cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

sse-timer-test.c (8485B)


      1/*
      2 * QTest testcase for the SSE timer device
      3 *
      4 * Copyright (c) 2021 Linaro Limited
      5 *
      6 * This program is free software; you can redistribute it and/or modify it
      7 * under the terms of the GNU General Public License as published by the
      8 * Free Software Foundation; either version 2 of the License, or
      9 * (at your option) any later version.
     10 *
     11 * This program is distributed in the hope that it will be useful, but WITHOUT
     12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
     14 * for more details.
     15 */
     16
     17#include "qemu/osdep.h"
     18#include "libqtest-single.h"
     19
     20/*
     21 * SSE-123/SSE-300 timer in the mps3-an547 board, where it is driven
     22 * at 32MHz, so 31.25ns per tick.
     23 */
     24#define TIMER_BASE 0x48000000
     25
     26/* PERIPHNSPPC0 register in the SSE-300 Secure Access Configuration block */
     27#define PERIPHNSPPC0 (0x50080000 + 0x70)
     28
     29/* Base of the System Counter control frame */
     30#define COUNTER_BASE 0x58100000
     31
     32/* SSE counter register offsets in the control frame */
     33#define CNTCR 0
     34#define CNTSR 0x4
     35#define CNTCV_LO 0x8
     36#define CNTCV_HI 0xc
     37#define CNTSCR 0x10
     38
     39/* SSE timer register offsets */
     40#define CNTPCT_LO 0
     41#define CNTPCT_HI 4
     42#define CNTFRQ 0x10
     43#define CNTP_CVAL_LO 0x20
     44#define CNTP_CVAL_HI 0x24
     45#define CNTP_TVAL 0x28
     46#define CNTP_CTL 0x2c
     47#define CNTP_AIVAL_LO 0x40
     48#define CNTP_AIVAL_HI 0x44
     49#define CNTP_AIVAL_RELOAD 0x48
     50#define CNTP_AIVAL_CTL 0x4c
     51
     52/* 4 ticks in nanoseconds (so we can work in integers) */
     53#define FOUR_TICKS 125
     54
     55static void clock_step_ticks(uint64_t ticks)
     56{
     57    /*
     58     * Advance the qtest clock by however many nanoseconds we
     59     * need to move the timer forward the specified number of ticks.
     60     * ticks must be a multiple of 4, so we get a whole number of ns.
     61     */
     62    assert(!(ticks & 3));
     63    clock_step(FOUR_TICKS * (ticks >> 2));
     64}
     65
     66static void reset_counter_and_timer(void)
     67{
     68    /*
     69     * Reset the system counter and the timer between tests. This
     70     * isn't a full reset, but it's sufficient for what the tests check.
     71     */
     72    writel(COUNTER_BASE + CNTCR, 0);
     73    writel(TIMER_BASE + CNTP_CTL, 0);
     74    writel(TIMER_BASE + CNTP_AIVAL_CTL, 0);
     75    writel(COUNTER_BASE + CNTCV_LO, 0);
     76    writel(COUNTER_BASE + CNTCV_HI, 0);
     77}
     78
     79static void test_counter(void)
     80{
     81    /* Basic counter functionality test */
     82
     83    reset_counter_and_timer();
     84    /* The counter should start disabled: check that it doesn't move */
     85    clock_step_ticks(100);
     86    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 0);
     87    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
     88    /* Now enable it and check that it does count */
     89    writel(COUNTER_BASE + CNTCR, 1);
     90    clock_step_ticks(100);
     91    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 100);
     92    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
     93    /* Check the counter scaling functionality */
     94    writel(COUNTER_BASE + CNTCR, 0);
     95    writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */
     96    writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */
     97    clock_step_ticks(160);
     98    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 110);
     99    g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
    100}
    101
    102static void test_timer(void)
    103{
    104    /* Basic timer functionality test */
    105
    106    reset_counter_and_timer();
    107    /*
    108     * The timer is behind a Peripheral Protection Controller, and
    109     * qtest accesses are always non-secure (no memory attributes),
    110     * so we must program the PPC to accept NS transactions.  TIMER0
    111     * is on port 0 of PPC0, controlled by bit 0 of this register.
