cachepc-qemu

Fork of AMDESE/qemu with changes for cachepc side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-qemu
Log | Files | Refs | Submodules | LICENSE | sfeed.txt

bufferiszero.c (10306B)


      1/*
      2 * Simple C functions to supplement the C library
      3 *
      4 * Copyright (c) 2006 Fabrice Bellard
      5 *
      6 * Permission is hereby granted, free of charge, to any person obtaining a copy
      7 * of this software and associated documentation files (the "Software"), to deal
      8 * in the Software without restriction, including without limitation the rights
      9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10 * copies of the Software, and to permit persons to whom the Software is
     11 * furnished to do so, subject to the following conditions:
     12 *
     13 * The above copyright notice and this permission notice shall be included in
     14 * all copies or substantial portions of the Software.
     15 *
     16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22 * THE SOFTWARE.
     23 */
     24#include "qemu/osdep.h"
     25#include "qemu/cutils.h"
     26#include "qemu/bswap.h"
     27
     28static bool
     29buffer_zero_int(const void *buf, size_t len)
     30{
     31    if (unlikely(len < 8)) {
     32        /* For a very small buffer, simply accumulate all the bytes.  */
     33        const unsigned char *p = buf;
     34        const unsigned char *e = buf + len;
     35        unsigned char t = 0;
     36
     37        do {
     38            t |= *p++;
     39        } while (p < e);
     40
     41        return t == 0;
     42    } else {
     43        /* Otherwise, use the unaligned memory access functions to
     44           handle the beginning and end of the buffer, with a couple
     45           of loops handling the middle aligned section.  */
     46        uint64_t t = ldq_he_p(buf);
     47        const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
     48        const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
     49
     50        for (; p + 8 <= e; p += 8) {
     51            __builtin_prefetch(p + 8);
     52            if (t) {
     53                return false;
     54            }
     55            t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
     56        }
     57        while (p < e) {
     58            t |= *p++;
     59        }
     60        t |= ldq_he_p(buf + len - 8);
     61
     62        return t == 0;
     63    }
     64}
     65
     66#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
     67/* Do not use push_options pragmas unnecessarily, because clang
     68 * does not support them.
     69 */
     70#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
     71#pragma GCC push_options
     72#pragma GCC target("sse2")
     73#endif
     74#include <emmintrin.h>
     75
     76/* Note that each of these vectorized functions require len >= 64.  */
     77
     78static bool
     79buffer_zero_sse2(const void *buf, size_t len)
     80{
     81    __m128i t = _mm_loadu_si128(buf);
     82    __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
     83    __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
     84    __m128i zero = _mm_setzero_si128();
     85
     86    /* Loop over 16-byte aligned blocks of 64.  */
     87    while (likely(p <= e)) {
     88        __builtin_prefetch(p);
     89        t = _mm_cmpeq_epi8(t, zero);
     90        if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
     91            return false;
     92        }
     93        t = p[-4] | p[-3] | p[-2] | p[-1];
     94        p += 4;
     95    }
     96
     97    /* Finish the aligned tail.  */
     98    t |= e[-3];
     99    t |= e[-2];
    100    t |= e[-1];
    101
    102    /* Finish the unaligned tail.  */
    103    t |= _mm_loadu_si128(buf + len - 16);
    104
    105    return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
    106}
    107#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
    108#pragma GCC pop_options
    109#endif
    110
    111#ifdef CONFIG_AVX2_OPT
    112/* Note that due to restrictions/bugs wrt __builtin functions in gcc <= 4.8,
    113 * the includes have to be within the corresponding push_options region, and
    114 * therefore the regions themselves have to be ordered with increasing ISA.
