317
    318static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
    319{
    320    cmos_write(RTC_HOURS, h);
    321    cmos_write(RTC_MINUTES, min);
    322    cmos_write(RTC_SECONDS, s);
    323    cmos_write(RTC_YEAR, y & 0xFF);
    324    cmos_write(RTC_CENTURY, y >> 8);
    325    cmos_write(RTC_MONTH, m);
    326    cmos_write(RTC_DAY_OF_MONTH, d);
    327}
    328
    329static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
    330{
    331    cmos_write(RTC_HOURS, h);
    332    cmos_write(RTC_MINUTES, min);
    333    cmos_write(RTC_SECONDS, s);
    334    cmos_write(RTC_YEAR, y % 100);
    335    cmos_write(RTC_CENTURY, y / 100);
    336    cmos_write(RTC_MONTH, m);
    337    cmos_write(RTC_DAY_OF_MONTH, d);
    338}
    339
    340static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
    341{
    342    cmos_write(RTC_REG_B, mode);
    343
    344    cmos_write(RTC_REG_A, 0x76);
    345    if (mode & REG_B_DM) {
    346        set_datetime_dec(h, min, s, d, m, y);
    347    } else {
    348        set_datetime_bcd(h, min, s, d, m, y);
    349    }
    350    cmos_write(RTC_REG_A, 0x26);
    351}
    352
    353#define assert_time(h, m, s) \
    354    do { \
    355        g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
    356        g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
    357        g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
    358    } while(0)
    359
    360#define assert_datetime_bcd(h, min, s, d, m, y) \
    361    do { \
    362        g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
    363        g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
    364        g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
    365        g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
    366        g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
    367        g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
    368        g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
    369    } while(0)
    370
    371static void basic_12h_bcd(void)
    372{
    373    /* set BCD 12 hour mode */
    374    set_time(0, 0x81, 0x59, 0x00);
    375    clock_step(1000000000LL);
    376    assert_time(0x81, 0x59, 0x01);
    377    clock_step(59000000000LL);
    378    assert_time(0x82, 0x00, 0x00);
    379
    380    /* test BCD wraparound */
    381    set_time(0, 0x09, 0x59, 0x59);
    382    clock_step(60000000000LL);
    383    assert_time(0x10, 0x00, 0x59);
    384
    385    /* 12 AM -> 1 AM */
    386    set_time(0, 0x12, 0x59, 0x59);
    387    clock_step(1000000000LL);
    388    assert_time(0x01, 0x00, 0x00);
    389
    390    /* 12 PM -> 1 PM */
    391    set_time(0, 0x92, 0x59, 0x59);
    392    clock_step(1000000000LL);
    393    assert_time(0x81, 0x00, 0x00);
    394
    395    /* 11 AM -> 12 PM */
    396    set_time(0, 0x11, 0x59, 0x59);
    397    clock_step(1000000000LL);
    398    assert_time(0x92, 0x00, 0x00);
    399    /* TODO: test day wraparound */
    400
    401    /* 11 PM -> 12 AM */
    402    set_time(0, 0x91, 0x59, 0x59);
    403    clock_step(1000000000LL);
    404    assert_time(0x12, 0x00, 0x00);
    405    /* TODO: test day wraparound */
    406}
    407
    408static void basic_12h_dec(void)
    409{
    410    /* set decimal 12 hour mode */
    411    set_time(REG_B_DM, 0x81, 59, 0);
    412    clock_step(1000000000LL);
    413    assert_time(0x81, 59, 1);
    414    clock_step(59000000000LL);
    415    assert_time(0x82, 0, 0);
    416
    417    /* 12 PM -> 1 PM */
    418    set_time(REG_B_DM, 0x8c, 59, 59);
    419    clock_step(1000000000LL);
    420    assert_time(0x81, 0, 0);
    421
    422    /* 12 AM -> 1 AM */
    423    set_time(REG_B_DM, 0x0c, 59, 59);
    424    clock_step(1000000000LL);
    425    assert_time(0x01, 0, 0);
    426
    427    /* 11 AM -> 12 PM */
    428    set_time(REG_B_DM, 0x0b, 59, 59);
    429    clock_step(1000000000LL);
    430    assert_time(0x8c, 0, 0);
    431
    432    /* 11 PM -> 12 AM */
    433    set_time(REG_B_DM, 0x8b, 59, 59);
    434    clock_step(1000000000LL);
    435    assert_time(0x0c, 0, 0);
    436    /* TODO: test day wraparound */
    437}
    438
    439static void basic_24h_bcd(void)
    440{
    441    /* set BCD 24 hour mode */
    442    set_time(REG_B_24H, 0x09, 0x59, 0x00);
    443    clock_step(1000000000LL);
    444    assert_time(0x09, 0x59, 0x01);
    445    clock_step(59000000000LL);
    446    assert_time(0x10, 0x00, 0x00);
    447
    448    /* test BCD wraparound */
    449    set_time(REG_B_24H, 0x09, 0x59, 0x00);
    450    clock_step(60000000000LL);
    451    assert_time(0x10, 0x00, 0x00);
    452
    453    /* TODO: test day wraparound */
    454    set_time(REG_B_24H, 0x23, 0x59, 0x00);
    455    clock_step(60000000000LL);
    456    assert_time(0x00, 0x00, 0x00);
    457}
    458
    459static void basic_24h_dec(void)
    460{
    461    /* set decimal 24 hour mode */
    462    set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