    112     */
    113    writel(PERIPHNSPPC0, 1);
    114    /* We must enable the System Counter or the timer won't run. */
    115    writel(COUNTER_BASE + CNTCR, 1);
    116
    117    /* Timer starts disabled and with a counter of 0 */
    118    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 0);
    119    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 0);
    120    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0);
    121
    122    /* Turn it on */
    123    writel(TIMER_BASE + CNTP_CTL, 1);
    124
    125    /* Is the timer ticking? */
    126    clock_step_ticks(100);
    127    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 100);
    128    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0);
    129
    130    /* Set the CompareValue to 4000 ticks */
    131    writel(TIMER_BASE + CNTP_CVAL_LO, 4000);
    132    writel(TIMER_BASE + CNTP_CVAL_HI, 0);
    133
    134    /* Check TVAL view of the counter */
    135    g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 3900);
    136
    137    /* Advance to the CompareValue mark and check ISTATUS is set */
    138    clock_step_ticks(3900);
    139    g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 0);
    140    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
    141
    142    /* Now exercise the auto-reload part of the timer */
    143    writel(TIMER_BASE + CNTP_AIVAL_RELOAD, 200);
    144    writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
    145
    146    /* Check AIVAL was reloaded and that ISTATUS is now clear */
    147    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4200);
    148    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
    149    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
    150
    151    /*
    152     * Check that when we advance forward to the reload time the interrupt
    153     * fires and the value reloads
    154     */
    155    clock_step_ticks(100);
    156    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
    157    clock_step_ticks(100);
    158    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
    159    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4400);
    160    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
    161
    162    clock_step_ticks(100);
    163    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
    164    /* Check that writing 0 to CLR clears the interrupt */
    165    writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
    166    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
    167    /* Check that when we move forward to the reload time it fires again */
    168    clock_step_ticks(100);
    169    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
    170    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600);
    171    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
    172
    173    /*
    174     * Step the clock far enough that we overflow the low half of the
    175     * CNTPCT and AIVAL registers, and check that their high halves
    176     * give the right values. We do the forward movement in
    177     * non-autoinc mode because otherwise it takes forever as the
    178     * timer has to emulate all the 'reload at t + N, t + 2N, etc'
    179     * steps.
    180     */
    181    writel(TIMER_BASE + CNTP_AIVAL_CTL, 0);
    182    clock_step_ticks(0x42ULL << 32);
    183    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 4400);
    184    g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0x42);
    185
    186    /* Turn on the autoinc again to check AIVAL_HI */
    187    writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
    188    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600);
    189    g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0x42);
    190}
    191
    192static void test_timer_scale_change(void)
    193{
    194    /*
    195     * Test that the timer responds correctly to counter
    196     * scaling changes while it has an active timer.
    197     */
    198    reset_counter_and_timer();
    199    /* Give ourselves access to the timer, and enable the counter and timer */
    200    writel(PERIPHNSPPC0, 1);
    201    writel(COUNTER_BASE + CNTCR, 1);
    202    writel(TIMER_BASE + CNTP_CTL, 1);
    203    /* Set the CompareValue to 4000 ticks */
    204    writel(TIMER_BASE + CNTP_CVAL_LO, 4000);
    205    writel(TIMER_BASE + CNTP_CVAL_HI, 0);
    206    /* Advance halfway and check ISTATUS is not set */
    207    clock_step_ticks(2000);
    208    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
    209    /* Reprogram the counter to run at 1/16th speed */
    210    writel(COUNTER_BASE + CNTCR, 0);
    211    writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */
    212    writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */
    213    /* Advance to where the timer would have fired and check it has not */
    214    clock_step_ticks(2000);
    215    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
    216    /* Advance to where the timer must fire at the new clock rate */
    217    clock_step_ticks(29996);
    218    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
    219    clock_step_ticks(4);
    220    g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
    221}
    222
    223int main(int argc, char **argv)
    224{
    225    int r;
    226
    227    g_test_init(&argc, &argv, NULL);
    228
    229    qtest_start("-machine mps3-an547");
    230
    231    qtest_add_func("/sse-timer/counter", test_counter);
    232    qtest_add_func("/sse-timer/timer", test_timer);
    233    qtest_add_func("/sse-timer/timer-scale-change", test_timer_scale_change);
    234
    235    r = g_test_run();
    236
    237    qtest_end();
    238
    239    return r;
    240}