    115 */
    116#pragma GCC push_options
    117#pragma GCC target("sse4")
    118#include <smmintrin.h>
    119
    120static bool
    121buffer_zero_sse4(const void *buf, size_t len)
    122{
    123    __m128i t = _mm_loadu_si128(buf);
    124    __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
    125    __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
    126
    127    /* Loop over 16-byte aligned blocks of 64.  */
    128    while (likely(p <= e)) {
    129        __builtin_prefetch(p);
    130        if (unlikely(!_mm_testz_si128(t, t))) {
    131            return false;
    132        }
    133        t = p[-4] | p[-3] | p[-2] | p[-1];
    134        p += 4;
    135    }
    136
    137    /* Finish the aligned tail.  */
    138    t |= e[-3];
    139    t |= e[-2];
    140    t |= e[-1];
    141
    142    /* Finish the unaligned tail.  */
    143    t |= _mm_loadu_si128(buf + len - 16);
    144
    145    return _mm_testz_si128(t, t);
    146}
    147
    148#pragma GCC pop_options
    149#pragma GCC push_options
    150#pragma GCC target("avx2")
    151#include <immintrin.h>
    152
    153static bool
    154buffer_zero_avx2(const void *buf, size_t len)
    155{
    156    /* Begin with an unaligned head of 32 bytes.  */
    157    __m256i t = _mm256_loadu_si256(buf);
    158    __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
    159    __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
    160
    161    /* Loop over 32-byte aligned blocks of 128.  */
    162    while (p <= e) {
    163        __builtin_prefetch(p);
    164        if (unlikely(!_mm256_testz_si256(t, t))) {
    165            return false;
    166        }
    167        t = p[-4] | p[-3] | p[-2] | p[-1];
    168        p += 4;
    169    } ;
    170
    171    /* Finish the last block of 128 unaligned.  */
    172    t |= _mm256_loadu_si256(buf + len - 4 * 32);
    173    t |= _mm256_loadu_si256(buf + len - 3 * 32);
    174    t |= _mm256_loadu_si256(buf + len - 2 * 32);
    175    t |= _mm256_loadu_si256(buf + len - 1 * 32);
    176
    177    return _mm256_testz_si256(t, t);
    178}
    179#pragma GCC pop_options
    180#endif /* CONFIG_AVX2_OPT */
    181
    182#ifdef CONFIG_AVX512F_OPT
    183#pragma GCC push_options
    184#pragma GCC target("avx512f")
    185#include <immintrin.h>
    186
    187static bool
    188buffer_zero_avx512(const void *buf, size_t len)
    189{
    190    /* Begin with an unaligned head of 64 bytes.  */
    191    __m512i t = _mm512_loadu_si512(buf);
    192    __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64);
    193    __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64);
    194
    195    /* Loop over 64-byte aligned blocks of 256.  */
    196    while (p <= e) {
    197        __builtin_prefetch(p);
    198        if (unlikely(_mm512_test_epi64_mask(t, t))) {
    199            return false;
    200        }
    201        t = p[-4] | p[-3] | p[-2] | p[-1];
    202        p += 4;
    203    }
    204
    205    t |= _mm512_loadu_si512(buf + len - 4 * 64);
    206    t |= _mm512_loadu_si512(buf + len - 3 * 64);
    207    t |= _mm512_loadu_si512(buf + len - 2 * 64);
    208    t |= _mm512_loadu_si512(buf + len - 1 * 64);
    209
    210    return !_mm512_test_epi64_mask(t, t);
    211
    212}
    213#pragma GCC pop_options
    214#endif
    215
    216
    217/* Note that for test_buffer_is_zero_next_accel, the most preferred
    218 * ISA must have the least significant bit.
    219 */
    220#define CACHE_AVX512F 1
    221#define CACHE_AVX2    2
    222#define CACHE_SSE4    4
    223#define CACHE_SSE2    8
    224
    225/* Make sure that these variables are appropriately initialized when
    226 * SSE2 is enabled on the compiler command-line, but the compiler is
    227 * too old to support CONFIG_AVX2_OPT.