    463    clock_step(1000000000LL);
    464    assert_time(9, 59, 1);
    465    clock_step(59000000000LL);
    466    assert_time(10, 0, 0);
    467
    468    /* test BCD wraparound */
    469    set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
    470    clock_step(60000000000LL);
    471    assert_time(10, 0, 0);
    472
    473    /* TODO: test day wraparound */
    474    set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
    475    clock_step(60000000000LL);
    476    assert_time(0, 0, 0);
    477}
    478
    479static void am_pm_alarm(void)
    480{
    481    cmos_write(RTC_MINUTES_ALARM, 0xC0);
    482    cmos_write(RTC_SECONDS_ALARM, 0xC0);
    483
    484    /* set BCD 12 hour mode */
    485    cmos_write(RTC_REG_B, 0);
    486
    487    /* Set time and alarm hour.  */
    488    cmos_write(RTC_REG_A, 0x76);
    489    cmos_write(RTC_HOURS_ALARM, 0x82);
    490    cmos_write(RTC_HOURS, 0x81);
    491    cmos_write(RTC_MINUTES, 0x59);
    492    cmos_write(RTC_SECONDS, 0x00);
    493    cmos_read(RTC_REG_C);
    494    cmos_write(RTC_REG_A, 0x26);
    495
    496    /* Check that alarm triggers when AM/PM is set.  */
    497    clock_step(60000000000LL);
    498    g_assert(cmos_read(RTC_HOURS) == 0x82);
    499    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
    500
    501    /*
    502     * Each of the following two tests takes over 60 seconds due to the time
    503     * needed to report the PIT interrupts.  Unfortunately, our PIT device
    504     * model keeps counting even when GATE=0, so we cannot simply disable
    505     * it in main().
    506     */
    507    if (g_test_quick()) {
    508        return;
    509    }
    510
    511    /* set DEC 12 hour mode */
    512    cmos_write(RTC_REG_B, REG_B_DM);
    513
    514    /* Set time and alarm hour.  */
    515    cmos_write(RTC_REG_A, 0x76);
    516    cmos_write(RTC_HOURS_ALARM, 0x82);
    517    cmos_write(RTC_HOURS, 3);
    518    cmos_write(RTC_MINUTES, 0);
    519    cmos_write(RTC_SECONDS, 0);
    520    cmos_read(RTC_REG_C);
    521    cmos_write(RTC_REG_A, 0x26);
    522
    523    /* Check that alarm triggers.  */
    524    clock_step(3600 * 11 * 1000000000LL);
    525    g_assert(cmos_read(RTC_HOURS) == 0x82);
    526    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
    527
    528    /* Same as above, with inverted HOURS and HOURS_ALARM.  */
    529    cmos_write(RTC_REG_A, 0x76);
    530    cmos_write(RTC_HOURS_ALARM, 2);
    531    cmos_write(RTC_HOURS, 3);
    532    cmos_write(RTC_MINUTES, 0);
    533    cmos_write(RTC_SECONDS, 0);
    534    cmos_read(RTC_REG_C);
    535    cmos_write(RTC_REG_A, 0x26);
    536
    537    /* Check that alarm does not trigger if hours differ only by AM/PM.  */
    538    clock_step(3600 * 11 * 1000000000LL);
    539    g_assert(cmos_read(RTC_HOURS) == 0x82);
    540    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
    541}
    542
    543/* success if no crash or abort */
    544static void fuzz_registers(void)
    545{
    546    unsigned int i;
    547
    548    for (i = 0; i < 1000; i++) {
    549        uint8_t reg, val;
    550
    551        reg = (uint8_t)g_test_rand_int_range(0, 16);
    552        val = (uint8_t)g_test_rand_int_range(0, 256);
    553
    554        cmos_write(reg, val);
    555        cmos_read(reg);
    556    }
    557}
    558
    559static void register_b_set_flag(void)
    560{
    561    if (cmos_read(RTC_REG_A) & REG_A_UIP) {
    562        clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
    563    }
    564    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
    565
    566    /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
    567    cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
    568
    569    set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    570
    571    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    572
    573    /* Since SET flag is still enabled, time does not advance. */
    574    clock_step(1000000000LL);
    575    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    576
    577    /* Disable SET flag in Register B */
    578    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
    579
    580    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    581
    582    /* Since SET flag is disabled, the clock now advances.  */
    583    clock_step(1000000000LL);
    584    assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
    585}
    586
    587static void divider_reset(void)
    588{
    589    /* Enable binary-coded decimal (BCD) mode in Register B*/
    590    cmos_write(RTC_REG_B, REG_B_24H);
    591
    592    /* Enter divider reset */
    593    cmos_write(RTC_REG_A, 0x76);
    594    set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    595
    596    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    597
    598    /* Since divider reset flag is still enabled, these are equality checks. */