    228 */
    229#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
    230# define INIT_CACHE 0
    231# define INIT_ACCEL buffer_zero_int
    232#else
    233# ifndef __SSE2__
    234#  error "ISA selection confusion"
    235# endif
    236# define INIT_CACHE CACHE_SSE2
    237# define INIT_ACCEL buffer_zero_sse2
    238#endif
    239
    240static unsigned cpuid_cache = INIT_CACHE;
    241static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
    242static int length_to_accel = 64;
    243
    244static void init_accel(unsigned cache)
    245{
    246    bool (*fn)(const void *, size_t) = buffer_zero_int;
    247    if (cache & CACHE_SSE2) {
    248        fn = buffer_zero_sse2;
    249        length_to_accel = 64;
    250    }
    251#ifdef CONFIG_AVX2_OPT
    252    if (cache & CACHE_SSE4) {
    253        fn = buffer_zero_sse4;
    254        length_to_accel = 64;
    255    }
    256    if (cache & CACHE_AVX2) {
    257        fn = buffer_zero_avx2;
    258        length_to_accel = 128;
    259    }
    260#endif
    261#ifdef CONFIG_AVX512F_OPT
    262    if (cache & CACHE_AVX512F) {
    263        fn = buffer_zero_avx512;
    264        length_to_accel = 256;
    265    }
    266#endif
    267    buffer_accel = fn;
    268}
    269
    270#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
    271#include "qemu/cpuid.h"
    272
    273static void __attribute__((constructor)) init_cpuid_cache(void)
    274{
    275    int max = __get_cpuid_max(0, NULL);
    276    int a, b, c, d;
    277    unsigned cache = 0;
    278
    279    if (max >= 1) {
    280        __cpuid(1, a, b, c, d);
    281        if (d & bit_SSE2) {
    282            cache |= CACHE_SSE2;
    283        }
    284        if (c & bit_SSE4_1) {
    285            cache |= CACHE_SSE4;
    286        }
    287
    288        /* We must check that AVX is not just available, but usable.  */
    289        if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) {
    290            int bv;
    291            __asm("xgetbv" : "=a"(bv), "=d"(d) : "c"(0));
    292            __cpuid_count(7, 0, a, b, c, d);
    293            if ((bv & 0x6) == 0x6 && (b & bit_AVX2)) {
    294                cache |= CACHE_AVX2;
    295            }
    296            /* 0xe6:
    297            *  XCR0[7:5] = 111b (OPMASK state, upper 256-bit of ZMM0-ZMM15
    298            *                    and ZMM16-ZMM31 state are enabled by OS)
    299            *  XCR0[2:1] = 11b (XMM state and YMM state are enabled by OS)
    300            */
    301            if ((bv & 0xe6) == 0xe6 && (b & bit_AVX512F)) {
    302                cache |= CACHE_AVX512F;
    303            }
    304        }
    305    }
    306    cpuid_cache = cache;
    307    init_accel(cache);
    308}
    309#endif /* CONFIG_AVX2_OPT */
    310
    311bool test_buffer_is_zero_next_accel(void)
    312{
    313    /* If no bits set, we just tested buffer_zero_int, and there
    314       are no more acceleration options to test.  */
    315    if (cpuid_cache == 0) {
    316        return false;
    317    }
    318    /* Disable the accelerator we used before and select a new one.  */
    319    cpuid_cache &= cpuid_cache - 1;
    320    init_accel(cpuid_cache);
    321    return true;
    322}
    323
    324static bool select_accel_fn(const void *buf, size_t len)
    325{
    326    if (likely(len >= length_to_accel)) {
    327        return buffer_accel(buf, len);
    328    }
    329    return buffer_zero_int(buf, len);
    330}
    331
    332#else
    333#define select_accel_fn  buffer_zero_int
    334bool test_buffer_is_zero_next_accel(void)
    335{
    336    return false;
    337}
    338#endif
    339
    340/*
    341 * Checks if a buffer is all zeroes
    342 */
    343bool buffer_is_zero(const void *buf, size_t len)
    344{
    345    if (unlikely(len == 0)) {
    346        return true;
    347    }
    348
    349    /* Fetch the beginning of the buffer while we select the accelerator.  */
    350    __builtin_prefetch(buf);
    351
    352    /* Use an optimized zero check if possible.  Note that this also
    353       includes a check for an unrolled loop over 64-bit integers.  */
    354    return select_accel_fn(buf, len);
    355}