    599    clock_step(1000000000LL);
    600    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    601
    602    /* The first update ends 500 ms after divider reset */
    603    cmos_write(RTC_REG_A, 0x26);
    604    clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
    605    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
    606    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    607
    608    clock_step(1);
    609    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
    610    clock_step(UIP_HOLD_LENGTH);
    611    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
    612
    613    assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
    614}
    615
    616static void uip_stuck(void)
    617{
    618    set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
    619
    620    /* The first update ends 500 ms after divider reset */
    621    (void)cmos_read(RTC_REG_C);
    622    clock_step(500000000LL);
    623    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
    624    assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
    625
    626    /* UF is now set.  */
    627    cmos_write(RTC_HOURS_ALARM, 0x02);
    628    cmos_write(RTC_MINUTES_ALARM, 0xC0);
    629    cmos_write(RTC_SECONDS_ALARM, 0xC0);
    630
    631    /* Because the alarm will fire soon, reading register A will latch UIP.  */
    632    clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
    633    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
    634
    635    /* Move the alarm far away.  This must not cause UIP to remain stuck!  */
    636    cmos_write(RTC_HOURS_ALARM, 0x03);
    637    clock_step(UIP_HOLD_LENGTH);
    638    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
    639}
    640
    641#define RTC_PERIOD_CODE1    13   /* 8 Hz */
    642#define RTC_PERIOD_CODE2    15   /* 2 Hz */
    643
    644#define RTC_PERIOD_TEST_NR  50
    645
    646static uint64_t wait_periodic_interrupt(uint64_t real_time)
    647{
    648    while (!get_irq(RTC_ISA_IRQ)) {
    649        real_time = clock_step_next();
    650    }
    651
    652    g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
    653    return real_time;
    654}
    655
    656static void periodic_timer(void)
    657{
    658    int i;
    659    uint64_t period_clocks, period_time, start_time, real_time;
    660
    661    /* disable all interrupts. */
    662    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
    663                                   ~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
    664    cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
    665    /* enable periodic interrupt after properly configure the period. */
    666    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
    667
    668    start_time = real_time = clock_step_next();
    669
    670    for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
    671        cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
    672        real_time = wait_periodic_interrupt(real_time);
    673        cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
    674        real_time = wait_periodic_interrupt(real_time);
    675    }
    676
    677    period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
    678                       periodic_period_to_clock(RTC_PERIOD_CODE2);
    679    period_clocks *= RTC_PERIOD_TEST_NR;
    680    period_time = periodic_clock_to_ns(period_clocks);
    681
    682    real_time -= start_time;
    683    g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
    684                    NANOSECONDS_PER_SECOND * 0.5);
    685}
    686
    687int main(int argc, char **argv)
    688{
    689    QTestState *s;
    690    int ret;
    691
    692    g_test_init(&argc, &argv, NULL);
    693
    694    s = qtest_start("-rtc clock=vm");
    695    qtest_irq_intercept_in(s, "ioapic");
    696
    697    qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
    698    qtest_add_func("/rtc/check-time/dec", dec_check_time);
    699    qtest_add_func("/rtc/alarm/interrupt", alarm_time);
    700    qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
    701    qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
    702    qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
    703    qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
    704    qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
    705    qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
    706    qtest_add_func("/rtc/set-year/1980", set_year_1980);
    707    qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
    708    qtest_add_func("/rtc/update/divider-reset", divider_reset);
    709    qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
    710    qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
    711    qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
    712
    713    ret = g_test_run();
    714
    715    qtest_quit(s);
    716
    717    return ret;
    718}